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A Two-Memristor-based Chaotic System with
Symmetric Bifurcation and Multistability
Awais Khan ID ∗,1, Chunbiao Li ID ∗,2, Xin Zhang ID α,3 and Xiaoliang Cen ID α,4

∗Nanjing University of Information Science & Technology, School of Artificial Intelligence, 210044, Nanjing, People’s Republic of China, αNanjing University of
Information Science & Technology, School of Electronic and Information Engineering, 210044, Nanjing, People’s Republic of China.

ABSTRACT In this work, the study of an innovative chaotic system made from two memristors with symmetric bifurcation and
multistability is presented. Within a four-dimensional chaotic framework, the system is architected with two flux-controlled memristors.
Computational simulations reveal intricate dynamical phenomena such as symmetric bifurcations, multistability, and very large sensitivity
to initial conditions. Using Lyapunov exponents, bifurcation diagrams, and phase portraits we investigate the system’s ability to produce
chaotic attractors of pronounced multistability. Pinched hysteresis loop and system offset investigation at different frequencies are
investigated for possible applications in neuromorphic computing, random number generation, and secure communication protocols. We
further advance our understanding of the complex dynamical properties of memristive chaotic systems. A representative analog circuit
corroborates their numerical findings.

KEYWORDS

Multistability
Analog circuit
Chaotic systems
Bifurcation

INTRODUCTION

The exploitation of chaotic systems has been a main field of aca-
demic inquiry due to the many applications in secure communica-
tion, stochastic number generation, image encryption (Umar et al.
2024), and neuromorphic computing (Masominia 2024). In partic-
ular, memristor-based chaotic circuits (Kumari and Yadav 2023)
stand out from the myriad approaches due to exceptional nonlin-
ear properties and memristor-based memory-dependent resistance
(Li et al. 2023). The memristor was shown to be a revolutionary
element designed for nonlinear systems (Penington 2022). It is
specifically well suited to chaos-oriented applications due to its
ability to replicate biological synapses and exhibit intricate dynam-
ics (Lin et al. 2023). Scholarly interest in memristor-based chaotic
systems has been piqued for their potential applications in secure
communication, random number generation, and adaptive circuits
(Wei et al. 2024). Despite that, the existing literature is mainly about
standalone memristor architectures and fails to explore the full
potential of the entire set of memristors. However, two memristor-
based systems remain poorly explored, in particular for their abil-
ity to increase chaos generation, symmetric bifurcation (Li et al.
2021), and multistability (Fang et al. 2022). Moreover, balanced
and predictable dynamics are facilitated by symmetric bifurcation,
whereas diverse and reconfigurable behaviors are supported by
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multistability.
The fundamental nonlinearity of the memristor brings forth

a prominent characteristic of its volt-ampere characteristic curve
for the memristor, which is represented by a narrowing hysteresis
loop (Luo et al. 2023). Memristor nonlinearity embedded in the
memristor fosters the development of chaotic systems exhibiting
rich dynamic behaviors, such as chaos, oscillations burst multi-
stability states, etc. (Yang et al. 2024). In this context, the explo-
ration of memristive chaotic systems warrants a closer look in the
field of nonlinear sciences because of the rich dynamic behaviors
induced by chaotic systems realized with memristors. A consid-
erable amount of academic research has been of interest in recent
years (Lai et al. 2023). The controller was incorporated into the
foundational memristor chaotic system to formulate a chaotic sys-
tem and assess its multistability. A memristive chaotic system with
remarkable multistability was introduced in the phenomenon and
comprehensive studies (Bao et al. 2022b).

A foundational chaotic oscillating circuit incorporating a mem-
ristor that is characterized by minimal nonlinearity and bifurcation
diagrams is used to explain the appearance of previously unan-
ticipated dynamical features in the circuit (Marszalek 2022). The
multiple attractors within a memristive diode bridge jerk circuit
were revealed and the trajectory toward a chaotic state was investi-
gated (Fossi et al. 2023). Additionally, a memristor is added to the
jerk circuit and found to exhibit various dynamic attributes includ-
ing multistability and monotonic behavior (Kamdem Tchiedjo et al.
2022).

