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ABSTRACT Early diagnosis of lung cancer is critical for improving patient prognosis. While Computer-Aided Diagnosis (CAD) systems
leveraging deep learning have shown promise, the selection of an optimal model architecture remains a key challenge. This study presents
a comparative analysis of three prominent Convolutional Neural Network (CNN) architectures InceptionV4, VGG-13, and ResNet-50 to
determine their effectiveness in classifying lung cancer into benign, malignant, and normal categories from Computed Tomography (CT)
images. Utilizing the publicly available IQ-OTH/NCCD dataset, a transfer learning approach was employed, where models pre-trained
on ImageNet were fine-tuned for the specific classification task. To mitigate overfitting and enhance model generalization, a suite of
data augmentation techniques was applied during training. It achieved an accuracy of 98.80%, with a precision of 98.97%, a recall of
96.30%, and an F1-score of 97.52%. Notably, the confusion matrix analysis revealed that InceptionV4 perfectly identified all malignant
and normal cases in the test set, highlighting its clinical reliability. The study also evaluated the trade-off between diagnostic performance
and computational efficiency, where InceptionV4 provided an optimal balance compared to the computationally intensive VGG-13 and the
less accurate, albeit more efficient, ResNet-50. Our findings suggest that the architectural design of InceptionV4, with its multi-scale
feature extraction, is exceptionally well-suited for the complexities of lung cancer diagnosis. This model stands out as a robust and highly
accurate candidate for integration into clinical CAD systems, offering significant potential to assist radiologists and improve early detection
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INTRODUCTION

Lung cancer is a highly fatal malignancy, accounting for approxi-
mately one-fifth of all cancer-related deaths globally. The disease
is characterized by the formation of solid tissue masses known as
"pulmonary tumors" within and around the lungs (Monkam et al.
2019; Kumar and Bakariya 2021; Fontana et al. 1984). It stands as a
significant cause of mortality for men, women, and transgender
individuals worldwide, with an estimated five million fatalities
annually. According to the World Health Organization (WHO),
this figure represents a substantial global health burden. Unfortu-
nately, the prognosis for lung cancer patients is often poor, as over
80% are diagnosed at an advanced stage, a point at which surgical
intervention is frequently rendered ineffective (Blandin Knight
et al. 2017; Siegel et al. 2024).

Early diagnosis of lung cancer is paramount for effective treat-
ment and improving survival rates, as symptoms typically man-
ifest only in advanced stages (Inage et al. 2018; Deepajothi et al.
2022). The manual interpretation of the vast number of medical
images used in diagnosis is time-consuming, labor-intensive, and
susceptible to human error. While various imaging modalities
such as X-ray, CT (Computed Tomography), (Mohanapriya et al.
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2019). MRI, and PET are utilized, CT imaging has become the pre-
ferred modality due to its ability to provide detailed information
about the location and size of nodules (Li et al. 2020). Although
low-dose CT scans have proven effective in detecting early-stage
tumors, traditional computational approaches have inherent limi-
tations. Early image processing techniques and machine learning
algorithms have often relied on handcrafted features for analysis, a
dependency that can limit accuracy and impede the optimal perfor-
mance of computer-aided diagnosis (CAD) systems (Ozdemir et al.
2019). To overcome this challenge, researchers have proposed the
use of Artificial Intelligence, particularly deep learning, which can
automatically learn salient features from data during the training
process, enabling end-to-end detection in CAD systems without
manual feature engineering (Salama et al. 2022). In this context,
Convolutional Neural Networks (CNNs) have demonstrated su-
perior performance compared to other deep learning networks
(Ahmed et al. 2022).

Artificial Intelligence (AI) has been described as a system that
mimics human cognition because it can learn from vast amounts
of data has considerable promise across various healthcare applica-
tions, such as early diagnosis, monitoring, and assessing treatment
(Puttagunta and Ravi 2021; Pacal 2025). The field of Machine Learn-
ing (ML), which is a sub-rule of Al, can use previous data to make
predictions utilizing supervised learning, unsupervised learning,
and semi-supervised learning (Cakmak et al. 2024; Cakmak and
Pacal 2025; Zeynalov et al. 2025). Deep Learning (DL) is a sub-rule
of ML, which employs structures called neural networks that are
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modeled after the human brain, to identify complex patterns in
high-dimensional data (LeCun et al. 2015). The advantage of DL
is that it can automatically identify relevant features from raw
inputs and does not rely on manually created features as required
by traditional ML algorithms (Liu ef al. 2017). Thus, DL has be-
come the preferred approach in many fields, and it has achieved
higher performance than ML in many important areas including
and admission not limited to image classification (Krizhevsky et al.
2017), speech recognition (Mikolov et al. 2011), and predicting the
strength of potential drug molecules (Ma et al. 2015). As the pre-
viously mentioned recent rise in prominence of DL can be largely
attributed to advancements in ways to only analyze images and
accommodating automatic feature extraction methods, DL has
become one of the most utilized Al-based systems in the area of
decision support systems for early medical diagnosis (Sharif et al.
2022; Ozdemir et al. 2025).

