Abstract
In recent years, there has been a growing interest in the artificial intelligence (AI)-based analysis of electroencephalography (EEG) signals. This surge has made the potential of EEG more evident, both in monitoring cognitive states and in the early diagnosis of neurological disorders. This review systematically evaluates the academic literature from the past decade focusing on the processing of EEG signals through machine learning (ML), deep learning (DL), and other alternative techniques. The study compares personalized ML models (e.g., SVM, Random Forest) with wavelet decomposition–based optimized approaches and further analyzes the performance of Hilbert transform–based Convolutional Neural Network (CNN) architectures, label-free autoencoder frameworks, and multi-architecture DL systems in contemporary brain–computer interface (BCI) applications. In addition, incremental learning models based on multimodal data fusion are reviewed in the context of diagnosing disorders such as Alzheimer’s disease and epilepsy. The findings indicate that EEG–AI integration holds substantial potential for both research and clinical applications.
References
Abgeena, A. and S. Garg, 2025. Unravelling emotions: exploring deep learning approaches for EEG-based emotion recognition with current challenges and future recommendations. Cognitive Neurodynamics 19.
Agarwal, P. and S. Kumar, 2024. EEG-based imagined words classification using Hilbert transform and deep networks. Multimedia Tools and Applications 83: 2725–2748.
Aggarwal, S. and N. Chugh, 2022. Review of machine learning techniques for EEG based brain computer interface. Archives of Computational Methods in Engineering 29: 3001–3020.
Agrawal, R., C. Dhule, G. Shukla, S. Singh, U. Agrawal, et al., 2024. Design of EEG based thought identification system using EMD & deep neural network. Scientific Reports 14: 26621.
Ahn, S., T. Nguyen, H. Jang, J. G. Kim, and S. C. Jun, 2016. Exploring neuro-physiological correlates of drivers’ mental fatigue caused by sleep deprivation using simultaneous EEG, ECG, and fNIRS data. Frontiers in Human Neuroscience 10: 219.
Al-Dabag, M. L. and N. Ozkurt, 2019. EEG motor movement classification based on cross-correlation with effective channel. Signal, Image and Video Processing 13: 567–573.
Albayrak-Kutlay, Y. and M. Bengisu, 2025. Exploring VR and neuroscience methodologies in interior design: A systematic review. Human Behavior and Emerging Technologies 2025.
Alshehri, H., A. Al-Nafjan, and M. Aldayel, 2025. Decoding pain: A comprehensive review of computational intelligence methods in electroencephalography-based brain-computer interfaces. Diagnostics 15.
Barrowclough, J., N. Nnamoko, and I. Korkontzelos, 2025. Personalised affective classification through enhanced EEG signal analysis. Applied Artificial Intelligence 39: 2450568.
Dairi, A., N. Zerrouki, F. Harrou, and Y. Sun, 2022. EEG-based mental tasks recognition via a deep learning-driven anomaly detector. Diagnostics 12: 2984.
Edelman, B., S. Zhang, G. Schalk, P. Brunner, G. Müller-Putz, et al., 2025. Non-invasive brain-computer interfaces: State of the art and trends. IEEE Reviews in Biomedical Engineering 18: 26–49.
Elnaggar, K., M. El-Gayar, and M. Elmogy, 2025. Depression detection and diagnosis based on electroencephalogram (EEG) analysis: A systematic review. Diagnostics 15.
Gu, C., X. Jin, L. Zhu, H. Yi, H. Liu, et al., 2025. Cross-session SSVEP brainprint recognition using attentive multi-sub-band depth identity embedding learning network. Cognitive Neurodynamics 19: 15.
Gu, X., Z. Cao, A. Jolfaei, P. Xu, D. Wu, et al., 2021. EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications. IEEE/ACM Transactions on Computational Biology and Bioinformatics 18: 1645–1666.
Gurmessa, D. and W. Jimma, 2025. A comprehensive evaluation of interpretable artificial intelligence for epileptic seizure diagnosis using an electroencephalogram: A systematic review. Digital Health 11.
Han, C.-H., Y.-W. Kim, D. Y. Kim, S. H. Kim, Z. Nenadic, et al., 2019. Electroencephalography-based endogenous brain–computer interface for online communication with a completely locked-in patient. Journal of Neuroengineering and Rehabilitation 16: 1–13.
Hassan, J., S. Naziullah, M. Rashid, T. Islam, M. Islam, et al., 2025. Current status and challenges in electroencephalography (EEG)-based driver fatigue detection: A comprehensive survey. Cognitive Neurodynamics 19.
