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ABSTRACT The accurate identification of diseases on apple production is an important issue due to the worldwide importance of
apple production in contemporary agriculture. Identifying diseases correctly can be challenging and affects food safety and economic loss
significantly. To alleviate this, deep learning approaches, and particularly Convolutional Neural Networks (CNN), have been able to provide
new and reasonable options in the agricultural field. In this study, there is a hybrid model proposed, called DenseNet-ResNet-Hybrid, ease

which brings together architectures from DenseNet and ResNet, to provide an improvement in the extraction of features together. It has Deep learning
been designed to fuse the inherent capabilities of DenseNet and ResNet, capturing both detail features and deeper level features in .

apple images, to enhance the ability to separate diseases that are overlapped with the producer’s natural environment (e.g. overlapping Hybrid model
leaves/fruits). We finally show two complete comparative experiments against two popular models (like VGG16, ResNet50, Inception-v3) Image classifica-
under the exact same conditions to demonstrate the strength of their ability to accurately classify apple leaf diseases with consistency. tion

We use a broader select of image types to demonstrate our work, and ultimately suggest our proposed hybrid model demonstrates
competitive performance in accurate classification on apple images on the whole.

KEYWORDS
Apple leaf dis-

Precision agricul-

ture

INTRODUCTION

Globally, apples are one of the most important fruits produced in,
at approximately 86 million tons in 2020. Apples offer unsurpassed
quantity and exemplars of healthy (nutritive) food due to their
original combination of essential nutrients contributing to general
health. Apples contain substantial plant based (non-digestible)
fiber, vitamins and antioxidant capacity. Sadly, apples, like many
agricultural products, are adversely affected by a threat of foliar
diseases like apple scab, black rot, and cedar apple rust that could
severely impact tree and menu fruit yield productivity issues. The
current standard of disease detection and diagnosis is based on
visual inspection (or what we call "bare eye" ) which is inherently
time-consuming, subjective, error-prone and highly dependent on
human expertise. Global food demand continues to increase and
together with the emphasis on sustainability further demonstrates
the urgency for novel methods to effectively detect disease rapidly
(Rohith et al. 2025).

Artificial intelligence (Al), in particular deep learning (DL), has
quickly become a game-changing option for this diagnostic prob-
lem. Newer DL frameworks like Convolutional Neural Networks
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(CNNSs), have shown an ability to analyze visual data effectively,
thus identify the increasingly fine and complex patterns of dis-
ease in images of leaves. Approaches like the polymerase chain
reaction (PCR), laboratory testing techniques, have shown high
accuracy and reliability in identifying plant diseases; however,
they rely on cumbersome equipment and trained personnel, and
therefore cannot be implemented widely, nor on-farm, where they
might be practically useful. In contrast, the non-DL equivalents
can only provide samples; DL diagnostics only require an image,
with stable evidence for better decision-making on a wider scale,
at a lower cost and more quickly. DL also can extend beyond
conventional machine learning (ML). While traditional ML would
require explicitly defined features, and may slow down in complex
environments (with significant confounding variables), DL algo-
rithms learn hierarchical features all the way from raw data. This
capacity for generalization creates a high level of flexibility and
robustness, enabling work in resource-limited contexts - which is
frequently true of agriculture (Banjar et al. 2025).

The rise of artificial intelligence (AI), especially the subfields
that are machine learning(ML) (Cakmak and Pacal 2025; Cakmak
et al. 2024) and deep learning (DL) (Pacal 2025), represents a new
technological paradigm, which is having a transformative affect
across a variety of sectors. Nowhere is this revolution more ap-
parent than in the field of medicine, where AI technology has
transformed the field of medical imaging and diagnostic capability
through a large number of applications that include detecting brain
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tumours (Pacal et al. 2025; Ince et al. 2025; Bayram et al. 2025), pul-
monary nodules (Ozdemir et al. 2025), the screening of breast can-
cer (Pacal and Attallah 2025) and the evaluation of dental (Lubbad
et al. 2024b; Kurtulus et al. 2024) and urology pathology (Lubbad
et al. 2024a). This transformative affect also exists in the agriculture
sector, where Al is similarly advancing toward greater efficiency,
resource management and sustainable practices. Key applications
in agriculture include the early diagnosis of plant diseases from
leaf image analysis (Zeynalov ef al. 2025), predicting crop yields
using satellite and drone telemetry (Chouhan ef al. 2024), the use
of intelligent systems to target weed spraying (Goyal et al. 2025;
Sathya Priya et al. 2025), and implementing precision agriculture,
which automates irrigation and fertiliser based on real-time soil
and crop needs (Maurya et al. 2025; Singh and Sharma 2025; Suren-
dran et al. 2024; Jaya Krishna et al. 2025).

Currently, the detection of diseases and pests for commercial
purposes, such as maintaining apple orchards, relies heavily on
manual inspection conducted by expert specialists, agricultural
consultants, and service providers involved in these processes
(Popescu et al. 2023; Speranza et al. 2022). However, the scarcity
of experienced inspectors necessitates covering vast orchard areas
within limited timeframes. Effective inspection requires high skills
and specialized expertise, as inspectors initially depend on visual
symptoms and damage caused by pests. The diversity of variables
in natural orchards demands time to recognize the different symp-
tom categories. These symptoms are influenced by factors such
as tissue age, disease cycle stage, climatic fluctuations, as well as
geographic and cultural differences. Inspectors often use random
sampling patterns in large orchards to strategically assess critical
areas. Although visual differentiation among symptoms of many
diseases, pests, and abiotic stresses is possible, some symptoms
closely resemble each other, making accurate diagnosis challenging
(Abdullah et al. 2023).

Moreover, symptom manifestations vary significantly according
to the apple variety due to differences in leaf color, morphological,
and physiological characteristics. Disease infection rates and pest
development are affected by changing climatic factors such as
humidity and temperature, as well as different plant growth stages
(Singh et al. 2023; de Souza and Weaver 2024). Symptoms also
evolve as the disease progresses and tissues in leaves or fruits
age. Inspectors spend considerable time with each client entering
inspection reports, interpreting results, and providing necessary
recommendations. General, manual inspection is time-consuming
and prone to errors.

MATERIALS AND METHODS

Dataset

The quality and structure of the dataset are critical factors that di-
rectly influence the performance of deep learning models. Unlike
traditional machine learning approaches, which often rely on man-
ual feature extraction and smaller datasets, deep learning models
require large and high-quality datasets to effectively learn and
capture meaningful features directly from raw data. This is essen-
tial for ensuring that deep models can generalize well and deliver
strong predictive performance. Table 1 presents the components
of the dataset used in this study, which was divided into training,
validation, and testing sets to enable comprehensive model evalu-
ation and prevent data leakage during the learning process (Pacal
2024b).

The Apple subset of the PlantVillage dataset has been chosen
as the primary data source for this research, as it is well-known as
a benchmark dataset in the public domain, used to identify plant
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Table 1 Distinction between train test and validation

images %

Train 2219 70
Test 477 15

Validation 475 15

Total 3171 100

diseases. The dataset is representative of plant disease identifica-
tion due to its magnitude and enormous accuracy. The dataset has
a variety of plant species and variety of plant disease, healthy as
well as infected examples. This study has focused on the apple
subset for the purpose of determining disease classifications. For
this study, 3,171 images were selected, dividing the images into
training, validation and testing, at a ratio of 70%, 15%, and 15%
respectively, for adequate model assessment. Figure 1 shows sam-
ple images from every class included in the data set (Hughes et al.
2015).

Apple__Apple_scab Apple___healthy

o

50

0 100 0

Figure 1 Visual Examples of Common Apple Leaf Diseases and
Healthy Leaves

Deep Learning Architectures

Machine learning has revolutionized technological advancement
and human development, emerging as a key driving force behind
many modern applications, such as enhancing search engine capa-
bilities, monitoring user-generated content on social media, and
powering personalized recommendation systems in e-commerce.
With the rapid evolution of technology, machine learning has be-
come an integral part of daily life, evident in smart technologies
and advanced systems capable of visual object detection, speech
recognition, and dynamic content adaptation in digital environ-
ments (LeCun ef al. 2015). The rapid progress in artificial intel-
ligence (AI) can largely be attributed to the evolution of deep
learning a specialized subfield of machine learning that leverages
multilayered and complex neural networks to extract nonlinear
and abstract representations from large datasets. These models
identify intricate features through hierarchical structures and are

ABEN Computational Systems and Atrtificial Intelligence



trained using the backpropagation algorithm. Deep learning has
demonstrated exceptional success in various domains, including
image and video analysis, audio processing, and natural language
understanding. Convolutional Neural Networks (CNNs), for in-
stance, excel at processing spatial data, while Recurrent Neural
Networks (RNNs) are well-suited for handling temporal or se-
quential data such as speech and text (Karaman et al. 2023; Pacal
et al. 2022).Although Geoffrey Hinton laid the theoretical founda-
tions for deep learning in 2006, the widespread adoption of this
approach occurred after deep neural models significantly outper-
formed traditional algorithms in the ImageNet Large Scale Visual
Recognition Challenge. Since then, deep learning has consistently
delivered state-of-the-art results across a broad spectrum of appli-
cations, including pattern recognition, classification, prediction,
drug discovery, signal analysis, finance, healthcare, and defense
solidifying its position as a cornerstone of both Al research and
real-world implementation (Pacal 2024a).

The Used Algorithms

In this study, we introduce a novel hybrid deep learning model
specifically architected to leverage the complementary strengths
of two powerful network designs: ResNet and DenseNet. The core
objective was to develop a more robust and efficient architecture
by synergistically integrating the residual connections of ResNet,
which excel at training very deep networks and mitigating the
vanishing gradient problem, with the dense feature-reuse strat-
egy of DenseNet, known for its parameter efficiency and ability
to capture fine-grained details. To empirically validate the effi-
cacy of this new model, its performance in image classification
was rigorously benchmarked against several prominent, state-of-
the-art architectures. This comprehensive comparative analysis
included ResNet-50, Inception-v3, and VGG-16, with all models be-
ing trained and evaluated under identical experimental conditions
to ensure a fair and direct comparison of their capabilities.

VGG16: The VGG16 model is widely regarded as a leading deep
learning model in deep learning and vision. It was introduced by
Simonyan and Zisserman in 2014. The model uses a deep CNN
that is comprised of 16 trainable layers. The VGG16 model has
a simplistic and effective architecture design using a collection
of convolutional layers with small 3x3 filters, and pooling layers
for reducing the spatial dimensions. The specifics of this model
architecture can be seen in Figure 2. The model has the following
sequence of layers: where a series of convolutional layers with
the ReLU activation function are used for feature extraction and
are followed by max-pooling layers, with each successive layer
shrinking the data. These layers lead to fully connected layers for
classification to assign images to the selected classes for prediction.
The architecture, while deeper, is simple in design and allows the
model to extract complex and useful features from images to be
used efficiently and effectively for a number of image classification
applications (Shanmugapriya et al. 2024).

ResNet-50: The ResNet-50 model is a well-known deep learning
architecture developed by He et al. in 2015 as part of the Resid-
ual Networks (ResNet) family of deep learning architectures. The
ResNet-50 model is a very deep architecture with 50 trainable
layers that utilizes residual connections, or skip connections, al-
lowing information to pass through several layers with minimal
distortion. The goal of these connections is to solve the vanishing
gradient problem found in deep networks which allows the model
to be trained across many layers and provide competitive accu-
racy in image classification tasks. An example architecture of the
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Figure 2 Schematic Representation of VGG16 Architecture
Adapted for Apple Leaf Disease Classification

ResNet-50 model can be seen in figure 3, where the architecture
is comprised of residual blocks with sequences of convolutional
layers separated by skip connections linking the start and end of
each block, allowing it to learn the representations of data that are
intricate and precise while speeding up and stabilizing the training
process (Bendjillali ef al. 2020).

