Abstract
This paper presents the resistive-capacitive shunted Josephson junction (RCSJJ) with a topologically nontrivial barrier (TNB) coupled to a linear RLC resonator. The rate equations describing RCSJJ with TNB coupled to the linear RLC resonator are established via Kirchhoff’s current and voltage laws. The model exhibits four, two, or no equilibrium points depending on the external direct current (DC) source and the fractional parameter. The stability analysis of the equilibrium points with credit to the Routh-Hurwitz stability criterion reveals that the stability of equilibrium points depends on the DC source and the fractional parameter. Current-voltage characteristic reveals the presence of a birhythmicity zone which is sensitive to the fractional parameter m. As the fractional parameter increases, the coexistence of the resonant state is destroyed, which is followed simultaneously by the appearance of a new resonance state. Depending on initial conditions, birhythmic behaviour is characterized by the existence of a limit cycle. The projection of the phase space in the specific plane and the time evolution of charge is predicted in which the amplitude of attractors reported is sensitive to the parameter m. Lastly, with a defined fractional parameter, the amplitude of the branch locked to the resonator is greater than the unlocked branch.
References
Abou-Jaoudé, W., M. Chaves, and J.-L. Gouzé, 2011a A theoretical exploration of birhythmicity in the p53-mdm2 network. PLoS One 6: e17075.
Abou-Jaoudé, W., M. Chaves, and J.-L. Gouzé, 2011b A theoretical exploration of birhythmicity in the p53-mdm2 network. PLoS One 6: e17075.
Aleiner, I. L. and Y. M. Blanter, 2002 Inelastic scattering time for conductance fluctuations. Phys. Rev. B 65: 1–10.
Bao, R., L. Huang, Y. Lai, and C. Grebogi, 2015 Conductance fluctuations in chaotic bilayer graphene quantum dots. Phys. Rev. E 012918: 1–8.
Barone, A. and G. Paternó, 1982 Physics and applications of the Josephson effect. Wiley and Sons, New York.
Bee, G., K. Ballentine, and M. Thomsen, 2008 Realistic problems involving thermal conductivity. Am. J. Phys. 76: 970–974.
Belli, F., T. Novoa, J. Contreras-García, and I. Errea, 2012 Strong correlation between electronic bonding network and critical temperature in hydrogen-based superconductors. Nat. Commun. 12: 1–11.
Campi, D., S. Kumari, and N. Marzari, 2021 Prediction of phonon-mediated superconductivity with high critical temperature in the two-dimensional topological semimetal w2n3. Nano Lett. 21: 3435–3442.
Canturk, M. and I. N. Askerzade, 2013 Chaotic dynamics of externally shunted josephson junction with unharmonic cpr. J. Supercond. Nov. Magn. 26: 839–843.
Casagrande, V. and A. S. Mikhailov, 2005 Birhythmicity, synchronization, and turbulence in an oscillatory system with nonlocal inertial coupling. Phys. D Nonlinear Phenom. 205: 154–169.
Clarke, J. and F. K. Wilhelm, 2008 Superconducting quantum bits. Nature 453: 1031–1042.
Decroly, O. and A. Goldbeter, 1982 Birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system. Proc. Natl. Acad. Sci. USA 79: 6917–6921.
Dominguez, F., F. Hassler, and G. Platero, 2012 Dynamical detection of majorana fermions in current-biased nanowires. Phys. Rev. B 86: 1405031–5.
Eck, R., D. Scalapino, and B. Taylor, 1965 Low-temperature physics ix. In 9th International Conference, edited by J. G. e. a. Daunt, p. 415, Plenum Press, Inc.
Filatrella, G., G. Rotoli, N. Gro/nbechJensen, R. D. Parmentier, and N. F. Pedersen, 1992 Model studies of long josephson junction arrays coupled to a high-q resonator. Journal Appl. Phys. 72: 3179–3185.