Hossain, K. M., M. A. Islam, S. Hossain, A. Nijholt, and M. A. R. Ahad, 2023. Status of deep learning for EEG-based brain–computer interface applications. Frontiers in Computational Neuroscience 16: 1006763.
Hosseini, M., A. Hosseini, and K. Ahi, 2021. A review on machine learning for EEG signal processing in bioengineering. IEEE Reviews in Biomedical Engineering 14: 204–218.
Jain, A., R. Raja, M. Kumar, and P. K. Verma, 2025. A novel classification of meditation techniques via optimised chi-squared 1D-CNN method based on complexity, continuity and connectivity features. Connection Science 37: 2467387.
Jeong, J.-H., B.-W. Yu, D.-H. Lee, and S.-W. Lee, 2019. Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals. Brain Sciences 9: 348.
Jiang, R., X. Zheng, J. Sun, L. Chen, G. Xu, et al., 2025. Classification for Alzheimer’s disease and frontotemporal dementia via resting-state electroencephalography-based coherence and convolutional neural network. Cognitive Neurodynamics 19: 46.
Joo, E., H. Altier, C. Selai, M. Gratton, A. Kim-Dahl, et al., 2025. Neurobiological mechanisms of sleep state misperception in insomnia disorder: A theoretical review. Sleep Medicine Reviews 81.
Kamińska, D., K. Smółka, and G. Zwoliński, 2021. Detection of mental stress through EEG signal in virtual reality environment. Electronics 10: 2840.
Kawala-Sterniuk, A., N. Browarska, A. Al-Bakri, M. Pelc, J. Zygarlicki, et al., 2021. Summary of over fifty years with brain-computer interfaces - a review. Brain Sciences 11.
Khan, S., S. M. Umar Saeed, J. Frnda, A. Arsalan, R. Amin, et al., 2024. A machine learning based depression screening framework using temporal domain features of the electroencephalography signals. PLOS ONE 19: e0299127.
Khare, S. K., V. Bajaj, N. B. Gaikwad, and G. R. Sinha, 2023. Ensemble wavelet decomposition-based detection of mental states using electroencephalography signals. Sensors 23: 7860.
Khlief, M. and A. Idrees, 2023. A comprehensive review of electroencephalography data analytics. International Journal of Computer Applications in Technology 71: 78–88.
Kimmatkar, N. V. and B. V. Babu, 2021. Novel approach for emotion detection and stabilizing mental state by using machine learning techniques. Computers 10: 37.
Kouba, P., M. Smotek, T. Tichy, and J. Koprivová, 2023. Detection of air traffic controllers’ fatigue using voice analysis – an EEG validation study. International Journal of Industrial Ergonomics 95.
Leela, M. and K. Helenprabha, 2025. Incremental learning based two-level multimodal data fusion model for Alzheimer disease prediction on different data modalities. Connection Science 37: 2458501.
Li, L. and W. Chen, 2025. Cross-modal alignment and fusion of EEG-visual based on mixed attention mechanism for emotion recognition. Cognitive Neurodynamics 19.
Liu, X., W. Wang, M. Liu, M. Chen, T. Pereira, et al., 2025. Recent applications of EEG-based brain-computer-interface in the medical field. Military Medical Research 12.
Ma, Y., K. Karako, P. Song, X. Hu, and Y. Xia, 2025. Integrative neurorehabilitation using brain-computer interface: From motor function to mental health after stroke. Bioscience Trends.
Maiseli, B., A. Abdalla, L. Massawe, M. Mbise, K. Mkocha, et al., 2023. Brain-computer interface: Trend, challenges, and threats. Brain Informatics 10.
Mendivil Sauceda, J. A., B. Y. Marquez, and J. J. Esqueda Elizondo, 2024. Emotion classification from electroencephalographic signals using machine learning. Brain Sciences 14: 1211.
Mouazen, B., A. Bendaouia, E. Abdelwahed, and G. De Marco, 2025. Machine learning and clinical EEG data for multiple sclerosis: A systematic review. Artificial Intelligence in Medicine 166.
Nandakumar, R., S. Deivanayagi, S. A. Kirubha, and R. Prabu, 2025. Recognizing emotions from physiological data in EEG signals using a novel deep learning technique. Circuits, Systems, and Signal Processing pp. 1–24.
Orban, M., M. Elsamanty, K. Guo, S. Zhang, and H. Yang, 2022. A review of brain activity and EEG-based brain–computer interfaces for rehabilitation application. Bioengineering 9: 768.