However, a preponderance of modern academic inquiries con-
cerns individual memristor configurations, disregarding the poten-
tial of chaotic systems consisting of dual memristors (Wang et al.
2024; Bao et al. 2022a; Guo et al. 2021). These rationales lead to this
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investigation that seeks to address the gap by leveraging the inter-
actions between a pair of memristors to enhance chaos generation,
symmetric bifurcation (Guo et al. 2021), and multistability (Boya
et al. 2022). In addition, further characteristics are elucidated as
follows:

1. Investigate the profound multistability exhibited by a chaotic
system comprising two memristors, which is contingent upon
the initial conditions, through the application of a dimension-
ality reduction model. This methodology enables accurate
forecasting examination and regulation of multistability via
recognized quantitative methodologies.

2. Examine the essential dynamics, encompassing bifurcation
and chaotic phenomena through the manipulation of system
parameters and the subsequent observation of resultant be-
haviors.

3. Devise and execute an analog circuit to substantiate the theo-
retical conclusions, guaranteeing that the computational sim-
ulations are consistent with the empirical data.

By using the dynamics of the dimensionality reduction model
to recreate the initial parameters-dependent extreme multistability
in the two-memristor chaotic system, one may precisely forecast,
analyze, and control extreme multistability using traditional quan-
titative methods.

In this article, we lay out the methodical organization of the
manuscript. We focus on the evaluation of equilibrium points,
Lyapunov exponents, and Kaplan-Yorke dimensions in Section 2,
which describes the internal dynamics of the suggested chaotic
system with two memristors. Section 3 offers an extensive expo-
sition of the essential dynamics, encompassing chaotic attractors,
bifurcation diagrams, and frequency-domain responses. Section 4
investigates the adjustable chaotic dynamics manifested by the sys-
tem. Within Section 5, the occurrence of multiple attractors is scru-
tinized, with a specific focus on the principles of multistability and
symmetric bifurcations as modulated by varied initial conditions.
Section 6 articulates the conceptualization and implementation
of a demonstrative analog circuit employing components such as
operational amplifiers and capacitors, intended to corroborate the
theoretical insights through empirical validation. The concluding
section integrates the exhaustive findings and implications of the
research endeavor.

MODEL AND ITS FUNDAMENTAL DYNAMICS

Chaotic Analysis of a Novel System

In this segment, we presented a novel four-dimensional framework
characterized by:

ẋ = −x(0.2y2 − 0.5)− z|aw| − b

ẏ = x − 2y + 2x2y

ż = x

ẇ = w − w|w| − z

(1)

The variables x, y, z, and w are considered independent, while
the parameters a and b are positive real numbers. Altering the
parameters, a and b can induce system (1) to demonstrate chaotic,
periodic, or quasi-periodic behavior.

Evaluation of Equilibria
The equilibria represented by equation 1 can be determined
through: 

−x(0.2y2 − 0.5)− z|aw| − b = 0

x − 2y + 2x2y = 0

x = 0

w − w|w| − z = 0

(2)

Equation 2 can be analyzed through analytical techniques, con-
sidering its unique equilibrium point, which is represented as
S0 (0, 0,−0.3854, 1.2971). The Jacobian matrix can be formulated
by linearizing Equation 1 around the zero-equilibrium point S0:

J =



0.5 0 −2.5942 0.7708

1 −2 0 0

0 0 0 0

0 0 −1 −1.5942


(3)

We get the characteristic equation at S0:

det(λI − J) = (a4λ4 + a3λ3 + a2λ2 + a1λ1) = 0 (4)

Given the presence of positive Lyapunov exponents (λ3 and λ4),
it can be inferred that the system may exhibit chaotic dynamics or
unstable trajectories along certain axes. Conversely, the negative
exponent (λ1 and λ2) implies the existence of stability along a
specific direction. The system cannot be characterized as exhibiting
solely stable behavior due to the presence of a positive exponent.
By setting the parameters to a = 2 and b = 1, the eigenvalues
relevant to the state S0 are determined as:

λ1 = 0.3103 + 1.6628i,

λ2 = 0.3103 − 1.6628i,

λ3 = −1.7148,

λ4 = −2.