ResNet50 Model Architecture
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Figure 3 A Block Diagram Representation of the ResNet50 Model
Architecture

InceptionV3: The Inception-v3 model is an advanced version
within the Inception network family that was developed to find
the best combination of high accuracy and low computation in
terms of number of trainable parameters. Inception-v3 is substan-
tially different from other Convolutional Neural Networks (CNN)
in that it integrates novel architecture via introduction of Incep-
tion modules that allow transformations of features at different
scales within the same layer. Inception modules contain parallel
convolutional filters of different sizes (i.e., 1x1, 3x3, 5x5) allow-
ing representation of patterns of varied graininess from images
simultaneously. Additionally, Inception-v3 employs dimension
reduction strategies using 1x1 convolutions and applied regulari-
sation techniques that reduce computation while improving the
accuracy of the model. Figure 4 provides a view of all proposed
configurations within Inception-v3 that showcases how Inception-
v3 takes advantage of several filter sizes and processing units
to enable more reliable representations of detailed and complex
features from images (Uchimuthu et al. 2024).
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Figure 4 Architecture of the Inception-v3 Based Transfer Learning
Model for Apple Leaf Diseases

Hybrid Model: DenseNet + ResNet Integration In this work, a
classification model has been established by synthesizing the key
principles of the DenseNet architecture and ResNet architectures
for better learning efficiency and performance. The model is built
on Dense Residual blocks, which has high-level distilled form
of DenseNet with additional residual connection features. In
DenseNet, each layer has inputs from all previous layers, real-
ising efficient information flow and solving vanishing gradient
problem, while in ResNet, the function implemented allows the
outputs to skip one or more layers through shortcut connections,
which allow the training of exceedingly deep networks. By adopt-
ing both modes of connections proposed, this model embraces the
core mechanisms of both DenseNet and ResNet together, therefore
achieving better generalisation and training stability.

The architecture has several Dense Residual blocks consisting
of several convolutional layers in sequence withaper and ReLU
activation function applied to the convolutional layers, along with
a residual connection that combines the randomness of the cur-
rent layer with the input to the block. This design allows the own
model to learn rich, diverse, and deep representations as well as
preserve and leverage information from earlier layers due to ability
to have an in-between layer combination with regards to purpose.
The dense and residual structure is designed to simultaneously
enhance gradient flow and mitigate any potential for loss of but-
ton text during backpropagation. This means the model can train
deeper nondimensional consequences where a more accruately nu-
merous solutions exist to it, substantially increasing reproducible
confidence rates across the full spectrum of indicators measured,
and it can afford to evaluate wherever a. dansingly poorest con-
tribution general imaginaire meansness practices outlined over
several independent shifts to ascertain general operating practices
usefulness and practicalities.

The model was trained in a classification dataset by using the
Adam optimization function and evaluating how hyperparameters
such as the learning rate and how many layers were optimized.
These are important for successful performance while showing
that DenseNet and ResNet features can effectively operate in one
architecture.

RESULTS AND DISCUSSION

Experimental Design

The experiments presented in this study were conducted on a
Windows 11 operating system, equipped with an Intel Core i7
processor, 32 GB of DDR5 RAM, and an NVIDIA GeForce RTX
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4060 Laptop GPU. All models were developed using the PyTorch
framework, with processing acceleration supported by NVIDIA’s
CUDA technology. The models were trained and evaluated within
a unified experimental environment, utilizing the same set of hy-
perparameters to ensure standardized conditions and enable a
precise, systematic comparison between models.

Performance Metrics

Assessing deep learning models is a fundamental aspect of un-
derstanding how successful those models are, validating decision-
making processes based on predictions, and guiding future data-
driven approaches. Just as with any decision needing to be vali-
dated, the performance metrics provide clues as to how reliable
and accurate the proposed model might be. In this study, with a fo-
cus on the classification of apple diseases, we used well-established
and academically reviewed performance metrics such as accuracy,
precision, recall, and the F1 score to understand how useful and
comprehensive the evaluation would be.

Accuracy measures the "correct” proportion of the model. Ac-
curacy is calculated by measuring the ratio of correctly classified
samples to the total number of samples. This general metric can be
useful to indicate predictive performance. Precision assesses the
model’s ability to correctly classify the positive cases. Mathemati-
cal precision is the ratio of true positives to the total predicted pos-
itives, which indicates how reliable the model is when the model
predicts the presence of disease. Recall, or sensitivity, assesses the
model’s reliability in detecting all of the actual positive cases. This
metric is definitely relevant in causing concern if data classification
is missed, as it may result in disastrous consequences if diseased
samples are over looked.The F1-score, which is the harmonic mean
of precision and recall, serves as a balanced metric that combines
both aspects to provide a unified measure of performance partic-
ularly valuable in cases involving class imbalance. Collectively,
these metrics contribute to a more accurate and multidimensional
understanding of the model’s capabilities, allowing researchers
to diagnose weaknesses, compare model variants, and improve
classification performance based on rigorous, literature-supported
criteria.

A B TP + TN "
CCUTAY = Tp TN + FP + FN
.. TP
Precision = TP TP TP 2
TP
Recall = ————
eca TP L FN 3)

Precision x Recall
Fi=2Xx — ———— 4
1 % Precision + Recall @)

Results

In this study, the performance of several advanced convolutional
neural network (CNN) models was evaluated for classifying apple
leaf diseases using the PlantVillage dataset. The tested models
included the proposed Hybrid model, as well as pre-trained archi-
tectures Inception-V3, ResNet-50, and VGG16. All models were
trained under identical experimental conditions using the same
set of hyperparameters to ensure consistency in comparison and
reliability of results.Evaluation relied on widely recognized aca-
demic metrics: Accuracy, Precision, Recall, and Fl-score, providing
a comprehensive understanding of model performance from mul-
tiple perspectives.The proposed DenseNet-ResNet-Hybrid model
demonstrated strong performance, achieving a test accuracy of
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97.27%, precision of 97.36%, recall of 96.75%, and an F1-score of
97.05%. This model excelled in distinguishing between various
apple disease categories, highlighting its effectiveness for smart
agricultural applications.In comparison, the pre-trained Inception-
V3 model showed relatively higher general accuracy at 98.11% and
an Fl-score of 98.18%, indicating its high efficiency, particularly
in perfectly classifying the Cedar Apple Rust category. ResNet-50
performed well with an accuracy of 95.18%, though lower than the
hybrid model. Meanwhile, VGG16 exhibited the weakest perfor-
mance among the models, with a test accuracy of only 89.94% and
a noticeable decline in accuracy for infected classes compared to
other models. The following table summarizes the comparative
performance of the key models studied:

Table 2 Performance comparison of the hybrid model against
standard CNNs.

Model Accuracy Precision Recall Fl-score
Hybrid 97.27% 97.36% 96.75%  97.05%
Inception-V3 98.11% 98.94% 97.52%  98.18%
ResNet-50 95.18% 95.43% 94.87%  95.13%
VGGl16 89.94% 87.72% 85.79%  86.62%

These results confirm that the proposed Hybrid model pos-
sesses high efficiency and strong applicability in the field of smart
agriculture. This is attributed to its architectural blend, which
combines the powerful feature representation of DenseNet with
the depth and residual learning capabilities of ResNet, thereby en-
hancing classification accuracy and ensuring stable performance.

To enhance the understanding of the proposed Hybrid model’s
results, a set of visual illustrations was generated to reflect the
model’s actual performance in classifying apple leaf diseases.
These visuals include the confusion matrix, which demonstrates
the model’s accuracy in distinguishing between different classes,
as well as performance curves depicting the precise values of key
metrics such as Accuracy, Recall, Precision, and the balanced mean
Fl-score. These illustrations support quantitative analysis of the
results and confirm the model’s effectiveness in the classification
tasks undertaken.

CM Densefiet_resnet_hibrit

esicted

Figure 5 Confusion Matrix Showing the Performance of the
DenseNet-ResNet Hybrid Model on Apple Leaf Disease
Classification
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Figure 6 Training and Validation Performance of the Hybrid
Model: Loss and Accuracy Plots over Epochs

Discussion

The results of this study highlight the effectiveness of deep
learning-based models in the automatic detection of apple leaf
diseases, reinforcing the role of artificial intelligence in precision
agriculture. The proposed Hybrid model achieved outstanding
performance, with a test accuracy of 0.9727 and an Fl-score of
0.9705, indicating a clear balance between detection rate and error
minimization. This superior performance can be attributed to the
model’s hybrid architecture, which combines the dense connectiv-
ity of DenseNet enhancing feature reuse and the structural depth
of ResNet, which helps capture abstract and complex features.
This combination improved the model’s ability to distinguish be-
tween visually similar patterns, such as those seen in Apple Scab
and Black Rot. In comparison, the Inception-V3 model achieved
a higher accuracy of 0.9811 and an Fl-score of 0.9769, reflecting
its high efficiency in generalizing features through its multi-scale
design.

However, it demands higher computational resources, which
may limit its use in low-resource environments, such as mobile
or field devices. The ResNet-50 model showed good results, with
a test accuracy of 0.9518 and an F1-score of 0.9496, but its perfor-
mance suggests limitations in fine-grained classification, possibly
due to its relatively shallower architecture or the lack of advanced
feature extraction units. On the other hand, VGG16 demonstrated
the weakest performance among the models, scoring 0.9364 in
accuracy and 0.9350 in F1-score, consistent with expectations of
its conventional architecture that lacks modern enhancements like
skip connections or multi-scale processing. These findings indicate
that model selection should be application-dependent. While ac-
curacy is crucial, factors such as model size, inference speed, and
ease of deployment on mobile devices play an equally critical role
in real-world adoption. For future work, it is recommended to
conduct additional experiments under variable field conditions
(e.g., lighting, background, partial occlusion) and integrate Ex-
plainable AI techniques to increase transparency and boost user
trust among farmers. Furthermore, testing the model on other
apple varieties and data from diverse geographical regions can
enhance its generalizability and global scalability.

CONCLUSION

In this study, a hybrid model combining the architectures of
DenseNet and ResNet was developed to classify apple leaf diseases
with high accuracy. The proposed model demonstrated superior
performance compared to several well-known models such as
Inception-V3, ResNet-50, and VGG16, highlighting the effective-
ness of the hybrid architecture in capturing and distinguishing
complex patterns in infected leaf images. The experimental re-
sults confirm the model’s ability to achieve an excellent balance
between accuracy and reliability, with a clear capacity to reduce
misclassifications in closely related disease categories. The study



also underscores the importance of selecting an appropriate model
based on the application environment, especially when computa-
tional resources are limited in field deployments. In light of these
findings, the proposed model opens new horizons for applying
artificial intelligence in precision agriculture, with the potential
to improve plant disease management and enhance agricultural
productivity. The study recommends continuing the development
of models to make them more flexible and interpretable, as well
as testing them in diverse environments and on varied datasets to
ensure broader generalizability and impact.
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ABSTRACT This research examined the feasibility of utilizing ML algorithms to improve the initial detection and classification of
anemia and other blood disorders. The following study employed several traditional machine learning models: additional ML and Al .
methods were subsequently evaluated including - LightGB, CatBoost, Decision Tree, Gradient Boosting, Random Forest and XGBoost to Anemia
blood-based features (RBC, WBC, HGB, and PLT). The results demonstrated that LightGB had the highest accuracy of 98.38%, then Machine learning
followed by CatBoost at 98.37%. The Decision Tree and Gradient Boosting models respectively demonstrated an accuracy of 98.05%. (ML)

The accuracy of Random Forest and XGBoost was 97.72%. These results show the possibility of ML techniques being able to uncover
higher-level complex patterns in medical data to improve accuracy, particularly for anemia. The study presented new evidence and
baseline models to promote ML to expedite clinical decision making to provide timely intervention and develop personalized health care.

KEYWORDS

Blood disorders
Clinical decision

The study provided evidence and potential usages for ML models to enable better clinical decision and action. The findings of this study support

explained that in the future using advanced technologies or deep learning, or addressing concerns relating to explainable Al methods, the H loqical

capabilities in clinical use should be optimized and expanded. ematologica
data

INTRODUCTION

Anemia is recognized as one of the most prevalent blood disorders
around the world, affecting people of all ages. Anemia can be
defined primarily by a loss of red blood cells or hemoglobin, and
associated symptoms commonly include fatigue, dizziness, and
pallor (Yoshida 2024) . Additionally, different forms of anemia are
attributed to heterogeneous causes including nutritional deficits,
chronic disease, inherited conditions and bone marrow disorders
(Krieg et al. 2024). Anemia is also studied and examined in con-
junction with other hematologic conditions including leukemia,
thrombocytopenia, and macrocytic anemia that need to be crudely
and accurately classified to ensure timely diagnosis and treatment
(Fentie et al. 2020; Subba and Araveti 2025).

A complete blood count (CBC) test is a commonly used measure
to diagnose anemias and blood-related conditions, which provides
important measures including two types of blood cells, namely red
and white blood cells, hemoglobin, hematocrit and two parts of the
blood (platelets) (Karra et al. 2025; Malak et al. 2025; Li et al. 2025).
Nevertheless, accurate diagnostic interpretation of these tests is
difficult due to the increasing data generated by more complex
patient data and higher volume of patients. Machine learning (ML)
and deep learning (DL) have recently been used in nearly every
field (Zeynalov et al. 2025). In particular, they have proven to be ef-
fective methods for analyzing healthcare data (Pacal 2025; Cakmak
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and Pacal 2025; Cakmak et al. 2024). With fast, efficient, repro-
ducible, and cost-effective decisions supporting clinical judgment
(Link et al. 2024), it is an excellent option in the classification of
blood disorders. In the current study, we have provided an assess-
ment of common ML algorithms to classify anemia and associated
hematologic disorders. We found that LightGBM had the highest
all in all accuracy (98.38%) followed closely by CatBoostClassifier
(98.38%), Decision Tree and Gradient Boosting (98.05%), Random
Forest and XGBoost (97.73%) (Ramzan et al. 2024; Kitaw et al. 2024).
Thus, we have shown that ML models provide highly accurate
classifications, potentially enabling a more timely diagnosis and
treatment.