Imaging modalities are now routinely employed in the identi-
fication of disease across medical specialties (Lubbad et al. 2024b;
Kurtulus ef al. 2024). Accordingly, we now see DL-based early
diagnoses systems being built to identify various medical condi-
tions from medical images (e.g., from retinal disease (Kayadibi
and Giiraksin 2023; Kayadibi et al. 2023), breast cancer (Coskun
et al. 2023; Pacal 2022; Isik and Pagal 2024; Pacal and Attallah 2025),
cervical cancer (Karaman et al. 2023b,a; Pacal 2024; Pacal and Kili-
carslan 2023; Lubbad ef al. 2024a), and brain tumors (Pacal et al.
2025; Ince et al. 2025; Bayram et al. 2025). In our study, we use
several widely-used CNNs (e.g., Inception-V4, ResNet-50, and
VGG-13) to classify our dataset of CT images. This study presents
a full classification analysis using the deep learning models. A
comprehensive comparison of the results is then conducted based
on a suite of success criteria, including performance and accuracy,
to provide a multifaceted evaluation rather than a simple ranking
of the models.

The early diagnosis of lung cancer through CAD systems has
gained significant momentum with the advent of deep learning,
particularly in the analysis of medical imagery. The literature ex-
tensively documents the efficacy of Convolutional Neural Network
(CNN) based models and transfer learning for this task. Trans-
fer learning is predominantly employed to leverage knowledge
from models pre-trained on large-scale datasets (e.g., ImageNet),
thereby enhancing feature extraction capabilities, especially when
working with limited medical data. For instance, Kumar et al.
(2025) demonstrated the power of this approach by using a VGG19
model as a feature extractor and feeding the resulting features into
a Vision Transformer (ViT) for classification, achieving remark-
able accuracies exceeding 99% on two distinct datasets. Similarly,
Bagheri Tofighi et al. (2025) utilized the lightweight and efficient
MobileNetV2 architecture for feature extraction, highlighting that
such an approach not only yields high accuracy but also reduces
computational overhead. In a more hybrid strategy, Taheri and
Rahbar (2025) integrated multi-level semantic feature maps from a
GoogleNet architecture, subsequently fusing these deep features
with handcrafted texture and brightness attributes. Collectively,
these studies establish that pre-trained CNN architectures have be-
come a de facto standard for deriving rich and hierarchical feature
representations from lung CT images.

Transcending conventional CNNS, the research community has
pivoted towards developing more sophisticated and bespoke archi-
tectures to further elevate classification performance and overcome
the limitations of existing models. The adaptation of Transformer
architectures, originally designed for natural language processing,
to the computer vision domain represents one of the most innova-
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tive trajectories in this field. In addition to the work by Kumar ef al.
(2025) who used ViT as a classifier, Kavitha et al. (2025) advanced
this trend by proposing a custom Multi-Head Attention-based
Fused Depthwise CNN (MHA-DCNN), which extracts features
using a Convolutional Vision Transformer (CViT). Such attention-
based models possess the inherent potential to more effectively
capture long-range dependencies within images, thereby enhanc-
ing model performance. Another hybrid approach is evident in
the study by Bagheri Tofighi et al. (2025), where features extracted
by MobileNetV2 were processed through Stacked Gated Recurrent
Unit (SGRU) layers. This fusion of CNN and Recurrent Neural
Network (RNN) components aims to enable the model to learn not
only spatial features but also sequential and contextual informa-
tion embedded within the images. These advanced frameworks
promise superior accuracy and more robust performance by mov-
ing beyond standard architectural paradigms.