Fu, L. and C. L. Kane, 2009 Josephson current and noise at a superconductor/quantum-spin-hall-insulator/superconductor junction. Phys. Rev. B 79: 161408.
Fujii, T., S. H. Matsuo, K. Takashima, N. Hatakenaka, S. Kurihara, et al., 2009 Theoretical studies on dynamical casimir effect in a superconducting artificial atom. In QFEXT09 (University Oklahoma, USA), edited by K. A. Milt and M. Bordag, p. 344,World Scientific.
Geva-zatorsky, N. et al., 2006 Oscillations and variability in the p53 system. Mol. Syst. Biol. pp. 1–13.
Ghosh, P., S. Sen, S. S. Riaz, and D. S. Ray, 2011 Controlling birhythmicity in a self-sustained oscillator by time-delayed feedback. Phys. Rev. E 83: 36205.
González, H., H. Arce, and M. R. Guevara, 2008 Phase resetting, phase locking, and bistability in the periodically driven saline oscillator: Experiment and model. Phys. Rev. E 78: 36217.
Grib, A. et al., 2006 Synchronization of serial intrinsic josephson junction arrays on vicinal substrates. Supercond. Sci. Technol. 19: S200–S204.
Gross, B. et al., 2013 Modeling the linewidth dependence of coherent terahertz emission from intrinsic josephson junction stacks in the hot-spot regime. Phys. Rev. B 88: 14524.
Haberichter, T., M. Marh, and R. Heinrich, 2001 Birhythmicity, trirhythmicity and chaos in bursting calcium oscillations. Biophys. Chem. 90: 17–30.
Hadley, P., M. R. Beasley, and K. Wiesenfeld, 1988 Phase locking of josephson-junction series arrays. Phys. Rev. B 38: 8712–8719.
Hounsgaard, B. Y. J., H. Hultborn, B. Jespersen, and O. Kiehn, 1988 Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. J. Physiol. 405: 345–367.
Kadji, H. E., J. C. Orou, R. Yamapi, and P.Woafo, 2007 Nonlinear dynamics and strange attractors in the biological system. Chaos, Solitons & Fractals 32: 862–882.
Kingni, S. T., A. Cheukem, A. C. Chamgoué, and F. T. Kamga, 2020 Analysis of josephson junction with topologically nontrivial barrier. Eur. Phys. J. B 93: 143–147.
Kingni, S. T., G. F. Kuiate, V. K. Tamba, A. V. Monwanou, J. Bio, et al., 2019 Analysis of a fractal josephson junction with unharmonic current-phase relation. Supercond. Nov. Magn. 32: 2295–2301.
Kleiner, R., D. Koelle, F. Ludwig, and J. Clarke, 2004 Superconducting quantum interference devices. state of art and applications. In Proceedings of the IEEE, volume 92, p. 1534.
Likharev, K. K., 1986 Dynamics of Josephson junction and circuits. Gordon Breach, New York.
Lima, F. C. E., A. R. Moreira, L. E. Machado, and C. A. S. Almeida, 2021 Statistical properties of linear majorana fermions. Int. J. Quantum Chem. 121: e26749.
McDermott, R., S. Lee, B. T. Haken, A. H. Trabesinger, A. Pines, et al., 2004 Microtesla mri with a superconducting quantum interference device. Proc. Natl. Acad. Sci. 101: 7857–7861.
Morita, M., K. Iwamoto, and M. Sen, 1989 Transition sequence and birhythmicity in a chemical oscillation model showing chaos. Phys. Rev. A 40: 6592–6596.
Mourik, V., K. Zou, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, et al., 2012 Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336: 1003–1007.
Nana, B., S. B. Yamgoué, I. Kemajou, R. Tchitnga, and P. Woafo, 2018 Dynamics of an rlc series circuit with hysteretic iron-core inductor. Chaos, Solitons and Fractals 106: 184–192.