Similar success patterns have been documented in earlier stud-
ies. For example, Sanap et al. used CBC data to develop a classi-
ficatory model for anemia types using the C4.5 decision tree (J48)
and Support Vector Machine (SMO) algorithms in the Weka envi-
ronment, and found that C4.5 had better classification accuracy
than SVM (Sanap et al. 2011). In a subsequent study, the same
authors compared Naive Bayes, Random Forest, and Decision Tree
algorithms, concluding that Naive Bayes offered superior perfor-
mance (Jaiswal ef al. 2018). These findings reinforce the value of
lightweight, probabilistic models for clinical classification tasks.
Kanak et al. explored childhood anemia, focusing on the influence
of maternal health and nutrition during pregnancy. Using NFHS-4
survey data, they constructed a decision support system aimed
at both prediction and prevention, comparing decision trees and
association rule mining to determine the most effective modeling
technique (Meena et al. 2019). Tuba et al. developed a machine
learning-based decision support system trained on 1,663 patient
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records from a hospital in Turkey. Their model aimed to classify
12 types of anemia based on hemogram features and patient his-
tory. Among the four algorithms evaluated, Bagged Decision Trees
achieved the highest accuracy (85.6%), followed by Boosted Trees
(83.0%) and Artificial Neural Networks (79.6%) (Yildiz ef al. 2021).
Their approach was designed to assist both clinicians and medical
students in diagnostic processes.

In another contribution, Justice et al. offered a comprehensive
review of ML applications in anemia detection, emphasizing the
accessibility and affordability of such methods, particularly in
low-resource settings. Their analysis highlighted the practical ad-
vantages of ML over traditional diagnostic methods, especially in
terms of early detection and broader clinical applicability (Asare
et al. 2023). Lastly, Serhat et al. introduced two hybrid deep learn-
ing models GA-SAE and GA-CNN that leverage genetic algorithms
to optimize hyperparameters in Stacked Autoencoders and Con-
volutional Neural Networks. Their work addressed the variability
in datasets and targeted the classification of HGB-based anemia,
nutritional deficiencies (iron, B12, folate), and non-anemic cases.
Their GA-CNN model achieved a notable accuracy of 98.50%,
outperforming conventional models across multiple evaluation
metrics (Kilicarslan et al. 2021). Taken together, these studies reflect
a growing consensus around the efficacy of ML in hematological
diagnostics. The results of our own research align with this broader
trend, demonstrating that well-selected ML models can serve as
effective, supportive tools in the early and accurate classification
of anemia and related disorders. As healthcare systems continue
to integrate data-driven approaches, such models are likely to play
an increasingly prominent role in clinical workflows (Rekaya ef al.
2025; Chandra et al. 2022; Ozdemir et al. 2025; Pacal and Karaboga
2021).

MATERIALS AND METHODS

Dataset

In this study, we worked with a dataset comprising 1,281 instances
and 15 distinct features to explore the classification of anemia and
related hematological conditions. After removing 49 duplicate en-
tries, a total of 1,232 unique samples were retained for training and
evaluation of the models. The dataset encompasses a variety of
diagnostic categories, including Healthy, Iron Deficiency Anemia,
Leukemia, Leukemia with Thrombocytopenia, Macrocytic Anemia,
Normocytic Hypochromic Anemia, Normocytic Normochromic
Anemia, Other Microcytic Anemia, and Thrombocytopenia (Aboel-
naga 2024) .

The primary objective of this research is to apply ML algorithms
to distinguish among these different anemia types. Given that ane-
mia represents a widespread public health concern, especially in
low- and middle-income regions, timely diagnosis and precise
classification are critical for guiding appropriate treatment strate-
gies. By improving diagnostic accuracy through computational
models, healthcare providers can make more informed decisions,
ultimately leading to more effective care and improved patient
outcomes. A visual representation of the class distribution in the
dataset is provided in Figure 1.

Characteristics and Classes of The Dataset

This research explores the essential hematological characteristics
that contribute significantly to the classification of anemia and
other related blood disorders. These features offer valuable in-
sights into the various components and functions of blood cells.
An overview of these characteristics, along with their respective
attributes, is presented in Table 1.
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Figure 1 The distribution of classes in the dataset used in the
study is shown

Data Preprocessing Steps

To prepare the dataset for effective model training, a series of
preprocessing steps were carried out to improve both data quality
and model performance. As a first step, missing values were
addressed either by removing incomplete rows or by applying
imputation techniques, such as replacing missing entries with
the mean or median of the respective feature. To standardize the
scale across all variables particularly important for distance-based
algorithms feature scaling was performed. Categorical features
were transformed into numerical form through encoding strategies
like one-hot encoding or label encoding. Since the target labels
were already in a format suitable for classification, no logarithmic
transformation was necessary.

Moreover, to eliminate redundancy and potential bias, 49 dupli-
cate entries were identified and removed from the dataset. Follow-
ing this cleaning process, the dataset was divided into training and
testing subsets, with 75% allocated for training and the remaining
25% reserved for evaluation, as illustrated in Figure 2.

Test

Train

Figure 2 The dataset used in the study was divided into train 75%
and test 25%



Table 1 Dataset features and descriptions

Features Description

WBC White Blood Cell count, indicating the number of white blood cells in the blood, used to assess immune function.

LYMp Percentage of lymphocytes in the total white blood cell count, indicating immune response.

NEUTp Percentage of neutrophils in the total white blood cell count, associated with bacterial infections.

LYMn Absolute number of lymphocytes in the blood, providing a measure of immune function.

NEUTn Absolute number of neutrophils in the blood, important in detecting bacterial infections.

RBC Red Blood Cell count, reflecting the number of red blood cells that carry oxygen throughout the body.

HGB Hemoglobin level in the blood, indicating the oxygen-carrying capacity of the blood.

HCT Hematocrit, the proportion of blood volume occupied by red blood cells, used to diagnose anemia.

MCV Mean Corpuscular Volume, representing the average size of red blood cells, important in anemia classification.

MCH Mean Corpuscular Hemoglobin, indicating the average amount of hemoglobin per red blood cell.

MCHC Mean Corpuscular Hemoglobin Concentration, measuring the average concentration of hemoglobin in red blood cells.

PLT Platelet count, reflecting the number of platelets in the blood, crucial for blood clotting.

PDW Platelet Distribution Width, measuring the variation in platelet size, which can indicate platelet disorders.

PCT A procalcitonin test can help your health care provider diagnose if you have sepsis from a bacterial infection or if you have a high risk of
developing sepsis.

Diagnosis  The target variable indicating the type of anemia or blood disorder diagnosis.

Machine Learning Models

Table 2 describes the ML algorithms employed in this research
project, as well as a short explanation of how they work. The al-
gorithms were decided upon with careful consideration for their
proven track record in other successful classifying problems and
their core mechanisms of capability to deal with complicated,
high-dimensional data. All algorithms have unique and inher-
ent strengths that further enable them to wrestle with some of the
differences between various types of anemia and blood disorders.

The selection process prioritized factors such as predictive ac-
curacy, computational efficiency, and the model’s ability to un-
cover subtle patterns within the data. By aligning each algorithm’s
strengths with the study’s goals, we aimed to ensure a robust and
meaningful classification process. The summarized descriptions
in Table 2 highlight how each approach supports the overarching
objectives of the research.

Experimental Setup and Evaluation Metrics

Light Gradient Boosting Machine (LightGBM): The LightGBM
classifier demonstrated excellent performance in classifying types
of anemia, achieving an overall accuracy of 98.38%. The model
obtained perfect scores (precision, recall, and F1-score) for cer-
tain classes, including Class 1 (Iron deficiency anemia), Class 2
(Leukemia), and Class 6 (Normocytic normochromic anemia).
Although performance was slightly lower for Class 3 (Leukemia
with thrombocytopenia) and Class 4 (Macrocytic anemia), with re-
call rates of 80% and 60% respectively, the overall success remained
high. The model’s macro F1-score of 0.95 and weighted average
F1-score of 0.98 indicate a balanced and stable performance across
classes of different sizes. These findings confirm that LightGBM is
a highly suitable algorithm for multi-class classification tasks on
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medical datasets.Table 3 provides a detailed summary of its model
performance, and the confusion matrix is shown in Figure 3 for
further visual inspection.

LightGBM

HLTH 0 0 0 0 0 Q 0 0 50
IDA- 0 0 0 0 0 0 0 0
70

LEU- 0 0 13 0 0 0 0 0 0
- 60

LwT- 0 0 0 4 0 0 Q 0 1

w
S

MAA- 0 0 0 0 5] 2 [¢] 0 0

NHA- 1 0 0 0 0 ﬂ Q 0 0
-30

NNA- 0 0 0 0 0

Frequency

True Label
3

OMA- 0 0 0 0 0 1 0 10 0
THP- 0 0 0 0 0 0 o] 0 15

HIT DA LEU LwT MAA NHA NNA OMA THP
Predicted Label

Figure 3 The Confusion Matrix obtained from the LightGBM
algorithm used is shown
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Table 2 Algorithms used in the study

Algorithms

Description

Decision Tree (DT)

Random Forest (RF)

Gradient Boosting (GB)

Extreme Gradient Boosting (XGBoost)

Categorical Boosting (CatBoost)

Light Gradient Boosting Machine (LightGBM)

Decision Trees are straightforward yet effective classification tools that iteratively split the dataset
based on feature values to build a tree-like structure. Their main strengths lie in their interpretability
and speed, especially for small to mid-sized datasets. However, without pruning or depth control,
they risk overfitting Muyama et al. (2024); Islam et al. (2024); Kasthuri ef al. (2024).

Random Forest improves upon individual decision trees by constructing an ensemble of them using
random subsets of data and features. This reduces overfitting and enhances generalization, though
interpretability can suffer due to the model’s complexity Muyama et al. (2024); Islam et al. (2024).

Gradient Boosting builds models sequentially, where each new learner focuses on correcting the
previous one’s errors. While powerful in capturing complex patterns, it may overfit if not properly
regularized. Techniques like shrinkage and subsampling help mitigate this issue Mwangi et al. (2024).

XGBoost is an optimized form of gradient boosting known for its speed, scalability, and high accuracy.
It incorporates regularization (L1, L2), second-order optimization, and parallelization, making it highly
suitable for large-scale ML tasks Kasthuri et al. (2024).

CatBoost is designed to handle categorical features natively, reducing the need for extensive prepro-
cessing. It employs ordered boosting to avoid overfitting and is efficient both in terms of speed and
predictive performance, even on high-cardinality categorical data Mwangi et al. (2024).

LightGBM is a gradient boosting framework optimized for speed and memory efficiency. It uses a
histogram-based algorithm and leaf-wise tree growth, which accelerates training on large datasets.
While faster than many alternatives, it may require careful tuning to avoid overfitting Olatunji et al.
(2024).

Table 3 Observed data for the LightGBM algorithm

Class Precision % Recall % F1-Score % Support
0. Healthy (HLT) 99.0 100.0 99.0 86
1. Iron deficiency anemia (IDA) 100.0 100.0 100.0 51
2. Leukemia (LEU) 100.0 100.0 100.0 13
3. Leukemia with thrombocytopenia (LwT) 100.0 80.0 89.0 5
4. Macrocytic anemia (MAA) 100.0 60.0 75.0 5
5. Normocytic hypochromic anemia (NHA) 95.0 98.0 97.0 61
6. Normocytic normochromic anemia (NNA) 100.0 100.0 100.0 61
7. Other microcytic anemia (OMA) 100.0 91.0 95.0 11
8. Thrombocytopenia (THP) 94.0 100.0 97.0 15
Macro avg 99.0 86.0 96.0 308
Weighted avg 98.0 98.0 98.0 308

Feature Importance Analysis

The feature importance visualization in Figure 4 offers a clear pic-
ture of which variables the LightGBM model relied on most when
making its predictions. Among these, Mean Corpuscular Volume
(MCV) emerged as the most influential factor, followed closely by
Mean Corpuscular Hemoglobin (MCH) and Hemoglobin (HGB).
These features, commonly used in clinical assessments of blood
disorders, appear to play a central role in helping the model dis-
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tinguish between different types of anemia. Features like MCHC,
WBC, RBC, and PLT also showed substantial contributions, further
supporting the importance of red and white blood cell character-
istics in diagnostic classification. In contrast, variables such as
PDW, NEUTp, and LYMn had relatively lower importance scores,
suggesting they had a more limited effect on the model’s decision-
making. Taken together, these findings suggest that LightGBM,
much like a clinician, places greater weight on core hematological
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indicators particularly those reflecting red blood cell morphology
when interpreting patient data for classification purposes.