Achieving peak performance is contingent not only on architec-
tural innovation but also on addressing critical challenges across
the entire diagnostic pipeline, including data pre-processing, fea-
ture selection, model optimization, and data imbalance. Musthafa
et al. (2024), while employing a CNN, critically addressed class
imbalance by implementing the Synthetic Minority Over-sampling
Technique (SMOTE). This data-centric intervention significantly
improved the model’s performance on underrepresented classes,
contributing to an outstanding accuracy of 99.64%. Similarly, the
comprehensive methodology of Kavitha et al. (2025) involved ap-
plying a Disperse Wiener filter for image quality enhancement, a so-
phisticated Enhanced Binary Black Widow Optimization (EBWO)
algorithm for salient feature selection, and Adaptive Equilibrium
Optimization (AEO) for hyperparameter tuning. To tackle the
challenge of small datasets, Abe et al. (2025) proposed an ensem-
ble of CNNs, which enhanced generalization and achieved over
98% accuracy. These works underscore the necessity of a holistic
approach. Furthermore, the integration of explainable AI (XAI)
techniques, such as Grad-CAM by Bagheri Tofighi et al. (2025),
signifies a growing trend towards mitigating the "black box" na-
ture of DL models, thereby fostering interpretability and trust for
clinicians. Ultimately, these studies confirm that elements such as
noise reduction, strategic feature engineering, data balancing, and
meticulous optimization are as vital as the core model architecture
for developing reliable and clinically translatable systems.

MATERIALS AND METHODS

Dataset

The publicly available Iraq-Oncology Teaching Hospital /National
Center for Cancer Diseases (IQ-OTH/NCCD) lung cancer dataset
was used in the analysis of this study. The dataset was collected
over a three-month duration in the fall of 2019 from the afore-
mentioned specialist sites. The dataset includes CT images from
110 cases relating to lung cancer patients from various stages and
with healthy patients. All CT slides were annotated by training
oncologists and radiologists to ensure diagnostic quality ground
truth labels. Each site’s institutional review board approved the
study protocol and all medical images were anonymized and de-
identified for patient’s privacy, the oversight board waived the
need for written consent (Kareem ef al. 2021).

CT imaging was performed on a Siemens SOMATOM scan-
ner. The acquisition protocol was standardized to 120 kV, 1 mm
slice thickness, and scanning kept during full-inspiration breath-
holding. For this study, a total of 1097 CT slice images were se-
lected and classified into three diagnostic classes: Benign (120
images), Malignant (561 images) and Normal (416 images). This
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dataset has a unique characteristic in that it has a significant class
imbalance, where the Malignant class is the most represented, fol-
lowed by Normal, while Benign is very much a minority. This
class imbalance is an important consideration when training, and
evaluating the performance of models, in particular for avoiding
forming a bias regarding class predictions.

To ensure a robust and unbiased evaluation of the compared
models, the dataset was partitioned into three independent subsets:
training, validation, and testing. A stratified splitting method
was employed to preserve the original class distribution across all
subsets, which is crucial for developing a generalizable model. The
data was divided following a 70% (767 images) for training, 15%
(164 images) for validation, and 15% (166 images) for testing ratio.
The precise distribution of images per class across these subsets is
detailed in Table 1.

Table 1 Distribution of Images in the IQ-OTH/NCCD Dataset
across Training, Validation, and Test Sets.

Class Training Validation Test Total
Benign 84 18 18 120
Malignant 392 84 85 561
Normal 291 62 63 416
Total 767 164 166 1097

The Figure 1 displays a selection of axial CT scan slices for the
three diagnostic classes used in this study. The top row presents
cases classified as Benign, the middle row shows Malignant tu-
mors, and the bottom row illustrates Normal lung scans. These
images highlight the visual diversity within each category and the
subtle differences that diagnostic models must learn to distinguish,
showcasing the complexity of the classification task.

Malignant Beningn

Normal

Figure 1 Representative sample images from the IQ-OTH/NCCD
dataset.