(5)

Dimension of Kaplan-Yorke and Lyapunov Exponents
Equation 1 can be resolved utilizing the ode45 algorithm within
the MATLAB computational environment, with parameters a = 2
and b = 1 being held constant. The discretization step size is estab-
lished at 0.005, which is derived from a comprehensive analysis
involving one million computations. Later, with the original setup
[0.1, 0, 0, 0], the evaluated Lyapunov exponents were λ1 = 0.3103,
λ2 = 0.3103, λ3 = −1.7148, λ4 = −2. The Kaplan-Yorke dimen-
sion of system (1) is assessed as:

DKY = 3 +
∑3

i=1 λi
|λ4|

(6)

DKY = 3 +
0.3103 + 0.3103 − 1.7148

−2
= 3.5471 (7)

The presence of an anomalous attractor is assured by the frac-
tional quantity referred to as the Kaplan-Yorke dimension (Silva-
Juárez et al. 2021). In Figure 1, the chaotic attractors are illustrated,
while in Figure 2 it depicts the chaotic waveform, and Figure 3 rep-
resents the frequency of the chaotic signals. The signal w exhibits
a reduced frequency relative to the chaotic signals.

2 | Khan et al.        Chaos and Fractals



ANALYSIS OF CHAOTIC ATTRACTORS

The chaotic attractors depicted in Figure 1 exemplify the dynamic
behavior exhibited by the chaotic system based on two memris-
tors, when the parameters a = 2 and b = 1, alongside the initial
conditions [0.1, 0, 0, 0]. The attractors reveal intricate, non-periodic
trajectories across various planes, thereby validating the chaotic
characteristics of the system. Noteworthy attributes include sym-
metric, layered loops situated in the y-z plane, elongated and
overlapping loops found in the x-z plane, and stretched inter-
secting loops present in the x-w plane, highlighting substantial
nonlinear interactions and symmetrical bifurcation. The findings
illustrate the system’s ability to generate a spectrum of tunable
chaotic behaviors, signifying its prospective applications in secure
communication and adaptive circuitry.

(a) (b)

(c) (d)

Figure 1 Chaotic attractors in different planes of equation 1 with
a = 2 and b = 1 under the initial conditions [0.1, 0, 0, 0]: (a) x-y,
(b) x-z, (c) y-z, (d) x-w.

Figure 2 delineates the erratic waveforms exhibited by the two-
memristor-based chaotic system when parameters a = 2 and b = 1
are applied, under the initial conditions of [0.1, 0, 0, 0]. The variable
outputs x(t), y(t), z(t), and w(t) exhibit irregular oscillatory pat-
terns, which validates the chaotic features embedded within the
system. Every variable displays particular amplitudes and frequen-
cies: x(t) and w(t) vary within the confines of [−2, 2], y(t) extends
from [−6, 2], and z(t) is bounded to [−2, 1]. These findings un-
derscore the system’s capacity to generate intricate, non-periodic
signals that are suitable for chaos-based applications.

BIFURCATION DIAGRAMS AND LYAPUNOV EXPONENT
SPECTRA

Figure 4a and 4b serve to elucidate the dynamical characteris-
tics of the system by employing Lyapunov exponents (LEs) and
bifurcation diagrams corresponding to parameter variations in a
and b, respectively, under the initial conditions [0.1, 0, 0, 0]. When
a = 2, the Lyapunov exponents reveal zones of chaotic dynamics,
as evidenced by the positive values of the primary exponent (LE1),
thereby affirming the system’s pronounced sensitivity to initial

(a) (b)

(c) (d)

Figure 2 Chaotic Waveform of equation 1 with a = 2 and b = 1
under the initial condition [0.1, 0, 0, 0]: (a) waveform x(t), (b)
waveform y(t), (c) waveform z(t), (d) waveform w(t).

(a) (b)

(c) (d)

Figure 3 Frequency spectra of equation 1 with a = 2 and b = 1
under the initial conditions [0.1, 0, 0, 0].

conditions. The bifurcation diagram delineates the emergence
of both periodic and chaotic attractors as the parameter varies,
exhibiting intricate branching patterns that encapsulate the sys-
tem’s dynamics. For parameter a set to 2, the Lyapunov exponents
corresponding to the system (1) are represented in Fig. 4(a) as
(0.0037,−0.0469,−0.0526). The bifurcation diagrams of the system
(1) across maximum value [1, 2] at each iteration are presented in
Figure 4b.