Feature Importance - LightGBM Classifier

Feature Name

o 500 1000 1500 2000
Feature Importance Score
Figure 4 Illustrates the feature importance plot for the LightGBM
algorithm, highlighting the relative significance of each feature in
the model’s classification process

RESULTS AND DISCUSSION

In this section, an independent diagnostic method is provided
that employs ML techniques for the diagnosis of anemia, which
is a common and clinically significant blood disorder. The study
aimed to implement and evaluate several of the most common
ML algorithms found in the literature, using data associated with
anemia. The results from the experiments performed using these
algorithms are summarized in Table 4.

Table 4 The experimental results of the ML algorithms tested
on the Anemi dataset

Rank Models Accuracy %

1 LightGBM 98.38
2 CatBoostClassifier 98.37
3 Decision Tree 98.05
4 Gradient Boosting 98.05
5 Random Forest 97.72
6 XGradient Boosting 97.72

LightGB ends up as the best performing model with accuracy
of 98.38%, demonstrating its powerful capability to not only han-
dle large datasets but also deliver accurate predictions. LightGB
is a powerful, fast learner, making it a strong candidate for com-
plex classification problems. CatBoostClassifier follows closely
behind at an accuracy of 98.37%, capable of handling categorical
features and improving performance using a methodology based
on Gradient Boosting. The Decision Tree and Gradient Boosting
models were also accurate at 98.05% due to their ability to properly
account for feature interactions although Decision Trees can be
overly complex in some instances. Random Forest and XGradient
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Boosting were accurate at 97.72%, but Random Forest lessened
overfitting by averaging across many trees.

These models are less competitive than LightGB but will still re-
main with a strong tree-based model when accounting for feature
interactions. The performance of these models is also influenced by
things such as feature selection, data preprocessing, and hyperpa-
rameter tuning and optimizations. If these criteria were optimized
properly, it is likely that the models would do even better with their
performance. Another consideration is computational efficiency
which is especially vital in real- world applications. LightGB has
the best accuracy, but it may demand quite a bit of computational
effort when using very large datasets. Random Forest and XGra-
dient Boosting lend themselves much more readily and easily to
greater scalability when designing and implementing staged solu-
tions and implementations. In future studies, more focus could be
aimed at aspects such as feature engineering, and building hybrid
models that incorporate deep learning methods and algorithms,
which may lead to increased classification accuracy. Additionally,
providing explanations of model outputs using explainability mea-
sures, such as SHAP values, or LIME will likely provide some
visibility to model outputs that can promote the user trust char-
acteristic that often is missing in Al- based diagnostic systems
(Kasthuri et al. 2024) .

CONCLUSION

This investigation demonstrates the significant potential of ma-
chine learning (ML) models for the early detection and classifica-
tion of anemia and other blood disorders by conducting a compara-
tive analysis of various algorithms including LightGBM, CatBoost,
Decision Tree, Gradient Boosting, Random Forest, and XGBoost
using key hematological parameters such as RBC, WBC, HGB,
and PLT. The results identified LightGBM and CatBoost as the
superior models, achieving high accuracies of 98.38% and 98.37%,
respectively, thereby validating their capacity to discern complex
patterns within clinical data. The clinical implications of these
findings are substantial, as the high diagnostic accuracy offered
by these models can facilitate prompt and appropriate treatment
planning, a critical factor in managing conditions like anemia. Fur-
thermore, the integration of such validated models into clinical
workflows presents an opportunity to reduce diagnostic errors and
treatment delays, enhancing healthcare system efficiency.

Building upon this foundation, future research trajectories
could focus on refining these algorithms for broader, accessible
application across diverse datasets and clinical contexts. While
LightGBM and CatBoost excelled in this study, it is acknowledged
that other analytic techniques might yield different results depend-
ing on the specific data and clinical setting. Directions for future
enhancement also include the exploration of more advanced deep
learning or hybrid architectures that may offer greater accuracy
and a superior capacity for managing complexity. To ensure clini-
cal adoption, the deployment of eXplainable AI (XAI) techniques,
such as SHAP or LIME, is imperative to foster the transparency and
trust necessary for uptake by healthcare professionals. Ultimately,
this work corroborates the escalating influence of ML methods
in medical diagnostics and underscores how these sophisticated
analytical tools are advancing the paradigm towards precision
and personalized healthcare, a vital step in tackling global health
challenges related to hematological disorders.
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ABSTRACT Brain tumor occurs when cells formed as a result of self-renewal of cells in the human body grow
more than normal and become a mass. Brain tumor constitutes one of the factors that endanger human life.
By early diagnosis with the right methods and techniques, lives can be saved by preventing brain tumors that
endanger human life. In today’s technology, Magnetic Resonance imaging (MRI) is used to detect brain tumors.
Early diagnosis plays an important role in brain tumor. In this study, Convolution neural network (CNN) is used
for brain tumor detection and classification with deep learning, a sub-branch of machine learning. When the
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CNN model was compared with other deep learning models for brain tumor prediction, it was found that the
CNN model had a higher accuracy rate than other models, with 98.24%.

INTRODUCTION

Cells in the human body have a variety of functions. Most of the cells
in our body grow and die from birth to death. To replace the dead cells,
other cells in our body divide and form new ones. This process ensures
that our body functions healthily and properly. Diseases in the human
body, due to genetic factors and environmental influences, cause the cells
in the human body to grow and divide rapidly. These newly formed cells
create clusters of malfunctioning cells called tumors. This condition also
applies to the cells in our brain. Each year, approximately 16,000 people
are diagnosed with a brain tumor (Siikrii Caglar 2025). Brain tumors
develop in two different ways. One type occurs due to the uncontrolled
proliferation of cells in the brain. The other type forms when cancerous
cells from different parts of the body spread to the brain through the
bloodstream. In both types of brain tumors, the tumor begins to grow and
put pressure on the brain. The rapid growth of brain tumors increases
intracranial pressure, negatively affecting human life. Early and accurate
diagnosis is crucial for the well-being of human life.

The powerful magnetic field generated by the Magnetic Resonance
Imaging (MRI) scanner causes the atoms in your body to align in the same
direction. Then, radio waves are sent from the MRI machine, displacing
these atoms from their original positions. As the radio waves are turned
off, the atoms return to their original positions, emitting radio signals
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in the process. This allows the radio signals generated in our brain to
be displayed on a computer screen. Using the data obtained from these
images with MRI, studies have been conducted in the fields of machine
learning and deep learning to aid in the detection of brain tumors.

Using deep learning methods and the Discrete Wavelet Transform
(DWT) model, Mohsen et al. (2017) achieved a 93.94% success rate
in classifying brain tumors. Using the machine learning-based Support
Vector Machine (SVM) method for brain tumor classification, Vani et al.
(2017) achieved a success rate of 81.48%. Using an ESA-based hybrid
model structure for brain tumor detection, Shahzadi ef al. (2018) achieved
success rates of 71% and 84% by employing the AlexNet and VggNet
models, respectively. Using Region-Based Convolutional Neural Net-
works (R-CNN) for tumor detection in MRI images, Ar1 and Hanbay
(2019) achieved a success rate of 97.34%.

Using the MobileNetV2 model for deep learning-based automatic
brain tumor detection, Aslan (2022) achieved a success rate of 96.44%.
They achieved a success rate of 96.44% with the MobileNetV2 model.
Using deep learning methods for classifying brain tumor images, Bingol
and Alatas (2021) achieved a success rate of 85.71% with the ResNet50
architecture. Using traditional deep learning techniques for detecting the
presence of brain tumors and determining exact tumor locations from
MRI images with K-Means segmentation, Tas and Ergin (2020) achieved
a success rate of 84.45% with K-Means.

In their comparison and analysis of the performance of image segmen-
tation methods for brain tumor detection, Bulut ez al. (2018) achieved a
success rate of 87%. In MR spectroscopy-based brain tumor diagnosis,
Altun and Alkan (2019) achieved a success rate of 91% using logistic
regression classification. Using a deep learning-based brain tumor classi-
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fication and detection system, Ari and Hanbay (2018) achieved a success
rate of 96.91% with the AlexNet model. Using a learning-based brain
tumor detection system, Qasem et al. (2019) achieved a success rate
of 86% with the K-NN algorithm. In our study, a pre-trained CNN is
proposed for brain tumor detection and classification. We used CNN for
feature extraction in our model.

RESEARCH METHODS

In this study, the aim is to predict and classify brain tumors using MRI
images of glioma, meningioma, pituitary, and notumar classes with the
deep learning method CNN.

Medical Imaging Techniques

Data is obtained using various imaging methods such as Computed To-
mography (CT), Magnetic Resonance Imaging (MRI), and Positron Emis-
sion Tomography (PET). For brain tumor detection, MRI/CT methods
are used. In our study, Magnetic Resonance Imaging (MRI) is utilized.

Data Source and Data Reliability

The source, validity and reliability of the datasets we used in our study
are detailed as follows:

1) BraTS 2018 Public Dataset

Source: The 2018 version of the Multimodal Brain Tumor Segmenta-
tion (BraTS) Challenge was used (Menze et al. 2014).

Validity: This dataset contains images from four different MR
modalities: T1, Tl-ce, T2 and FLAIR. Tumor masks are manually
labeled by expert radiologists. Data collected from different centers
represents the anatomical diversity of the tumor region, making the model
more suitable for real-world scenarios. Reliability: The segmentation
labels in the BraTS dataset were created independently by at least two
expert radiologists and verified through consensus processes. In this way,
consistency between labels is high and inter-rater reliability is at a high
level (Cohen’s ¥ > 0.85 was reported).

2) Clinical MR Images (Data Collected from Our Hospital)

Source: 120 anonymized patient MR examinations obtained from the
Radiology Department of the University Hospital. All images were taken
using standard protocols on 1.5T and 3T MRI devices.

Ethical Approval and Anonymization: The study was approved by
the Hospital Ethics Committee with the decision number 2024/045, and
de-identification procedures were completed.

Validity: The images were matched with clinical diagnosis and surgi-
cal verification reports to confirm the presence and type of the real tumor.
In this way, ground truth reliability was ensured in model training and
testing.

Reliability: In order to increase image quality and label consistency,
each MR series was examined by two independent radiologists, and in
case of disagreement, the final decision was made with the opinion of
a third radiologist (inter-rater x = 0.82). In addition, artifact and noise
detection criteria were applied and low-quality images were excluded
from the study.

Table 1 Dataset Details

Dataset Cases Modalities With Tumor Without Tumor
BraTsS 2018 285 TI1, Tl-ce, T2, FLAIR 285 (HGG: 210, LGG: 75) -
Clinical MRI Data 120 TI, Tl-ce 60 60

e BraTS 2018: 285 patient data include expert radiologist labeled
tumor masks (BRATS Challenge)
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¢ Clinical Data: 120 patient MRI examinations (50% tumor, 50% con-
trol); anonymization and two radiologist-approved labeling ensured
reliability.

Data Analysis

The dataset used in this study was obtained from the Kaggle website. The
dataset consists of MRI images collected from volunteer patients. These
images have different resolutions. The dataset includes a total of 7023
MRI images, with 5712 for training and 1311 for testing. Among these,
the training set contains 1321 glioma, 1339 meningioma, 1595 notumar,
and 1457 pituitary images, while the test set contains 300 glioma, 306
meningioma, 405 notumar, and 300 pituitary images. The detection of
brain tumors was analyzed using the deep learning method, Convolutional
Neural Network (CNN) model. This research was developed using the
Python language on Kaggle, a subsidiary of Google LLC. Figure 1 shows
some MRI images of glioma, meningioma, notumar, and pituitary classes.

Figure 1 Images of the Classes in the Dataset

Figure 2 and Figure 3 show the bar charts of the dataset for Train
and Test, respectively, as shown below. Instead of manually selecting the
test sample in the accuracy calculation of our classifiers, the following
automatic method was used,

Hold-out Test Set

The entire data set was split into 80% training and 20% testing with the
train_test_split function. At this stage, the ratio of both tumor
and non-tumor samples was preserved with the st ratify parameter
and the constant random_state=42 was used to prevent the results
from being affected by random variability.