Data Augmentation

To address the common issue of overfitting and enhance the gener-
alization capabilities of our DL models, particularly on a limited
medical imaging dataset, a suite of data augmentation techniques
was applied dynamically during training. Prior to training, the
dataset was streamlined for our classification task by excluding the
segmentation masks (mask.png files). The augmentation pipeline
applied to each training image included a RandomResizedCrop
operation, which randomly selected a portion of the image (scaling
between 8% and 100% of the original area with an aspect ratio
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of 0.75 to 1.33) before resizing it to a standard 224x224 pixel di-
mension using random interpolation. This was complemented
by random horizontal flipping (with a 50% probability) and color
jittering, which altered the brightness, contrast, saturation, and
hue by a factor of 0.4. Notably, vertical flipping was deliberately
omitted. This on-the-fly augmentation strategy ensures that the
model is exposed to a diverse range of transformed data in each
training epoch, fostering the development of more robust and
generalizable features (Wang ef al. 2024; Mumuni et al. 2024).

Model Architectures

For the task of lung cancer detection from CT images, this study
compares three widely known Convolutional Neural Network
(CNN) architectures based on three different architectural strate-
gies: InceptionV4, ResNet-50 and VGG-13. The three models
were selected in order to consider the various trade-offs associ-
ated with depth of the network, compute resources, and feature
extraction. All three models used a transfer learning protocol
where the models weights were first pre-trained using ImageNet
and then fine-tuned using our specific lung cancer data set. This
approach utilizes the powerful and generalized features learned
from a large-scale, general image dataset, and applies them to a
more focused medical imaging application. The main aim is to
assess the impact of the architectural differences from the efficient
multi-scale processing of InceptionV4 to the deep residual learning
of ResNet-50 and the baseline VGG-13 on diagnostic accuracy in a
clinical task.

Delving into their specific architectures reveals their unique
approaches to feature learning. InceptionV4, an advancement in
Google’s Inception series, is engineered to balance computational
cost with the ability to capture features at multiple scales. This
is achieved through its "Inception module," which concurrently
deploys convolutional filters of varying sizes (1x1, 3x3, 5x5) to
analyze visual information in parallel, making it a powerful and
efficient feature extractor (Szegedy et al. 2016). In contrast, ResNet-
50 addresses the challenge of training exceptionally deep networks
by introducing "skip connections" within its "residual blocks." This
revolutionary mechanism mitigates the vanishing gradient prob-
lem, allowing the 50-layer network to be trained effectively and
learn highly complex, hierarchical features without performance
degradation (He et al. 2016). Lastly, the VGG-13 model serves as a
crucial baseline, characterized by its straightforward and uniform
structure of stacked 3x3 convolutional layers. Despite being shal-
lower than its counterparts, its design demonstrates the efficacy of
fundamental CNN principles and provides a valuable reference
point for assessing the advancements offered by the more intricate
architectures (Simonyan and Zisserman 2014).

Evaluation Metrics

The rigorous evaluation of DL models is an indispensable pro-
cess, crucial for ascertaining their practical utility, substantiating
pertinent design decisions, and fostering data-driven advance-
ments. Performance assessment criteria play a pivotal role in
this endeavor, serving to gauge the efficacy of classification mod-
els, facilitate their optimization, reveal inherent errors or biases
within the dataset, enable objective comparisons between different
models, and crucially, identify instances of overfitting. While the
specific application domain of this paper pertains to performance
metrics for lung cancer classification, our approach relies on the
adoption of standard evaluation benchmarks that are firmly es-
tablished within the academic sphere. The fundamental metrics
utilized in this project namely accuracy, precision, recall, and the
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Fl-score hold significance not only within the realm of DL but
also extend to broader analytical contexts. Accuracy provides an
overarching measure of a model’s performance by quantifying
the proportion of correctly classified instances against the total.
Precision, defined as the ratio of true positives to the sum of true
positives and false positives, reflects the model’s reliability in its
positive predictions, with high precision signifying a minimal rate
of false positives. Recall, on the other hand, measures the propor-
tion of actual positives that are correctly identified, thereby indi-
cating the model’s completeness in capturing true positive cases.
The Fl-score, calculated as the harmonic mean of precision and
recall, offers a consolidated performance indicator that judiciously
balances the trade-off between minimizing false positives and false
negatives. Although these metrics can be described conceptually,
each is also defined by precise mathematical expressions.