Nori, F., 2008 Designing quantum-information-processing superconducting qubit circuits that exhibit lasing and other atomic-physics-like phenomena on a chip. In APS March Meeting Abstracts, pp. H15–001.
Oladapo, B. I., S. A. Zahedi, S. C. Chaluvadi, S. S. Bollapalli, and M. Ismail, 2018 Model design of a superconducting quantum interference device of magnetic field sensors for magnetocardiography. Biomed. Signal Process. Control 46: 116–120.
Ovchinnikov, Y. N. and V. Z. Kresin, 2013 Networks of josephson junctions and their synchronization. Phys. Rev. B 88: 214504.
Owen, C. S. and D. J. Scalapino, 1997 Inductive coupling of josephson junctions to external circuits. J. Appl. Phys. 2047.
Ozyuzer, L. et al., 2007 Emission of coherent thz radiation from superconductors. Science (80-. ) 318: 1291–1293.
Pountougnigni, O. V., R. Yamapi, G. Filatrella, and C. Tchawoua, 2019 Noise and disorder effects in a series of birhythmic josephson junctions coupled to a resonator. arXiv 3: 1–13.
Ramakrishnan, B., A. A. Oumate, M. Tuna, Koyuncu, S. T. Kingni, et al., 2022 Analysis, fpga implementation of a josephson junction circuit with topologically nontrivial barrier and its application to ring-based dual entropy core true random number generator. Eur. Phys. J. Spec. Top. 231: 1049–1059.
Sosnovtseva, O. V., D. Setsinsky, A. Fausboll, and E. Mosekilde, 2002 Transitions between beta and gamma rhythms in neural systems. Phys. Rev. E 66: 41901.
Stich, M., M. Ipsen, and A. S. Mikhailov, 2002 Self-organized pacemakers in birhythmic media. Phys. D Nonlinear Phenom. 171: 19–40.
Veldhorst, M., C. G. Molenaar, C. J. M. Verwijs, H. Hilgenkamp, and A. Brinkman, 2012 Optimizing the majorana character of squids with topologically nontrivial barriers. Phys. Rev. B 86: 024509–1075.
Ventura, A. et al., 2007 Restoration of p53 function leads to tumour regression in vivo. Nature 445: 661–665.
Wang, H. B. et al., 2010 Coherent terahertz emission of intrinsic josephson junction stacks in the hot spot regime. Phys. Rev. Lett. 105: 57002.
Wen, X.-G., 2006 Topological orders and edge excitations in fractional quantum hall states. Adv. Phys. 44: 405–473.
Wendin, G., 2017 Quantum information processing with superconducting circuits: a review. Reports Prog. Phys. 80: 1060011–50.
Xie, H.-Y. and A. Levchenko, 2019 Topological supercurrents interaction and fluctuations in the multiterminal josephson effect. Phys. Rev. B 99: 0945191–9.
Yamapi, R. and G. Filatrella, 2014 Noise effects on birhythmic josephson junction coupled to a resonator. Phys. Rev. E 89.
Yamapi, R., G. Filatrella, and M. A. Aziz-Alaoui, 2010 Global stability analysis of birhythmicity in a self-sustained oscillator. Chaos 20: 1–12.
Yamapi, R., G. Filatrella, M. A. Aziz-Alaoui, and H. A. Cerdeira, 2012 Effective fokker-planck equation for birhythmic modified van der pol oscillator. Chaos 22: 1–10.
Yue, X.,W. Xu, L.Wang, and B. Zhou, 2012 Transient and steadystate responses in a self-sustained oscillator with harmonic and bounded noise excitations. Probabilistic Eng. Mech. 30: 70–76.
Zakharova, A., T. Vadivasova, V. Anishchenko, A. Koseska, and J. Kurths, 2010 Stochastic bifurcations and coherence like resonance in a self-sustained bistable noisy oscillator. Phys. Rev. E 81: 11106.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.