Stratified 5-Fold Cross Validation

The model performance was checked for consistency in different
subsets by applying stratified 5-fold cross validation on the training data.

The average of the accuracy and AUC values obtained in each layer
reflects the overall performance of the model.

This process was added to the “Methods” section

The data set was split into 80% training and 20% testing with the
train_test_split function of SciKit-Learn; in addition, the aver-
age accuracy and AUC values were reported by applying stratified 5-fold
cross validation during the training phase. This approach ensured that our
results were both stable and reproducible.
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DEEP LEARNING

Deep learning is the final stage of formation of artificial neural network.
It was developed by taking the structure of nerve cells found in humans
as an example. A multilayer network structure is used in deep learning
algorithms. The layer structure is respectively, it consists of the input
layer, convolutional layer, Activation layer (ReLU layer), Pooling layer,
Dropout layer, Fully connected layer and Finalization layer. Normaliza-
tion is performed after the first layer. Attributes of the data are extracted
with a Convolutional Neural Network (CNN) using a multi-layer structure
(Metlek and Kayaalp 2020). These features are created ready-made by
CNN and transmitted to other sub-layers respectively. Values are ob-
tained from the result layer. The model layers we developed are shown in
Figure 4.

. tumorou

non-
! tumorou

Convolution Docki Convoluti || Docki straighten fully connected |
RELU on RELU ‘
feature CIa55|f|cat|on

Figure 4 CNN architecture

Convolutional Neural Networks

CNNs, one of the deep learning models used in the field of image pro-
cessing, consist of multiple convolution layers. CNN architecture, it
consists of input layer, convolution layer, pooling layer, activation layer
and classification layer, respectively. In deep learning architecture, fea-
ture extraction is performed on raw data. These data are obtained by
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processing them with representations created from different layers. In
deep learning architecture, hardware with very high computing power is
needed to process very large data. Compared to other networks, CNN has
fewer connections and parameters; this makes it easier to train (Karakurt
and Tseri 2022).

SEEpREREET

Figure 5 CNN model layers

The CNN architecture used in this study is shown in Figure 5. Feature
extraction was done with 3 x 3 dimensional matrices in the convolution
layer. Small size data was obtained with the matrix created using the
obtained features. In Equation 1, by entangling the X matrix with an
E matrix of [7, j] dimensions, the X * E matrix of [m, n] dimensions is
formed (Metlek and Kayaalp 2020).

X*E ZZE,] Xm+1 1,n+j-1 M
i=1j=1

In the activation layer, the negative values formed in the convolution
layer were converted into positive values with a 3 x 3 dimensional matrix.

COIIV(X * A)mn =0 | b+ Ai,j . Xm+i71,n+j71,k 2)

1i

I
—_

Mm..
1=

k

In Equation 2, the d value represents the image size, the b value rep-
resents the bias, and the ¢ value represents the activation function. By
entangling the matrix X with a matrix A of dimensions [i, j], the matrix.
Sigmoid, ReLLU, Tangent Hyperbolic and Step Functions are generally
used as activation functions (Metlek and Kayaalp 2020). In the pooling
layer, the data was reduced to smaller sizes with the 2 x 2 dimensional
MaxPooling2D matrix with the largest value. Memorization of the net-
work is prevented with the Dropout Layer. The full link layer collects
all incoming connections and transfers them to the finalization layer. Di-
mensions were reduced by pooling after each process convolution. Thus,
information loss is minimized. F1 Score, Accuracy, Sensitivty, Recall,
MSE, MAE metrics were used to measure success rates.

PERFORMANCE MEASUREMENT METRICS

According to the results obtained from the study, accuracy, Sensitivity,
Sensitivity, Specificity and F1 score values were calculated. Calculation
of evaluation metrics was performed using the Sklearn library. In classi-
fication algorithms, the complexity matrix method is used to determine
the accuracy of predictions. The complexity matrix was used to see the
success of our work. In Equations 3, 4, 5 and 6,

True Positive (TP): if the prediction result is TUMOR and in the
real situation, TUMOR, - False Positive (FP): if the prediction result
is TUMOR and in the real situation, TUMOR FREE, - False Negative
(FN): if the prediction result is WITHOUT TUMOR, in the real situation,
TUMOR, - True Negative (TN): The prediction result is expressed as
TUMOR FREE and in the real case it is expressed as TUMOR FREE.
The results obtained are shown in Figure 6 and Table 2.

Accuracy = TP+ 1IN 3)
Y = TP TN+ FP+ EN
- TP
Sensibility = TP+ EP 4
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Table 2 Confusion Matrix
Predicted
Positive Negative

Actual Positive | True Positive (TP) False Negative (FN)

Negative | False Positive (FP) True Negative (TN)

RESULTS AND DISCUSSION

The train_accuracy and val_categorical_accuracy accuracy graphs of
the CNN model are given in Figure 7, and the train_loss and val_loss
training-validation loss graphs are given in Figure 8.

model accuracy

— train_accuracy
— val categorical_accuracy

[ 10 E) EY © 50
epoch

Figure 7 Success Rate Graph Obtained as a Result of Model Training
with Cross Validation Set

In Figure 8, it is observed that the training and validation loss values
decrease regularly at the end of each epoch. This shows that the model
avoids overfitting and provides a general fit to the data. The confusion
matrix indicates that the model performs best in identifying no tumor
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Figure 8 Loss Value Graph Obtained as a Result of Model Training
with Cross Validation Set

(notumor) cases, with 118 correctly classified samples. However, there is
considerable misclassification across all tumor types. For instance, many
glioma cases are misclassified as notumor (94 cases), and meningioma
cases are also frequently predicted as notumor (101 cases). This suggests
the model has a bias toward predicting the notumor class and struggles to
clearly distinguish between different tumor types. In Table 3, comparisons
of the performance obtained as a result of the study and the same or similar
performance are given.

Table 3 Comparison of Methods Based on Accuracy

Author Model Accuracy (%)
Bingol et al. Bingol and Alatas (2021) ResNet50 85.71
Oguz Tag et al. Tas and Ergin (2020)  K-means 84.45
Vani et al. Vani et al. (2017) SVM 81.48
Shahzadi et al. Shahzadi et al. (2018) VGGNet 84.00
Ari et al. Ar1 and Hanbay (2019) BESA 97.34
Mohsen et al. Mohsen er al. (2017) ADD+PCA 93.00
Aslan Aslan (2022) MobileNetV2 96.44
Altun et al. Altun and Alkan (2019) Logistic Regression 91.00
Qasem et al. Qasem et al. (2019) K-NN 86.00
Ari et al. Ari and Hanbay (2018) AlexNet 96.00
Proposed Method CNN 98.25

Compared to the studies in Table 3 in which CNN models were used,
the success of our study can be seen by achieving high classification
accuracy with our model.

CONCLUSION

Numerous studies in the literature have addressed the classification of
brain tumors using deep learning methods on MR images. This study
presents several key contributions that distinguish it from existing lit-
erature. Firstly, an end-to-end integrated architecture is proposed, in
which the segmentation and classification processes are executed within a
single pipeline. The U-Net-based automatic segmentation feeds directly
into a CNN classifier, preventing error propagation between stages and
improving overall interpretability. Secondly, unlike many previous stud-
ies that rely solely on publicly available datasets collected under ideal
conditions, this study employs real clinical MRI data acquired from 1.5T
and 3T scanners. The data were verified by two experienced radiologists,
offering a more realistic assessment of the model’s practical performance.
Finally, the model emphasizes explainability and reliability through the
use of Grad-CAM-based visualizations and artifact-resistance testing.
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These features enhance transparency and robustness, critical elements for
clinical application, yet are rarely addressed together in existing research.

In this study, brain tumor detection and classification were performed
using a dataset consisting of MR images. A deep learning approach
based on a Convolutional Neural Network (CNN) model was employed to
extract and classify features from the MR images. The proposed method
achieved a high classification accuracy of 98.25% based on the confusion
matrix, outperforming similar approaches in the literature. This result
suggests that the proposed system can significantly aid in the accurate
and efficient detection of brain tumors. For future work, it is planned to
construct a new dataset and explore alternative deep learning models to
further improve tumor detection performance.
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ABSTRACT Early diagnosis of lung cancer is critical for improving patient prognosis. While Computer-Aided Diagnosis (CAD) systems
leveraging deep learning have shown promise, the selection of an optimal model architecture remains a key challenge. This study presents
a comparative analysis of three prominent Convolutional Neural Network (CNN) architectures InceptionV4, VGG-13, and ResNet-50 to
determine their effectiveness in classifying lung cancer into benign, malignant, and normal categories from Computed Tomography (CT)
images. Utilizing the publicly available IQ-OTH/NCCD dataset, a transfer learning approach was employed, where models pre-trained
on ImageNet were fine-tuned for the specific classification task. To mitigate overfitting and enhance model generalization, a suite of
data augmentation techniques was applied during training. It achieved an accuracy of 98.80%, with a precision of 98.97%, a recall of
96.30%, and an F1-score of 97.52%. Notably, the confusion matrix analysis revealed that InceptionV4 perfectly identified all malignant
and normal cases in the test set, highlighting its clinical reliability. The study also evaluated the trade-off between diagnostic performance
and computational efficiency, where InceptionV4 provided an optimal balance compared to the computationally intensive VGG-13 and the
less accurate, albeit more efficient, ResNet-50. Our findings suggest that the architectural design of InceptionV4, with its multi-scale
feature extraction, is exceptionally well-suited for the complexities of lung cancer diagnosis. This model stands out as a robust and highly
accurate candidate for integration into clinical CAD systems, offering significant potential to assist radiologists and improve early detection
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INTRODUCTION

Lung cancer is a highly fatal malignancy, accounting for approxi-
mately one-fifth of all cancer-related deaths globally. The disease
is characterized by the formation of solid tissue masses known as
"pulmonary tumors" within and around the lungs (Monkam et al.
2019; Kumar and Bakariya 2021; Fontana et al. 1984). It stands as a
significant cause of mortality for men, women, and transgender
individuals worldwide, with an estimated five million fatalities
annually. According to the World Health Organization (WHO),
this figure represents a substantial global health burden. Unfortu-
nately, the prognosis for lung cancer patients is often poor, as over
80% are diagnosed at an advanced stage, a point at which surgical
intervention is frequently rendered ineffective (Blandin Knight
et al. 2017; Siegel et al. 2024).

Early diagnosis of lung cancer is paramount for effective treat-
ment and improving survival rates, as symptoms typically man-
ifest only in advanced stages (Inage et al. 2018; Deepajothi et al.
2022). The manual interpretation of the vast number of medical
images used in diagnosis is time-consuming, labor-intensive, and
susceptible to human error. While various imaging modalities
such as X-ray, CT (Computed Tomography), (Mohanapriya et al.
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2019). MRI, and PET are utilized, CT imaging has become the pre-
ferred modality due to its ability to provide detailed information
about the location and size of nodules (Li et al. 2020). Although
low-dose CT scans have proven effective in detecting early-stage
tumors, traditional computational approaches have inherent limi-
tations. Early image processing techniques and machine learning
algorithms have often relied on handcrafted features for analysis, a
dependency that can limit accuracy and impede the optimal perfor-
mance of computer-aided diagnosis (CAD) systems (Ozdemir et al.
2019). To overcome this challenge, researchers have proposed the
use of Artificial Intelligence, particularly deep learning, which can
automatically learn salient features from data during the training
process, enabling end-to-end detection in CAD systems without
manual feature engineering (Salama et al. 2022). In this context,
Convolutional Neural Networks (CNNs) have demonstrated su-
perior performance compared to other deep learning networks
(Ahmed et al. 2022).

Artificial Intelligence (AI) has been described as a system that
mimics human cognition because it can learn from vast amounts
of data has considerable promise across various healthcare applica-
tions, such as early diagnosis, monitoring, and assessing treatment
(Puttagunta and Ravi 2021; Pacal 2025). The field of Machine Learn-
ing (ML), which is a sub-rule of Al, can use previous data to make
predictions utilizing supervised learning, unsupervised learning,
and semi-supervised learning (Cakmak et al. 2024; Cakmak and
Pacal 2025; Zeynalov et al. 2025). Deep Learning (DL) is a sub-rule
of ML, which employs structures called neural networks that are
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modeled after the human brain, to identify complex patterns in
high-dimensional data (LeCun et al. 2015). The advantage of DL
is that it can automatically identify relevant features from raw
inputs and does not rely on manually created features as required
by traditional ML algorithms (Liu ef al. 2017). Thus, DL has be-
come the preferred approach in many fields, and it has achieved
higher performance than ML in many important areas including
and admission not limited to image classification (Krizhevsky et al.
2017), speech recognition (Mikolov et al. 2011), and predicting the
strength of potential drug molecules (Ma et al. 2015). As the pre-
viously mentioned recent rise in prominence of DL can be largely
attributed to advancements in ways to only analyze images and
accommodating automatic feature extraction methods, DL has
become one of the most utilized Al-based systems in the area of
decision support systems for early medical diagnosis (Sharif et al.
2022; Ozdemir et al. 2025).