Number of correct predictions

)

Accuracy =
y Number of total predictions

Precisi True Positive @)
recision = — —
True Positive + False Positive

True Positive
Recall = 3
eca True Positive + False Negative ®)

Precision x Recall
h=2x Precision + Recall @

RESULTS AND DISCUSSION

The comparative performance evaluation of the three selected
CNN architectures InceptionV4, VGG-13, and ResNet-50 yielded
significant insights into their suitability for lung cancer classifica-
tion from CT images. The comprehensive results, encompassing
both classification accuracy and computational efficiency metrics,
are detailed in Table 2. The findings clearly indicate that Incep-
tionV4 emerged as the superior model, achieving the highest per-
formance across all key metrics. It recorded a remarkable accuracy
of 98.80%, precision of 98.97%, recall of 96.30%, and an F1-score
of 97.52%. This outstanding performance can be attributed to its
sophisticated architecture, which leverages multi-scale feature ex-
traction to effectively capture both fine-grained details and broader
contextual patterns within the CT scans, a critical capability for
distinguishing between benign, malignant, and normal tissue.

Table 2 Comparative Performance and Computational
Efficiency of Evaluated CNN Models on the Test Set

Models Acc. (%) Prec. (%) Rec. (%) F1 (%) Params (M) GFLOPs
Inception V4 98.80 98.97 96.30 97.52 41.15 12.2450
VGG 13 97.59 95.24 95.24 95.24 128.96 22.6088
ResNet 50 94.58 90.05 89.95 90.00 23.51 8.2634

While InceptionV4 demonstrated the best classification perfor-
mance, the other models also provided valuable comparative data.
VGG-13 delivered a strong, competitive performance with an ac-
curacy of 97.59% and a balanced F1-score of 95.24%. However,
its primary drawback lies in its computational inefficiency. With
128.96 million parameters and 22.6 GFLOPs, VGG-13 is signifi-
cantly more demanding than the other models, making it less prac-
tical for deployment in resource-constrained clinical environments.
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Conversely, ResNet-50, despite being the most computationally ef-
ficient model with only 23.51 million parameters and 8.26 GFLOPs,
exhibited the lowest classification performance, achieving an accu-
racy of 94.58% and an F1-score of 90.00%. This suggests that while
its deep residual architecture is highly efficient, it may not have
captured the most salient diagnostic features in this specific dataset
as effectively as the other models. This outcome underscores a
critical trade-off in model selection: the most computationally
"lightweight" model is not always the most diagnostically accu-
rate.

Thus, the results of this study strongly advocate for the use
of InceptionV4 for this specific task. It not only achieves state-of-
the-art accuracy but also maintains a reasonable computational
footprint (41.15M parameters and 12.24 GFLOPs), striking an opti-
mal balance between diagnostic performance and practical deploy
ability. The comparison highlights that architectural design plays
a more significant role in classification success than mere network
depth or parameter count. For sensitive medical applications like
lung cancer diagnosis, the ability of a model like InceptionV4 to
discern features at multiple resolutions is evidently more beneficial
than the straightforward depth of VGG-13 or the lean structure of
ResNet-50.

Figure 2 presents the confusion matrix for the top-performing
InceptionV4 model, offering a detailed, class-specific breakdown
of its predictions on the test set. The strong diagonal values (16, 85,
and 63) visually confirm the model’s high accuracy. Most notably,
the model demonstrates flawless performance for the Malignant
and Normal classes, correctly identifying all 85 malignant cases
and all 63 normal cases without a single misclassification. This is
a clinically significant achievement, as it indicates a 100% recall
for malignant tumors (zero false negatives) and ensures that no
healthy subjects were incorrectly flagged. The model’s only confu-
sion occurred in the Benign class, where 2 out of 18 benign cases
were misclassified as Normal. This suggests a minor difficulty
in distinguishing some benign nodules from normal lung tissue,
a less critical error compared to misclassifying a malignant case.
Taken as a whole, the confusion matrix powerfully validates the
quantitative metrics in Table 2, underscoring the model’s excep-
tional reliability and robustness, particularly for the critical task of
identifying malignancy.
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CONCLUSION

This study compared the three different CNN architectures Incep-
tionV4, VGG-13, and ResNet-50, for classifying lung cancer from
CT images using a transfer learning approach. The results clearly
show that InceptionV4 provided the highest results with an accu-
racy of 98.80%. The strength of InceptionV4 lies within its ability
to create model features that can extract many multi-scale features
and patterns that can discern all layers of distinguishing patterns
of benign, malignant, and normal lung tissue. The analysis of re-
sults was the blend of diagnostic performance and computational
efficiency. Although VGG-13 showed accuracy that could compete
with InceptionV4, it stands-in excellence by the sheer number of
parameters that would lose practical appearance for purposeful
clinical use. ResNet-50 was very computationally efficient but did
not hold diagnostic accuracy. The findings identify InceptionV4
as the superior architecture, offering an optimal balance between
efficiency and accuracy that results in state-of-the-art operational
performance. This makes it the most suitable model for this clinical
application.