In a similar vein, when b = 1, the Lyapunov exponents and
bifurcation diagrams unveil a comparable dynamic interplay be-
tween periodic and chaotic regimes. The positive Lyapunov expo-
nents (LE1) corroborate the existence of chaotic domains, while the
bifurcation diagram graphically represents the presence of mul-
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tiple coexisting attractors and transitions between periodic and
chaotic dynamics. The findings underscore the intricate dynamical
behavior of the system and its adaptable characteristics through
parameter variations, rendering it suitable for applications that
require controllable chaos (Chaintron and Diez 2021). For a value
of parameter b = 1, the Lyapunov exponents associated with the
system (1) are (0.0956, 0,−0.3507), represented in Fig. 6(a). The bi-
furcation diagrams of the system (1) across maximum value [−5, 5]
at each iteration are presented in Fig. 6b.

The preceding analysis leads to the understanding that the
recommended nonlinear model can yield multiple kinds of oscil-
lations within the nonlinear context like behaviors such as quasi-
periodic, chaotic or periodic (Kuznetsov et al. 2023a). This signifi-
cantly augmented the complexity associated with equation 1.

(a)

(b)

Figure 4 Dynamical behavior of equation 1 with b = 1 under initial
conditions [0.1, 0, 0, 0]: (a) Lyapunov exponents, (b) bifurcation dia-
gram.

Figure ?? illustrates the intricate dynamics of a nonlinear sys-
tem as it responds to fluctuations in parameter values, specifically
with b held constant at 1, while employing the initial condition of
[0.1, 0, 0, 0]. The phase portraits delineate various modes of motion,
which evolve as the parameter a is incremented. At lower values,
specifically a = 0.1, the system demonstrates periodic behavior,
typified by stable and recurrent orbits. As parameter a is increased
to values such as a = 0.8 or a = 2.4, the system transitions into a
regime of quasi-periodic motion, wherein the trajectories remain
confined yet do not exhibit repetition. At an intermediate value
of a, specifically a = 1.6, the system reveals chaotic dynamics,
characterized by trajectories that possess multiple positive Lya-
punov exponents, indicating a heightened level of complexity. For
elevated values of a such as a = 5.8, the system manifests chaotic
behavior, exhibiting sensitive dependence on initial conditions and
a complex structural configuration. The parameter a governs the

system’s rich and multifaceted dynamics which are highlighted
by these transitions among periodic, quasi-periodic, and chaotic
regimes.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5 Typical phase portraits of equation 1 with fixed b = 1
under the initial condition [0.1, 0, 0, 0]: (a) a = 0.1, (b) a = 0.8, (c)
a = 1.6, (d) a = 2.1, (e) a = 2.4, (f) a = 3, (g) a = 4, (h) a = 5.5, (i)
a = 5.8.

Figure 7 delineates the dynamic characteristics of the nonlinear
system under the constraint of a fixed parameter a = 2 while sys-
tematically varying the parameter b, commencing from the initial
condition [0.1, 0, 0, 0]. When b = 1, the system manifests chaotic
behavior, exhibiting trajectories of considerable complexity. As b
is incremented to b = 0.8, the system transitions to quasi-periodic
motion, where the trajectories remain confined yet do not exhibit
repetition. At b = 1.6, chaotic dynamics are discerned, revealing a
pronounced sensitivity to initial conditions. Ultimately, for b = 2.1,
the system evolves into a periodic state, characterized by stable
and repetitive orbits. This illustrates the system’s capacity to tran-
sition among various dynamical states in response to alterations in
the parameter b.

With beginning circumstances set to initial condition IC1 =
[0.1, 0, 0, 0] and IC2 = [−0.1, 0, 0, 0], our system is shown in Figure 8
operating under the control of parameters a = 2 and b = 1. One
can see the x−w phase plane in Figure 8a, highlighting two unique
attractors (represented in blue and red) that reflect the occurrence
of periodic or quasi-periodic activity. Figure 8b outlines the tem-
poral waveform w(t), which elucidates two separate oscillatory
patterns corresponding to the recognized attractors. The system
exhibits intricate oscillatory behavior marked by variances in both
amplitude and frequency.