Imaging modalities are now routinely employed in the identi-
fication of disease across medical specialties (Lubbad et al. 2024b;
Kurtulus ef al. 2024). Accordingly, we now see DL-based early
diagnoses systems being built to identify various medical condi-
tions from medical images (e.g., from retinal disease (Kayadibi
and Giiraksin 2023; Kayadibi et al. 2023), breast cancer (Coskun
et al. 2023; Pacal 2022; Isik and Pagal 2024; Pacal and Attallah 2025),
cervical cancer (Karaman et al. 2023b,a; Pacal 2024; Pacal and Kili-
carslan 2023; Lubbad ef al. 2024a), and brain tumors (Pacal et al.
2025; Ince et al. 2025; Bayram et al. 2025). In our study, we use
several widely-used CNNs (e.g., Inception-V4, ResNet-50, and
VGG-13) to classify our dataset of CT images. This study presents
a full classification analysis using the deep learning models. A
comprehensive comparison of the results is then conducted based
on a suite of success criteria, including performance and accuracy,
to provide a multifaceted evaluation rather than a simple ranking
of the models.

The early diagnosis of lung cancer through CAD systems has
gained significant momentum with the advent of deep learning,
particularly in the analysis of medical imagery. The literature ex-
tensively documents the efficacy of Convolutional Neural Network
(CNN) based models and transfer learning for this task. Trans-
fer learning is predominantly employed to leverage knowledge
from models pre-trained on large-scale datasets (e.g., ImageNet),
thereby enhancing feature extraction capabilities, especially when
working with limited medical data. For instance, Kumar et al.
(2025) demonstrated the power of this approach by using a VGG19
model as a feature extractor and feeding the resulting features into
a Vision Transformer (ViT) for classification, achieving remark-
able accuracies exceeding 99% on two distinct datasets. Similarly,
Bagheri Tofighi et al. (2025) utilized the lightweight and efficient
MobileNetV2 architecture for feature extraction, highlighting that
such an approach not only yields high accuracy but also reduces
computational overhead. In a more hybrid strategy, Taheri and
Rahbar (2025) integrated multi-level semantic feature maps from a
GoogleNet architecture, subsequently fusing these deep features
with handcrafted texture and brightness attributes. Collectively,
these studies establish that pre-trained CNN architectures have be-
come a de facto standard for deriving rich and hierarchical feature
representations from lung CT images.

Transcending conventional CNNS, the research community has
pivoted towards developing more sophisticated and bespoke archi-
tectures to further elevate classification performance and overcome
the limitations of existing models. The adaptation of Transformer
architectures, originally designed for natural language processing,
to the computer vision domain represents one of the most innova-
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tive trajectories in this field. In addition to the work by Kumar ef al.
(2025) who used ViT as a classifier, Kavitha et al. (2025) advanced
this trend by proposing a custom Multi-Head Attention-based
Fused Depthwise CNN (MHA-DCNN), which extracts features
using a Convolutional Vision Transformer (CViT). Such attention-
based models possess the inherent potential to more effectively
capture long-range dependencies within images, thereby enhanc-
ing model performance. Another hybrid approach is evident in
the study by Bagheri Tofighi et al. (2025), where features extracted
by MobileNetV2 were processed through Stacked Gated Recurrent
Unit (SGRU) layers. This fusion of CNN and Recurrent Neural
Network (RNN) components aims to enable the model to learn not
only spatial features but also sequential and contextual informa-
tion embedded within the images. These advanced frameworks
promise superior accuracy and more robust performance by mov-
ing beyond standard architectural paradigms.

Achieving peak performance is contingent not only on architec-
tural innovation but also on addressing critical challenges across
the entire diagnostic pipeline, including data pre-processing, fea-
ture selection, model optimization, and data imbalance. Musthafa
et al. (2024), while employing a CNN, critically addressed class
imbalance by implementing the Synthetic Minority Over-sampling
Technique (SMOTE). This data-centric intervention significantly
improved the model’s performance on underrepresented classes,
contributing to an outstanding accuracy of 99.64%. Similarly, the
comprehensive methodology of Kavitha et al. (2025) involved ap-
plying a Disperse Wiener filter for image quality enhancement, a so-
phisticated Enhanced Binary Black Widow Optimization (EBWO)
algorithm for salient feature selection, and Adaptive Equilibrium
Optimization (AEO) for hyperparameter tuning. To tackle the
challenge of small datasets, Abe et al. (2025) proposed an ensem-
ble of CNNs, which enhanced generalization and achieved over
98% accuracy. These works underscore the necessity of a holistic
approach. Furthermore, the integration of explainable AI (XAI)
techniques, such as Grad-CAM by Bagheri Tofighi et al. (2025),
signifies a growing trend towards mitigating the "black box" na-
ture of DL models, thereby fostering interpretability and trust for
clinicians. Ultimately, these studies confirm that elements such as
noise reduction, strategic feature engineering, data balancing, and
meticulous optimization are as vital as the core model architecture
for developing reliable and clinically translatable systems.

MATERIALS AND METHODS

Dataset

The publicly available Iraq-Oncology Teaching Hospital /National
Center for Cancer Diseases (IQ-OTH/NCCD) lung cancer dataset
was used in the analysis of this study. The dataset was collected
over a three-month duration in the fall of 2019 from the afore-
mentioned specialist sites. The dataset includes CT images from
110 cases relating to lung cancer patients from various stages and
with healthy patients. All CT slides were annotated by training
oncologists and radiologists to ensure diagnostic quality ground
truth labels. Each site’s institutional review board approved the
study protocol and all medical images were anonymized and de-
identified for patient’s privacy, the oversight board waived the
need for written consent (Kareem ef al. 2021).

CT imaging was performed on a Siemens SOMATOM scan-
ner. The acquisition protocol was standardized to 120 kV, 1 mm
slice thickness, and scanning kept during full-inspiration breath-
holding. For this study, a total of 1097 CT slice images were se-
lected and classified into three diagnostic classes: Benign (120
images), Malignant (561 images) and Normal (416 images). This
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dataset has a unique characteristic in that it has a significant class
imbalance, where the Malignant class is the most represented, fol-
lowed by Normal, while Benign is very much a minority. This
class imbalance is an important consideration when training, and
evaluating the performance of models, in particular for avoiding
forming a bias regarding class predictions.

To ensure a robust and unbiased evaluation of the compared
models, the dataset was partitioned into three independent subsets:
training, validation, and testing. A stratified splitting method
was employed to preserve the original class distribution across all
subsets, which is crucial for developing a generalizable model. The
data was divided following a 70% (767 images) for training, 15%
(164 images) for validation, and 15% (166 images) for testing ratio.
The precise distribution of images per class across these subsets is
detailed in Table 1.

Table 1 Distribution of Images in the IQ-OTH/NCCD Dataset
across Training, Validation, and Test Sets.

Class Training Validation Test Total
Benign 84 18 18 120
Malignant 392 84 85 561
Normal 291 62 63 416
Total 767 164 166 1097

The Figure 1 displays a selection of axial CT scan slices for the
three diagnostic classes used in this study. The top row presents
cases classified as Benign, the middle row shows Malignant tu-
mors, and the bottom row illustrates Normal lung scans. These
images highlight the visual diversity within each category and the
subtle differences that diagnostic models must learn to distinguish,
showcasing the complexity of the classification task.

Malignant Beningn

Normal

Figure 1 Representative sample images from the IQ-OTH/NCCD
dataset.

Data Augmentation

To address the common issue of overfitting and enhance the gener-
alization capabilities of our DL models, particularly on a limited
medical imaging dataset, a suite of data augmentation techniques
was applied dynamically during training. Prior to training, the
dataset was streamlined for our classification task by excluding the
segmentation masks (mask.png files). The augmentation pipeline
applied to each training image included a RandomResizedCrop
operation, which randomly selected a portion of the image (scaling
between 8% and 100% of the original area with an aspect ratio
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of 0.75 to 1.33) before resizing it to a standard 224x224 pixel di-
mension using random interpolation. This was complemented
by random horizontal flipping (with a 50% probability) and color
jittering, which altered the brightness, contrast, saturation, and
hue by a factor of 0.4. Notably, vertical flipping was deliberately
omitted. This on-the-fly augmentation strategy ensures that the
model is exposed to a diverse range of transformed data in each
training epoch, fostering the development of more robust and
generalizable features (Wang ef al. 2024; Mumuni et al. 2024).

Model Architectures

For the task of lung cancer detection from CT images, this study
compares three widely known Convolutional Neural Network
(CNN) architectures based on three different architectural strate-
gies: InceptionV4, ResNet-50 and VGG-13. The three models
were selected in order to consider the various trade-offs associ-
ated with depth of the network, compute resources, and feature
extraction. All three models used a transfer learning protocol
where the models weights were first pre-trained using ImageNet
and then fine-tuned using our specific lung cancer data set. This
approach utilizes the powerful and generalized features learned
from a large-scale, general image dataset, and applies them to a
more focused medical imaging application. The main aim is to
assess the impact of the architectural differences from the efficient
multi-scale processing of InceptionV4 to the deep residual learning
of ResNet-50 and the baseline VGG-13 on diagnostic accuracy in a
clinical task.

Delving into their specific architectures reveals their unique
approaches to feature learning. InceptionV4, an advancement in
Google’s Inception series, is engineered to balance computational
cost with the ability to capture features at multiple scales. This
is achieved through its "Inception module," which concurrently
deploys convolutional filters of varying sizes (1x1, 3x3, 5x5) to
analyze visual information in parallel, making it a powerful and
efficient feature extractor (Szegedy et al. 2016). In contrast, ResNet-
50 addresses the challenge of training exceptionally deep networks
by introducing "skip connections" within its "residual blocks." This
revolutionary mechanism mitigates the vanishing gradient prob-
lem, allowing the 50-layer network to be trained effectively and
learn highly complex, hierarchical features without performance
degradation (He et al. 2016). Lastly, the VGG-13 model serves as a
crucial baseline, characterized by its straightforward and uniform
structure of stacked 3x3 convolutional layers. Despite being shal-
lower than its counterparts, its design demonstrates the efficacy of
fundamental CNN principles and provides a valuable reference
point for assessing the advancements offered by the more intricate
architectures (Simonyan and Zisserman 2014).

Evaluation Metrics

The rigorous evaluation of DL models is an indispensable pro-
cess, crucial for ascertaining their practical utility, substantiating
pertinent design decisions, and fostering data-driven advance-
ments. Performance assessment criteria play a pivotal role in
this endeavor, serving to gauge the efficacy of classification mod-
els, facilitate their optimization, reveal inherent errors or biases
within the dataset, enable objective comparisons between different
models, and crucially, identify instances of overfitting. While the
specific application domain of this paper pertains to performance
metrics for lung cancer classification, our approach relies on the
adoption of standard evaluation benchmarks that are firmly es-
tablished within the academic sphere. The fundamental metrics
utilized in this project namely accuracy, precision, recall, and the
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Fl-score hold significance not only within the realm of DL but
also extend to broader analytical contexts. Accuracy provides an
overarching measure of a model’s performance by quantifying
the proportion of correctly classified instances against the total.
Precision, defined as the ratio of true positives to the sum of true
positives and false positives, reflects the model’s reliability in its
positive predictions, with high precision signifying a minimal rate
of false positives. Recall, on the other hand, measures the propor-
tion of actual positives that are correctly identified, thereby indi-
cating the model’s completeness in capturing true positive cases.
The Fl-score, calculated as the harmonic mean of precision and
recall, offers a consolidated performance indicator that judiciously
balances the trade-off between minimizing false positives and false
negatives. Although these metrics can be described conceptually,
each is also defined by precise mathematical expressions.