This research project is highly relevant for the future develop-
ment of CAD systems for oncology. The InceptionV4 model in
this research correctly detected all malignant cases in the test set.
This indicates that InceptionV4 potentially offers a strong resource
to assist radiologists, which may ultimately help reduce the num-
ber of misdiagnosed cancers, facilitate the diagnosis of cancers
at earlier stages, and support timely interventions. At the same
time, this study acknowledged some limitations in this research
including that the dataset came from a single source, and there
was slight confusion between benign and normal cases. Therefore,
we strongly recommend as a continuation of the research looking
to validate this models performance on larger, multi-institutional
datasets to confirm that the model is truly generalizable. Future
work could also investigate combining the InceptionV4 model
with another model or or explore different attention mechanisms
to further distinguish benign and normal cases bringing us closer
to being able to incorporate these powerful DL based tools into
clinical practices in a way that improves patient outcomes.

Ethical standard

The authors have no relevant financial or non-financial interests to
disclose.

Availability of data and material

The data that support the findings of this study are available from
the corresponding author upon reasonable request.

Conflicts of interest

The authors declare that there is no conflict of interest regarding
the publication of this paper.

LITERATURE CITED

Abe, A. A, M. Nyathi, A. Okunade, W. Pilloy, B. Kgole, et al., 2025
A robust deep learning algorithm for lung cancer detection from
computed tomography images. Intelligence-Based Medicine 11:
100203.

Ahmed, I, A. Chehri, G. Jeon, and F. Piccialli, 2022 Automated pul-
monary nodule classification and detection using deep learning
architectures. ieee/acm transactions on computational biology
and bioinformatics 20: 2445-2456.

Bagheri Tofighi, A., A. Ahmadi, and H. Mosadegh, 2025 Improving
lung cancer detection via mobilenetv2 and stacked-gru with

24 | Cakmak and Maman

explainable ai. International Journal of Information Technology
17: 1189-1196.

Bayram, B., I. Kunduracioglu, S. Ince, and I. Pacal, 2025 A sys-
tematic review of deep learning in mri-based cerebral vascular
occlusion-based brain diseases. Neuroscience .

Blandin Knight, S., P. A. Crosbie, H. Balata, J. Chudziak, T. Hussell,
et al., 2017 Progress and prospects of early detection in lung
cancer. Open biology 7: 170070.

Cakmalk, Y. and I. Pacal, 2025 Enhancing breast cancer diagnosis:
A comparative evaluation of machine learning algorithms using
the wisconsin dataset. Journal of Operations Intelligence 3: 175
196.

Cakmak, Y., S. Safak, M. A. Bayram, and I. Pacal, 2024 Compre-
hensive evaluation of machine learning and ann models for
breast cancer detection. Computer and Decision Making: An
International Journal 1: 84-102.

Coskun, D., D. KARABOGA, A. BASTURK, B. Akay, O. U. NAL-
BANTOGLU, et al., 2023 A comparative study of yolo models
and a transformer-based yolov5 model for mass detection in
mammograms. Turkish Journal of Electrical Engineering and
Computer Sciences 31: 1294-1313.

Deepajothi, S., R. Balaji, T. Madhuvanthi, P. Priakanth, T. Daniya,
et al., 2022 Detection and stage classification of unet segmented
lung nodules using cnn. In 2022 5th International Conference on
Multimedia, Signal Processing and Communication Technologies (IM-
PACT), pp. 1-5, IEEE.

Fontana, R. S., D. R. Sanderson, W. F. Taylor, L. B. Woolner, W. E.
Miller, et al., 1984 Early lung cancer detection: results of the
initial (prevalence) radiologic and cytologic screening in the
mayo clinic study. American Review of Respiratory Disease 130:
561-565.

He, K., X. Zhang, S. Ren, and J. Sun, 2016 Deep residual learning
for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770-778.

Inage, T., T. Nakajima, I. Yoshino, and K. Yasufuku, 2018 Early
lung cancer detection. Clinics in Chest Medicine 39: 45-55.