MULTISTABILITY ANALYSIS

Multistability denotes the simultaneous existence of multiple trajec-
tories under identical system parameters, characterized by distinct

4 | Khan et al.        Chaos and Fractals



(a)

(b)

Figure 6 Dynamical behavior of equation 1 with a = 2 under initial
conditions [0.1, 0, 0, 0]: (a) Lyapunov exponents of parameter b, (b)
bifurcation diagram of variable x.

(a) (b)

(c) (d)

Figure 7 Typical phase portraits of equation 1 with fixed a = 2
under the initial condition [0.1, 0, 0, 0]: (a) b = 1.5, (b) b = 3.6, (c)
b = 4.1, (d) b = 6.

initial conditions. Systems exhibiting multistability characteris-
tics within chaotic dynamics are particularly advantageous for a
plethora of applications in the engineering domain. This section
employs Lyapunov exponents and symmetric attractors to exam-
ine the multistability intrinsic to the system under investigation.
Figure 9 delineates the dynamic properties of the system for pa-

(a)

(b)

Figure 8 Coexisting symmetric chaotic attractors of equation with
a = 2 under the initial condition IC1 = [0.1, 0, 0, 0] (blue), IC2 =
[−0.1, 0, 0, 0] (red): (a) x − w plane, (b) waveform w(t).

rameter values a = 2 and b = 1, in conjunction with varying initial
conditions. In Figure 9a, the observation reveals that the mean
values of the system variables (x, y, z, and w) stay unchanged
as x(0) transitions from −5 to 5, demonstrating the equilibrium
state of the system throughout this period. Figure 9b presents the
Lyapunov exponents (LEs), where one exponent is marginally pos-
itive, thereby affirming the existence of chaotic dynamics, while
the other exponents are negative, indicating bounded and stable
trajectories within the chaotic framework.

(a) (b)

Figure 9 Dynamical behaviors of equation 1 with a = 2, b = 1
and initial conditions [0.1, 0, 0, 0]: (a) average values of all vari-
ables, (b) Lyapunov exponents.

The symmetric attractors showcased in Figure 10 correspond
to the parameter value a = 2, with two mirrored initial conditions
utilized, IC1 = [0.1, 0, 0, 0] shown in green and IC2 = [−0.1, 0, 0, 0]
illustrated in red while varying the parameter b. At b = 3.5, sym-
metric chaotic attractors are evident in the system, as seen in Fig-
ure 10a. As the parameter b increases to 4.3, the attractors exhibit a
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(a) (b)

(c) (d)

Figure 10 Coexisting symmetric attractors when a = 2 with ini-
tial condition IC1 = [0.1, 0, 0, 0] (red), IC2 = [−0.1, 0, 0, 0] (green):
(a) b = 3.5, (b) b = 4.3, (c) b = 6, (d) b = 6.7.

more defined organizational structure, yet they continue to retain
their chaotic characteristics as portrayed in Figure 10b. At b = 6,
a significant transition in the system occurs, leading to periodic
dynamics which is marked by the appearance of recurrent trajecto-
ries as illustrated in Figure 10c. Finally, at b = 6.7, the attractors
attain further stabilization into symmetric periodic orbits as exhib-
ited in Figure 10d. This figure adeptly highlights the evolution
from chaotic behavior to periodic motion, concurrently sustaining
symmetry as the parameter b is incrementally increased.

CIRCUIT IMPLEMENTATION

The purpose of this section is to conduct experiments in the ac-
tual world to verify theoretical results. The LM741CN operational
amplifier, AD633JN multiplier, and monolithic ceramic capacitor
have been employed to construct the chaotic system to validate
the dynamical features of the chaotic oscillator. To facilitate mean-
ingful comparisons, the values of the elements employed in the
numerical analysis were preserved. Figure 11 illustrates the analog
circuit corresponding to equation 1. The corresponding circuit
state equations are articulated using Kirchhoff’s law as follows:

ẋ = R36
R1C1

(
−x·y·y

R33
+ x

R34
+ −z·|w|

100·R36
+ V

R37

)
ẏ = R31

R4C4

(
−x
R34

+
−y
R23

+
x·x·y

100·R30

)
ż = 1

R7C2
x

ẇ = R21
R10C3

(
w

R18
+ −w·|w|

R19
+ z

R20

)
(8)