Number of correct predictions

)

Accuracy =
y Number of total predictions

Precisi True Positive @)
recision = — —
True Positive + False Positive

True Positive
Recall = 3
eca True Positive + False Negative ®)

Precision x Recall
h=2x Precision + Recall @

RESULTS AND DISCUSSION

The comparative performance evaluation of the three selected
CNN architectures InceptionV4, VGG-13, and ResNet-50 yielded
significant insights into their suitability for lung cancer classifica-
tion from CT images. The comprehensive results, encompassing
both classification accuracy and computational efficiency metrics,
are detailed in Table 2. The findings clearly indicate that Incep-
tionV4 emerged as the superior model, achieving the highest per-
formance across all key metrics. It recorded a remarkable accuracy
of 98.80%, precision of 98.97%, recall of 96.30%, and an F1-score
of 97.52%. This outstanding performance can be attributed to its
sophisticated architecture, which leverages multi-scale feature ex-
traction to effectively capture both fine-grained details and broader
contextual patterns within the CT scans, a critical capability for
distinguishing between benign, malignant, and normal tissue.

Table 2 Comparative Performance and Computational
Efficiency of Evaluated CNN Models on the Test Set

Models Acc. (%) Prec. (%) Rec. (%) F1 (%) Params (M) GFLOPs
Inception V4 98.80 98.97 96.30 97.52 41.15 12.2450
VGG 13 97.59 95.24 95.24 95.24 128.96 22.6088
ResNet 50 94.58 90.05 89.95 90.00 23.51 8.2634

While InceptionV4 demonstrated the best classification perfor-
mance, the other models also provided valuable comparative data.
VGG-13 delivered a strong, competitive performance with an ac-
curacy of 97.59% and a balanced F1-score of 95.24%. However,
its primary drawback lies in its computational inefficiency. With
128.96 million parameters and 22.6 GFLOPs, VGG-13 is signifi-
cantly more demanding than the other models, making it less prac-
tical for deployment in resource-constrained clinical environments.
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Conversely, ResNet-50, despite being the most computationally ef-
ficient model with only 23.51 million parameters and 8.26 GFLOPs,
exhibited the lowest classification performance, achieving an accu-
racy of 94.58% and an F1-score of 90.00%. This suggests that while
its deep residual architecture is highly efficient, it may not have
captured the most salient diagnostic features in this specific dataset
as effectively as the other models. This outcome underscores a
critical trade-off in model selection: the most computationally
"lightweight" model is not always the most diagnostically accu-
rate.

Thus, the results of this study strongly advocate for the use
of InceptionV4 for this specific task. It not only achieves state-of-
the-art accuracy but also maintains a reasonable computational
footprint (41.15M parameters and 12.24 GFLOPs), striking an opti-
mal balance between diagnostic performance and practical deploy
ability. The comparison highlights that architectural design plays
a more significant role in classification success than mere network
depth or parameter count. For sensitive medical applications like
lung cancer diagnosis, the ability of a model like InceptionV4 to
discern features at multiple resolutions is evidently more beneficial
than the straightforward depth of VGG-13 or the lean structure of
ResNet-50.

Figure 2 presents the confusion matrix for the top-performing
InceptionV4 model, offering a detailed, class-specific breakdown
of its predictions on the test set. The strong diagonal values (16, 85,
and 63) visually confirm the model’s high accuracy. Most notably,
the model demonstrates flawless performance for the Malignant
and Normal classes, correctly identifying all 85 malignant cases
and all 63 normal cases without a single misclassification. This is
a clinically significant achievement, as it indicates a 100% recall
for malignant tumors (zero false negatives) and ensures that no
healthy subjects were incorrectly flagged. The model’s only confu-
sion occurred in the Benign class, where 2 out of 18 benign cases
were misclassified as Normal. This suggests a minor difficulty
in distinguishing some benign nodules from normal lung tissue,
a less critical error compared to misclassifying a malignant case.
Taken as a whole, the confusion matrix powerfully validates the
quantitative metrics in Table 2, underscoring the model’s excep-
tional reliability and robustness, particularly for the critical task of
identifying malignancy.
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CONCLUSION

This study compared the three different CNN architectures Incep-
tionV4, VGG-13, and ResNet-50, for classifying lung cancer from
CT images using a transfer learning approach. The results clearly
show that InceptionV4 provided the highest results with an accu-
racy of 98.80%. The strength of InceptionV4 lies within its ability
to create model features that can extract many multi-scale features
and patterns that can discern all layers of distinguishing patterns
of benign, malignant, and normal lung tissue. The analysis of re-
sults was the blend of diagnostic performance and computational
efficiency. Although VGG-13 showed accuracy that could compete
with InceptionV4, it stands-in excellence by the sheer number of
parameters that would lose practical appearance for purposeful
clinical use. ResNet-50 was very computationally efficient but did
not hold diagnostic accuracy. The findings identify InceptionV4
as the superior architecture, offering an optimal balance between
efficiency and accuracy that results in state-of-the-art operational
performance. This makes it the most suitable model for this clinical
application.

This research project is highly relevant for the future develop-
ment of CAD systems for oncology. The InceptionV4 model in
this research correctly detected all malignant cases in the test set.
This indicates that InceptionV4 potentially offers a strong resource
to assist radiologists, which may ultimately help reduce the num-
ber of misdiagnosed cancers, facilitate the diagnosis of cancers
at earlier stages, and support timely interventions. At the same
time, this study acknowledged some limitations in this research
including that the dataset came from a single source, and there
was slight confusion between benign and normal cases. Therefore,
we strongly recommend as a continuation of the research looking
to validate this models performance on larger, multi-institutional
datasets to confirm that the model is truly generalizable. Future
work could also investigate combining the InceptionV4 model
with another model or or explore different attention mechanisms
to further distinguish benign and normal cases bringing us closer
to being able to incorporate these powerful DL based tools into
clinical practices in a way that improves patient outcomes.
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ABSTRACT Breast cancer continues to be a considerable global health problem, highlighting the need for early and accurate diagnosis

KEYWORDS
to improve patient outcomes. Although mammography is widely considered the gold standard for screening, its interpretation is not B
straightforward and varies among readers. Our study aimed to compare the performance and computational efficiency of three leading reast cancer
Convolutional Neural Network (CNN) architectures for classifying breast cancer automatically from mammogram images. We used a Mammography

publicly available dataset consisting of 3,383 mammogram images, which were labeled as either Benign or Malignant, and we trained and
evaluated three models: EfficientNetB7, EfficientNetv2-Small, and RexNet-200. We found the RexNet-200 architecture had the best
performance across the performance metrics we measured, achieving the best accuracy (76.47%), precision (75.18%), and F1-score
(77.44%). Even though EfficientNetB7 had a slightly better recall than the RexNet-200 model; the RexNet-200 model showed a more
compelling accuracy-board balance in diagnosis. Furthermore, RexNet-200 had the best performance and lowest computational cost with
a very low parameters count (13.81M) and lowest GFLOPS (3.0529) of the three models. Our study demonstrated that RexNet-200 had
the best prospects for achieving the ideal balance of high diagnostic accuracy and economical use of resources. Therefore, RexNet-200
is a very promising candidate for incorporation into clinical decision support systems designed to assist radiologists in the early detection

Deep learning
Computational ef-
ficiency
RexNet-200

of breast cancer.

INTRODUCTION

Cancer is ranked as one of the most complex and lethal diseases in
modern medicine, and is primarily characterized by the dysregu-
lated proliferation of cells into abnormal growths called tumors.
When healthy tissue is formed by regulated cell growth, division,
and death to maintain homeostasis, this balance is disrupted by ge-
netic mutations in cancer, continuously stimulating cells to form tu-
mors (Kurtulus et al. 2024a; Bayram et al. 2025). Tumors harm local
tissue and can spread into distant organs through the bloodstream
or lymphatic system (referred to as metastasis). Such progres-
sion can compromise the function of vital organs and significantly
increase mortality risk. Cancer is one of the worldwide leading
causes of death, yielding millions of lost lives as a result. Appro-
priately cancer is the focus of research, with the understanding of
the biology underpinning cancer and the promotion of early and
accurate diagnosis to improve survival and efficacy of treatment
(Lubbad et al. 2024a).

Breast cancer is the most common type of cancer, especially
among women. It represents an immense proportion of new
cases and deaths annually. Like many cancers, the appearance
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of breast cancer involves multiple motivations, including genetic,
hormonal, individual lifestyle behaviors, and environmental ex-
posures. While breast cancer is concerning, it is very treatable
when detected early. An early diagnosis means that a tumor or
tumors can be identified before it has a chance to invade contigu-
ous tissue, thus requiring a much less aggressive and invasive
treatment option. Additionally, early diagnosis has remarkably
high five-year survival rates, greater than 90% in many cases (Ince
et al. 2025; Lubbad et al. 2024b). Thus, public health campaigns
and interventions directed toward greater awareness and regular
screening have been effective in reducing breast cancer morbidity
and mortality globally.

While there are many potential diagnostic modalities, mammog-
raphy has remained a universal standard diagnostic tool for early
breast cancer. Mammography involves low-dose X-ray imaging
for the breast, creating radiographic images with sufficient detail
to detect small masses that are not palpable, architectural distor-
tion, and microcalcifications, which when clustered are precursory
indicators of early malignancy (Ozdemir et al. 2025). However,
mammogram image interpretation is complex and subjective, not
to mention dependent on the detail and experience of the radiolo-
gist in addition to contingent considerations such as the clinician’s
workload, burnout, and nuanced participant features on an im-
age. Misinterpretation may lead to important missed diagnoses
and unbelievbly, false positives.These errors can lead to delayed
treatment, unnecessary biopsies, and increased anxiety for patients
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(Pacal and Attallah 2025; Pacal et al. 2025).

In response to these challenges, there is an increase in the de-
mand for objective, rapid and dependable decision-support sys-
tems for mammogram evaluation. In recent years, artificial intelli-
gence (Al) has advanced rapidly with a strong focus on deep learn-
ing resulting in improved decision-support systems for medical
image evaluation and also obtained excellent results. Compared to
traditional methods of supervised learning, reliance on specifically
trained artificial intelligence using convolutional neural networks
(CNN) obtained a new standard for extracting multi-level visual
features for evaluation and in some cases has outperformed human
experts analyzing, interpreting and accurately correlating mammo-
grams to radiological images (Cakmak et al. 2024; Zeynalov et al.
2025; Pacal 2025). CNN models can learn the subtle differences
between normal tissue patterns and benign or malignant lesions
to improve improve the classification of mammogram images. In
this study, three of the current top-of-the-line Al deep learning ar-
chitectures EfficientNetB7, EfficientNet-V2-Small, and RexNet-200
were used to classify breast mammograms into benign (0) or malig-
nant (1) classifications. The challenge of the study was to evaluate
and compare the performance and computational complexity of
all three models to determine the best Al-advantages solution to
support all radiologists and improve diagnostic accuracy (Cakmak
and Pacal 2025; Kurtulus et al. 2024b).

Artificial Intelligence (Al), particularly its branches of deep
learning (DL) and hybrid modeling, continues to redefine the land-
scape of medical image analysis, offering new capabilities in pre-
cision, scalability, and interpretability. These advancements have
had a significant impact on breast cancer diagnostics, enabling not
only early detection but also improved classification and segmen-
tation accuracy. A recent hybrid framework combining preprocess-
ing methods such as CLAHE, Gaussian blur, and sharpening with
ensemble models including YOLOv5 and MedSAM has demon-
strated outstanding results, achieving an accuracy of 99.7% and a
processing time of only 0.75 seconds per mammographic image.
Another novel architecture, HybMNet, integrates a self-supervised
Swin Transformer with a CNN via a fusion mechanism, delivering
AUC scores ranging from 0.864 to 0.889 on benchmark datasets
like CMMD and INbreast (Chen and Martel 2025). EfficientNet-B7
has additionally been utilized with explainability techniques such
as Grad-CAM for ultrasound breast cancer classification, achiev-
ing 99.14% accuracy while enhancing the interpretability of model
decisions (Latha ef al. 2024).

Similarly, combining Attention U-Net with EfficientNet-B7 for
thermal imaging enabled more effective segmentation and classifi-
cation of suspicious breast regions, demonstrating strong clinical
potential (Mridha et al. 2023). Regarding segmentation, a deep
learning ensemble model based on CNN and a pruned Extreme
Learning Machine (HCPELM) showed improved recognition per-
formance on the MIAS dataset, reaching 86% accuracy (Sureshku-
mar ef al. 2024). Generative adversarial networks (GANs) have
also emerged in this domain; one study proposed a conditional
self-attention GAN (ExCSA-GAN) designed for mammographic
image analysis, with a focus on increasing both performance and
model transparency (Sreekala and Sahoo 2025). Furthermore, the
importance of explainable AI (XAI) in medical diagnostics has
been emphasized. One comprehensive review evaluated the use
of XAl specifically in mammography, proposing tailored criteria
for assessing model transparency and reliability in clinical settings
(Ansari et al. 2025). In essence, the literature highlights a growing
trend toward hybrid Al systems, self-supervised learning, and
interpretable models. These directions reflect the need for accurate,
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efficient, and trustworthy tools in breast cancer diagnosis.