Ince, S., 1. Kunduracioglu, B. Bayram, and I. Pacal, 2025 U-net-
based models for precise brain stroke segmentation. Chaos The-
ory and Applications 7: 50-60.

Isik, G. and I. Pagal, 2024 Few-shot classification of ultrasound
breast cancer images using meta-learning algorithms. Neural
Computing and Applications 36: 12047-12059.

Karaman, A., D. Karaboga, I. Pacal, B. Akay, A. Basturk, ef al., 2023a
Hyper-parameter optimization of deep learning architectures
using artificial bee colony (abc) algorithm for high performance
real-time automatic colorectal cancer (crc) polyp detection. Ap-
plied Intelligence 53: 15603-15620.

Karaman, A., I. Pacal, A. Basturk, B. Akay, U. Nalbantoglu, et al.,
2023b Robust real-time polyp detection system design based on
yolo algorithms by optimizing activation functions and hyper-
parameters with artificial bee colony (abc). Expert systems with
applications 221: 119741.

Kareem, H. F, M. S. AL-Husieny, F. Y. Mohsen, E. A. Khalil, and
Z.S. Hassan, 2021 Evaluation of svm performance in the detec-
tion of lung cancer in marked ct scan dataset. Indonesian Journal
of Electrical Engineering and Computer Science 21: 1731.

Kavitha, S., E. Patnala, H. R. Sangaraju, R. Bingu, S. Adinarayana,
et al., 2025 An optimized multi-head attention based fused depth-
wise convolutional model for lung cancer detection. Expert Sys-
tems with Applications 271: 126596.

Kayadibi, I. and G. E. Giiraksin, 2023 An early retinal disease diag-
nosis system using oct images via cnn-based stacking ensemble

ABEIN Computational Systems and Atrtificial Intelligence



learning. International Journal for Multiscale Computational
Engineering 21.

Kayadibi, I., G. E. Giiraksin, and U. Kose, 2023 A hybrid r-ftenn
based on principal component analysis for retinal disease de-
tection from oct images. Expert Systems with Applications 230:
120617.

Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2017 Imagenet
classification with deep convolutional neural networks. Com-
munications of the ACM 60: 84-90.

Kumar, A., M. K. Ansari, and K. K. Singh, 2025 A combined ap-
proach of vision transformer and transfer learning based model
for accurate lung cancer classification. SN Computer Science 6:
509.

Kumar, V. and B. Bakariya, 2021 Classification of malignant lung
cancer using deep learning. Journal of Medical Engineering &
Technology 45: 85-93.

Kurtulus, I. L., M. Lubbad, O. M. D. Yilmaz, K. Kilic, D. Karaboga,
et al., 2024 A robust deep learning model for the classification of
dental implant brands. Journal of Stomatology, Oral and Max-
illofacial Surgery 125: 101818.

LeCun, Y., Y. Bengio, and G. Hinton, 2015 Deep learning. nature
521: 436-444.

Li, G., W. Zhou, W. Chen, E Sun, Y. Fu, et al., 2020 Study on the
detection of pulmonary nodules in ct images based on deep
learning. IEEE access 8: 67300-67309.

Liu, W,, Z. Wang, X. Liu, N. Zeng, Y. Liu, et al., 2017 A survey
of deep neural network architectures and their applications.
Neurocomputing 234: 11-26.

Lubbad, M., D. Karaboga, A. Basturk, B. Akay, U. Nalbantoglu,
et al., 2024a Machine learning applications in detection and diag-
nosis of urology cancers: a systematic literature review. Neural
Computing and Applications 36: 6355-6379.

Lubbad, M. A, I. L. Kurtulus, D. Karaboga, K. Kilic, A. Basturk,
et al., 2024b A comparative analysis of deep learning-based ap-
proaches for classifying dental implants decision support system.
Journal of Imaging Informatics in Medicine 37: 2559-2580.

Ma, J., R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, 2015
Deep neural nets as a method for quantitative structure-activity
relationships. Journal of chemical information and modeling 55:
263-274.

Mikolov, T., A. Deoras, D. Povey, L. Burget, and J. Cernocky, 2011
Strategies for training large scale neural network language mod-
els. In 2011 IEEE workshop on automatic speech recognition & under-
standing, pp. 196-201, IEEE.