The circuit operates on a ±15V power supply. System (1) uses
four state variables x, y, z, and w to describe the capacitors’ state
voltages across eight channels. Taking the 10kΩ resistor as a
standard and setting the parameters a = 2 and b = 1, compute
the appropriate parameters of the circuit elements. The param-
eter values are given as follows: C1 = C2 = C3 = C4 = 1 nF,
R6 = R7 = R9 = R10 = R11 = R12 = R13 = R14 = R15 = R17 =
R18 = R19 = R20 = R21 = R22 = R31 = R32 = R37 = 10 kΩ,
R23 = 5 kΩ, R30 = 50 Ω, R34 = 20 kΩ, and R33 = R35 = 500 kΩ.
Multisim 14.2 software was used to simulate the circuit, and Fig-
ure 12 shows the simulation outcomes. The odd attractors found

Figure 11 The chaotic oscillators modeling circuit.

in the analog circuit (Petrzela 2024) and the outcomes of the com-
puter numerical simulation are essentially consistent (Kuznetsov
et al. 2023b). There is some inaccuracy between the theoretical and
actual findings due to the external environment and interruptions
in precision.

(a) (b)

(c) (d)

Figure 12 Circuit simulation of typical phase trajectories of equa-
tion 8 with a = 2, b = 1 under initial condition [0.1, 0, 1, 0]: (a) x-y
plane, (b) x-z plane, (c) y-z plane, (d) x-w plane.

CONCLUSION

The investigation of the two-memristor chaotic system reveals the
system’s capability to generate complicated nonlinear dynamics
such as symmetric bifurcation and multistability. This demon-
strates that the system can be applied to secure communications,
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adaptive control frameworks, and reconfigurable circuitry due to
its system’s intricate chaotic dynamics demonstrated by attractors,
Lyapunov exponents, and bifurcation analysis. This work helps
explain symmetric bifurcation and multistability by investigating
the interplay of two memristors revealing how multiple attractors
may exist and how chaotic behavior can be modulated. Although
possessing numerous tantalizing properties, practical challenges,
including experimental validation and noise robustness, as well as
reconciling theoretical models with actual implementations need
to be overcome to reach its full potential. This work sets the stage
for further research into the design and realization of complex
chaotic systems with improved functionality and robustness.
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ABSTRACT Chaotic systems are highly sensitive to initial conditions, where even minute changes can result in vastly different
outcomes. The non-linear nature of chaotic systems prevents them from reaching a stable state, instead exhibiting continuous change.
This inherent unpredictability makes chaotic systems particularly valuable in fields such as cryptography, random number generation,
and secure communications, where the need for complex and difficult-to-predict patterns is crucial. FPGA chips allow for hardware-level
customization, enabling the optimization of chaotic systems for specific tasks. Implementing chaotic oscillators and systems on FPGA
platforms facilitates efficient solutions for security-related applications, including encryption, pseudorandom number generation, and
secure communication protocols. Additionally, the high-speed performance, low power consumption, and parallel processing capabilities
of FPGAs make them ideal for implementing chaotic systems in industrial and commercial applications, where efficiency and security
are paramount. One of the most basic structures used in real time chaos-based applications is chaotic oscillators. In this study, FPGA
based chaotic oscillators presented in the literature have been examined according to important parameters such as maximum operating
frequency of the designed system, chaotic oscillator type, application area and numerical methods used for designs and the results have
been discussed.

KEYWORDS

Chaos
Chaotic oscilla-
tors
FPGA
Maximum operat-
ing frequency
Numerical meth-
ods

INTRODUCTION

Nonlinear systems are characterized by structures where nonlin-
earity and linearity are valid only within certain limits. Even
seemingly simple or trivial behaviors in such systems can lead
to unpredictable changes and outcomes. Within this spectrum,
chaotic systems represent one of the most actively researched ar-
eas. Recently, chaotic systems have gained importance in address-
ing rising global security concerns. Advances in technology and
economics have significantly increased the speed and volume of
information exchange, leading to heightened security challenges.
As large volumes of information are transmitted without loss, it
becomes essential to store and encrypt data according to its ap-
plication area. In this context, chaotic systems and the unique
opportunities created by chaotic fluctuations play a pivotal role in
solving these challenges. Unlike periodic systems, chaotic systems
do not allow the prediction of future states, as they generate new
values at each step, differing from previous values.