Pacia, S., 2023. Sub-scalp implantable telemetric EEG (SITE) for the management of neurological and behavioral disorders beyond epilepsy. Brain Sciences 13.
Puri, D. V., J. P. Gawande, P. H. Kachare, and I. Al-Shourbaji, 2025. Optimal time-frequency localized wavelet filters for identification of Alzheimer’s disease from EEG signals. Cognitive Neurodynamics 19: 12.
Remsik, A., P. van Kan, S. Gloe, K. Gjini, L. Williams, et al., 2022. BCI-FES with multimodal feedback for motor recovery post-stroke. Frontiers in Human Neuroscience 16.
Shafiezadeh, S., G. Duma, M. Pozza, and A. Testolin, 2024. A systematic review of cross-patient approaches for EEG epileptic seizure prediction. Journal of Neural Engineering 21.
Shang, S., Y. Shi, Y. Zhang, M. Liu, H. Zhang, et al., 2024. Artificial intelligence for brain disease diagnosis using electroencephalogram signals. Journal of Zhejiang University-Science B 25: 914–940.
Shen, D., B. Yang, J. Li, J. Zhang, Y. Li, et al., 2025. The potential associations between acupuncture sensation and brain functional network: a EEG study. Cognitive Neurodynamics 19: 1–14.
Sobhani, M., S. Srestha, M. Shomoy, A. Reza, and N. Siddique, 2025. A machine learning-based EEG signal analysis framework to enhance emotional state detection. Cognitive Neurodynamics 19.
Soufineyestani, M., D. Dowling, and A. Khan, 2020. Electroencephalography (EEG) technology applications and available devices. Applied Sciences 10.
Sozer, A. and C. Fidan, 2017. Novel detection features for SSVEP based BCI: Coefficient of variation and variation speed. Broad Research in Artificial Intelligence and Neuroscience 8: 144–150.
Staffa, M., L. D’Errico, S. Sansalone, and M. Alimardani, 2023. Classifying human emotions in HRI: applying global optimization model to EEG brain signals. Frontiers in Neurorobotics 17: 1191127.
Su, Y., Y. Liu, Y. Xiao, J. Ma, and D. Li, 2024. A review of artificial intelligence methods enabled music-evoked EEG emotion recognition and their applications. Frontiers in Neuroscience 18.
Sun, H., S. Mao, W. Cai, Y. Cui, D. Chen, et al., 2025. BISNN: Bioinformation-fused spiking neural networks for enhanced EEG-based emotion recognition. Cognitive Neurodynamics 19: 1–12.
Sözer, A. and C. Fidan, 2018. Novel spatial filter for SSVEP-based BCI: A generated reference filter approach. Computers in Biology and Medicine 96: 98–105.
Sözer, A. T. and C. B. Fidan, 2019. Emotiv Epoc ile durağan hal görsel uyarılmış potansiyel temelli beyin bilgisayar arayüzü uygulaması. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 8: 158–166.
Tautan, A., A. Andrei, C. Smeralda, G. Vatti, S. Rossi, et al., 2025. Unsupervised learning from EEG data for epilepsy: A systematic literature review. Artificial Intelligence in Medicine 162.
Turi, F., M. Clerc, and T. Papadopoulo, 2021. Long multi-stage training for a motor-impaired user in a BCI competition. Frontiers in Human Neuroscience 15: 647908.
Uyanik, H., A. Sengur, M. Salvi, R. Tan, J. Tan, et al., 2025. Automated detection of neurological and mental health disorders using EEG signals and artificial intelligence: A systematic review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 15.
Wan, X., K. Zhang, S. Ramkumar, J. Deny, G. Emayavaramban, et al., 2019. A review on electroencephalogram-based brain-computer interface for elderly disabled. IEEE Access 7: 36380–36387.
Wang, J., L. Zhang, S. Chen, H. Xue, M. Du, et al., 2025a. Individuals with high autistic traits exhibit altered interhemispheric brain functional connectivity patterns. Cognitive Neurodynamics 19: 9.
Wang, X., D. Wu, and C. Yang, 2025b. Localization of epileptic foci from intracranial EEG using the GRU-GC algorithm. Brain Informatics 12: 6.
Yan, N., C. Wang, Y. Tao, J. Li, K. Zhang, et al., 2020. Quadcopter control system using a hybrid BCI based on off-line optimization and enhanced human-machine interaction. IEEE Access 8: 1160–1172.
You, S., 2021. Classification of relaxation and concentration mental states with EEG. Information 12(5): 187.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