Mohanapriya, N., B. Kalaavathi, and T. senthil Kuamr, 2019 Lung
tumor classification and detection from ct scan images using
deep convolutional neural networks (denn). In 2019 International
Conference on Computational Intelligence and Knowledge Economy
(ICCIKE), pp. 800-805, IEEE.

Monkam, P, S. Qi, H. Ma, W. Gao, Y. Yao, et al., 2019 Detection and
classification of pulmonary nodules using convolutional neural
networks: a survey. Ieee Access 7: 78075-78091.

Mumuni, A., F. Mumuni, and N. K. Gerrar, 2024 A survey of syn-
thetic data augmentation methods in machine vision. Machine
Intelligence Research 21: 831-869.

Musthafa, M. M., I. Manimozhi, T. Mahesh, and S. Guluwadi,
2024 Optimizing double-layered convolutional neural networks
for efficient lung cancer classification through hyperparameter
optimization and advanced image pre-processing techniques.
BMC Medical Informatics and Decision Making 24: 142.

Ozdemir, B., E. Aslan, and 1. Pacal, 2025 Attention enhanced in-
ceptionnext based hybrid deep learning model for lung cancer

ABEZY Computational Systems and Atrtificial Intelligence

detection. IEEE Access .

Ozdemir, O., R. L. Russell, and A. A. Berlin, 2019 A 3d probabilistic
deep learning system for detection and diagnosis of lung cancer
using low-dose ct scans. IEEE transactions on medical imaging
39: 1419-1429.

Pacal, 1., 2022 Deep learning approaches for classification of breast
cancer in ultrasound (us) images. Journal of the Institute of
Science and Technology 12: 1917-1927.

Pacal, 1., 2024 Maxcervixt: A novel lightweight vision transformer-
based approach for precise cervical cancer detection. Knowledge-
Based Systems 289: 111482.

Pacal, 1., 2025 Diagnostic analysis of various cancer types with
artificial intelligence .

Pacal, I., O. Akhan, R. T. Deveci, and M. Deveci, 2025 Nextbrain:
Combining local and global feature learning for brain tumor
classification. Brain Research p. 149762.

Pacal, I. and O. Attallah, 2025 Inceptionnext-transformer: A novel
multi-scale deep feature learning architecture for multimodal
breast cancer diagnosis. Biomedical Signal Processing and Con-
trol 110: 108116.

Pacal, I. and S. Kilicarslan, 2023 Deep learning-based approaches
for robust classification of cervical cancer. Neural Computing
and Applications 35: 18813-18828.

Puttagunta, M. and S. Ravi, 2021 Medical image analysis based on
deep learning approach. Multimedia tools and applications 80:
24365-24398.

Salama, W. M., A. Shokry, and M. H. Aly, 2022 A generalized frame-
work for lung cancer classification based on deep generative
models. Multimedia Tools and Applications 81: 32705-32722.

Sharif, M. I, M. A. Khan, M. Alhussein, K. Aurangzeb, and
M. Raza, 2022 A decision support system for multimodal brain
tumor classification using deep learning. Complex & Intelligent
Systems 8: 3007-3020.

Siegel, R. L., A. N. Giaquinto, and A. Jemal, 2024 Cancer statistics,
2024. CA: a cancer journal for clinicians 74.

Simonyan, K. and A. Zisserman, 2014 Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 .

Szegedy, C., V. Vanhoucke, S. Ioffe, ]. Shlens, and Z. Wojna, 2016
Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2818-2826.

Taheri, F. and K. Rahbar, 2025 Googlenet’s semantic hierarchical
feature fusion for the classification of lung cancer ct images.
Neural Computing and Applications pp. 1-21.

Wang, Z., P. Wang, K. Liu, P. Wang, Y. Fu, et al., 2024 A
comprehensive survey on data augmentation. arXiv preprint
arXiv:2405.09591 .

Zeynalov, J., Y. Cakmak, and I. Pacal, 2025 Automated apple leaf
disease classification using deep convolutional neural networks:
A comparative study on the plant village dataset. Journal of
Computer Science and Digital Technologies 1: 5-17.

How to cite this article: Cakmak, Y., and Maman, A. Deep Learning
for Early Diagnosis of Lung Cancer. Computational Systems and
Artificial Intelligence, 1(1), 20-25, 2025.

Licensing Policy: The published articles in CSAI are licensed un-
der a Creative Commons Attribution-NonCommercial 4.0 Interna-

tional License.
BY NC

25


https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