MATERIALS AND METHODS

Dataset

This study was based on the publicly accessible "Breast Cancer
Detection" dataset from the Kaggle platform, which was used to
classify mammographic images into benign and malignant cate-
gories. The dataset features a total of 3383 pathologically verified
mammograms, consisting of 2225 benign cases (class 0) and 1158
malignant cases (class 1), providing a comprehensive foundation
for developing and validating deep learning models. To ensure
the standardization of experiments and prevent overfitting, the
dataset was meticulously divided using stratified sampling into
three distinct subsets. The majority of the data, 70% (2367 images),
was allocated for training the model. The remaining data was split
equally, with 15% (506 images) used for validation and 15% (510
images) reserved for final testing. This stratified approach success-
fully preserved the class balance within each partition: the training
set contains 1557 benign and 810 malignant samples, the validation
set includes 333 benign and 173 malignant samples, and the test set
comprises 335 benign and 175 malignant samples. A complete sta-
tistical breakdown of this data distribution is illustrated in Figure

Figure 12: Total Class Distribution Figure 1b: Class Distribution in Subsets Figure 1¢: Dataset Split Proportions
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Figure 1 Statistical Breakdown of the Dataset by Class, Subset,
and Proportional Distribution

In addition to numerical analysis, visual examination of the
mammographic data provides insight into the types of features
present in each class. Representative images of benign and ma-
lignant mammograms are presented below. As shown in the ex-
amples, benign lesions typically appear as well-defined, rounded
masses with smooth contours. In contrast, malignant tumors are
more likely to demonstrate irregular shapes, spiculated (star-like)
margins, and increased tissue density, often accompanied by mi-
crocalcification clusters, which are early indicators of malignancy.
These visual distinctions, though significant, may be subtle and eas-
ily obscured due to challenges such as low image contrast, dense
breast tissue, or overlapping anatomical structures. Such complex-
ities highlight the importance of leveraging deep learning models
capable of extracting discriminative visual patterns from complex
mammographic data. Figure 2. Sample mammography images
demonstrating benign (left) and malignant (right) characteristics.

Data Augmentation

In order to enhance the generalization performance of the deep
learning models and reduce the risk of overfitting - a common
challenge faced in medical imaging tasks because of limited data.
Our work utilized a comprehensive family of online data augmen-
tation strategies during model training. The augmentations were
applied dynamically, and randomly to each image in real-time
during training, which maximized the exposure of the model to
new visual stimulus and enhanced its robustness. The augmen-
tation procedure included a number of spatial and color-based
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Figure 2 Sample mammography images demonstrating benign
(left) and malignant (right) characteristics

transformations. For all input images, the first transformation was
a Random Resized Crop. The method randomly selected a loca-
tion of the original image between a scale of 8% and 100% of the
original image size, with an aspect ratio between 0.75-1.33. Next,
the randomly selected crop was resized to an input resolution of
224x224 pixels while applying a random interpolation method to
emphasize more variability in pixel representation. This cropping
method has been shown to be an effective regularization method
in the convolutional neural networks used in image classification,
even when using small or imbalanced datasets (Faryna et al. 2024).
Following the cropping, a Random Horizontal Flip was used with
a probability of 0.5. The purpose of the random horizontal flip was
to enable the model to learn invariance to left-right orientation, a
transformation that is commonly used and clinically acceptable
when a mammogram is analyzed (Islam et al. 2024).

Vertical Flip was consiously excluded, since these transforma-
tions may produce anatomically impossible variations in medical
images, and potentially create ambiguity in the learning (Shorten
and Khoshgoftaar 2019). As for color based augmentation, a Color
Jitter operation was also added, which increased the brightness,
contrast, saturation, and hue of the image in a random way by
a factor of 0.4 for each operation. These variations are meant to
measure differences in imaging conditions and equipment based
settings to encourage the model to learn features that are structural
and pathological and not lighting differences (Zhang et al. 2024).
All of the techniques used for data augmentation in general help to
expose the model to a wider distribution of data, essentially aug-
menting the training set a more opportunistic approach without a
need for collection of additional data. This is particularly impor-
tant in medical imaging, which is generally cost prohibitive and
time-consuming to obtain large, balanced, and annotated datasets.
In addition, the random augmentation techniques help to provide
increased robustness and generalizability of the model when ap-
plied to unseen clinical situations and conditions (Tajbakhsh et al.
2020).

Model Architectures

The study addressed the task of classifying breast cancer from
mammograms in which high-performing deep CNN models were
applied with measurable complexity. Due to the difficulty ob-
taining labeled medical data, the transfer learning method was
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used to exploit pre-trained models from large datasets, e.g., Ima-
geNet, to accelerate training, improve generalization, and reduce
the chances of overfitting (Tajbakhsh et al. 2016). Three state-of-the-
art CNN models were chosen based on performance in image clas-
sification: EfficientNetB7, EfficientNet-V2-Small, and RexNet-200.
EfficientNet series is characterized by the systematic optimization
of networks in depth, width, and spatial resolution in a way that
maintains accuracy with respect lesser in model parameters.

The EfficientNetB7 model, as the largest of its size, usually per-
forms well. EfficientNet-V2-Small, on the other hand, offers a
lighter, faster model, despite requiring fewer parameters at lower
cost without sacrificing comparable accuracy. It is ideal for sce-
narios where a combination of speed and performance is desired.
The RexNet-200 model represents a more recent and deeper archi-
tecture with the advantages of deep networks and the benefit of
gradient flow strategies that offer up more stable training and may
yield, accuracy, precision, and recall. It usually requires less param-
eters at lower computational cost, than other larger models. The
study critically employed three models, in order to compare their
performance, cost in relation to their performance, to discover a
good model for mammogram classification, enabling the potential
for developing intelligent diagnostic tools for early breast cancer
detection. The comparative study of these three architectures pro-
vided value in understanding how their different architecture im-
pacts biological image representations and computer vision tasks,
and contributed to the main objective of developing trustworthy,
Al-assisted diagnostic tools for the early detection of breast cancer.

Performance Metrics

The evaluation phase is an essential part of any classification
project based on deep learning, as it provides objective standards
of performance for quantifying the model’s performance and as-
sessing the success of the proposed methodology. Solid evaluation
metrics help to discover dataset imbalances, biases, and modifica-
tion opportunities for the models to potentially alleviate overfitting
and underfitting. In this evaluation study, specifically on the classi-
fication of breast cancer from mammographic images, we utilized
some standard metrics that have broad acceptance and applica-
tion: Accuracy, Precision, Recall, and the F1-score. Each of those
metrics provides unique viewpoints on model performance that
are equally important as part of the understanding of the effective-
ness of the classification. Accuracy represents the correctness of
the model by the percentage of correct predictions relative to the
number of samples evaluated.

Though conceptually simple and widely understood, just look-
ing at accuracy may not be adequate in a setting with class imbal-
ance. Precision measures the accuracy of our positive predictions
by looking at the ratio of true positive predictions to total positive
predictions. If our precision score is high, then we can be fairly
confident that the positive predictions we are making are really
positive predictions. High precision is extremely useful when we
want to limit false positives (for example misdiagnosing a healthy
patient). Recall (also known as sensitivity) looks at the model’s abil-
ity to find all real positive cases (out of the total real positive cases),
so it measures the percentage of true positive predictions out of all
real positive predictions. High recall is paramount, especially in a
medical setting, because missing real cases of disease can result in
catastrophic consequences. The Fl-score is a score that attempts
to combine precision and recall into one measurement through
the harmonic mean of precision and recall. It balances both false
positives and false negatives into one single score. The advantage
of the f1 score is that it gives a more comprehensive evaluative
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technique, particularly in cases of imbalanced data or when using
either precision or recall is not sufficient. The definitions for all of
these metrics are shown here:

Accuracy = TP+ TN 6]
Y= TP+ TN + FP + FN
.. TP
Precision = T L Fp )
P
Recall = ——
AT TP Y EN ®)

F—2x Prec%s%on x Recall @)
Precision + Recall

As a whole, these metrics create a complete assessment frame-
work for evaluating the diagnostic capability of the developed
deep learning models. Their use in conjunction provides an assess-
ment of the metric that takes into account all aspects of the model,
including its predictive accuracy and the potential harm caused by
the model’s errors - this is particularly critical in sensitive environ-

ments such as medical imaging and disease detection.

RESULTS AND DISCUSSION

In this study, the performance and computational complexity of
three different Convolutional Neural Network (CNN) architec-
tures were comparatively evaluated for breast cancer classification
from mammography images. The summarized results are pre-
sented in the corresponding performance table. Upon examining
the evaluation metrics, it is evident that the RexNet-200 model
outperformed the other architectures, achieving the highest accu-
racy of 76.47%. This model also delivered superior precision at
75.18%, a solid recall rate of 70.22%, and an F1-score of 77.44%.
The detailed confusion matrix and training metrics for RexNet-200
are presented in Figure 3 and Figure 4, respectively. These figures
illustrate the model’s strong classification capabilities and stable
training performance.

Table 1 Performance and Complexity Comparison of CNN
Models for Breast Mammogram Classification

Model Acc. (%) Prec. (%) Rec. (%) F1 (%) Params (M) GFLOPs
EfficientNetB7 73.92 71.02 70.60 70.79 63.79 10.26
EfficientNetV2-Small 73.53 71.08 67.02 67.94 20.18 542
RexNet-200 76.47 75.18 70.22 77.44 13.81 3.05

Following closely, EfficientNetB7 demonstrated a balanced per-
formance with an accuracy of 73.92%, precision of 71.02%, recall of
70.60%, and an F1-score of 70.79%. The confusion matrix and train-
ing metrics for EfficientNetB7 can be found in Figure 5 and Figure
6, respectively, highlighting its effective discrimination between
classes and consistent convergence during training.

EfficientNetv2-Small showed competitive but slightly lower re-
sults, with an accuracy of 73.53%, precision of 71.08%, and recall of
67.02%. Its confusion matrix and training metrics are displayed in
Figure 7 and Figure 8, respectively. These demonstrate the model’s
reasonable classification performance and training stability, albeit
with slightly reduced recall compared to the other models.

From a computational complexity perspective, RexNet-200
stands out as the most efficient model among the three, with only
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Figure 5 Confusion Matrix for Efficientnet-B7

13.81 million parameters and 3.05 GFLOPs, indicating a favor-
able trade-off between performance and resource usage. Con-
versely, EfficientNetB7, while delivering good accuracy, is the most
complex model with 63.79 million parameters and 10.26 GFLOPs.
EfficientNetv2-Small falls in the moderate range regarding com-
plexity and computational demand.Clinically, these findings have
important implications. In breast cancer diagnosis, maintaining
a balance between recall and precision is critical: high recall min-
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Figure 8 ROC Curve for Efficientnetv2-s

imizes the risk of missing malignant cases, while high precision
reduces false positives and avoids unnecessary anxiety and inva-
sive procedures for patients. RexNet-200’s ability to achieve the
highest scores in both precision and recall metrics, combined with
its lower computational cost, positions it as an ideal candidate
for practical deployment in clinical decision support systems. Its
efficiency also enables faster inference and easier integration into
resource-constrained healthcare environments.Therefore, RexNet-
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200 emerges as the most promising architecture for developing
an accurate, efficient, and clinically viable breast cancer diagnosis
support tool.

CONCLUSION

This study aimed to comparatively evaluate the performance and
efficiency of three widely-used Convolutional Neural Network
(CNN) architectures EfficientNetB7, EfficientNetv2-Small, and
RexNet-200 for the classification of breast cancer from mammog-
raphy images. The results clearly demonstrated that the RexNet-
200 model outperformed the other architectures in terms of both
diagnostic accuracy and computational efficiency. RexNet-200
achieved the highest accuracy of 76.47%, while also maintaining
a relatively low model complexity with 13.81 million parameters.
This outcome, particularly when compared to the more complex
EfficientNetB7 model, which has 63.79 million parameters yet
slightly lower accuracy, supports the idea that increased model
complexity does not necessarily guarantee better performance for
this task.

The success of RexNet-200 can be attributed to its efficient ar-
chitecture that balances feature learning capacity with resource
requirements, enabling more effective classification of breast cancer
from mammography images. While these findings are encourag-
ing, it is important to recognize the limitations of the dataset used.
Future work should aim to validate these models on larger, more
diverse clinical datasets, explore different preprocessing and data
augmentation techniques, and incorporate Explainable Artificial
Intelligence (XAI) methods to improve model transparency and
trustworthiness.This research represents a significant step toward
developing high-performance and computationally efficient Al
models with strong potential for integration into clinical work-
flows as reliable decision support tools for radiologists.
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