Chaotic systems find applications in diverse fields, including cy-
bersecurity (Anees and H. 2018), voice and image processing (Litvi-
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nenko and A. 2019; Özkaynak and B. 2013; Barakat and S. 2013),
Optimization algorithms (Gabr 2023), defense (Tanyıldızı and C.
2017), biomedical engineering (Vasyuta et al. 2019), and mecha-
tronics (Huang and D. 2014). For instance, a study by Linsheng
Zhang and colleagues developed an automation system transition-
ing from floating-point to fixed-point systems using Extreme Value
Theory (Zhang and Z. 2009). Another study demonstrated synchro-
nization between two chaotic systems based on the Vilnius chaotic
oscillator, achieving consistent outcomes. Research introduced by
Litvinenko explored chaotic systems like logistic, Bernoulli, and
tent maps for DS-CDMA systems (Litvinenko 2017b). Further stud-
ies by Litvinenko and colleagues presented a Chaos Shift Keying
(CSK) system using a modified Chua chaotic system, achieving
synchronization between transmitters and receivers for data trans-
mission (Litvinenko 2017a).

Similarly, M.K. Gabr implemented an encryption and decryp-
tion system utilizing Chua circuit-based chaos generators (Barakat
and S. 2013). Chaotic systems, characterized by their sensitivity to
initial conditions and complex nonlinear dynamics, have gained
significant attention in recent years for applications such as se-
cure communications, random number generation, and modeling
natural phenomena. Among the platforms used to implement
chaotic systems (Tasdemir et al. 2024) Field-Programmable Gate
Arrays (FPGAs) stand out due to their high configurability, paral-
lel processing capabilities, and real-time performance. This paper
discusses the implementation of chaotic systems in FPGA chips,
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comparing their advantages and challenges to alternative plat-
forms such as Raspberry Pi, GPUs, and CPUs.

FPGAs excel in chaotic system modeling due to their inherent
parallelism and hardware-level customization. Unlike CPUs and
GPUs, FPGAs allow the direct mapping of mathematical models
into hardware, enabling low-latency operations. For instance, the
design of chaotic maps such as the Lorenz or logistic map can be
efficiently implemented using digital logic blocks, which process
data simultaneously rather than sequentially. Additionally, the
power efficiency of FPGAs makes them particularly suitable for
edge computing applications, where real-time chaotic systems are
critical. However, the complexity of FPGA programming, often
requiring expertise in hardware description languages (HDLs),
remains a notable challenge (Taşdemir et al. 2020; Çevik et al. 2025).
In contrast, Raspberry Pi serves as a low-cost, accessible alternative
for chaotic system implementation. Its software-centric approach,
relying on Python or C libraries, simplifies development but limits
performance due to the sequential nature of its ARM-based CPU
architecture.

While suitable for educational purposes and low-complexity
models, it struggles with the computational demands of high-
dimensional chaotic systems (Guillén-Fernández et al. 2022). Jet-
son GPUs, powered by NVIDIA’s CUDA architecture, provide
significant computational power for chaotic systems, especially
in scenarios requiring high-dimensional data processing. Their
massively parallel structure makes them ideal for simulations and
research involving chaotic attractors or time-series analysis (Emin
and Yaz 2023). However, GPUs typically consume more power
than FPGAs and are less efficient for applications requiring low
latency. Traditional CPUs, on the other hand, remain versatile for
chaotic system studies. Despite their general-purpose design, mod-
ern multi-core processors can handle medium-complexity chaotic
models efficiently.

CPUs are advantageous for prototyping and integrating chaotic
systems into larger frameworks. Nevertheless, their sequential pro-
cessing limits real-time performance compared to FPGAs or GPUs.
FPGAs provide unparalleled flexibility and efficiency for chaotic
system implementation, particularly in applications requiring low
latency and energy efficiency. While platforms like Raspberry Pi,
Jetson GPUs, and CPUs offer various benefits in terms of accessibil-
ity, computational power, or ease of development, their limitations
make them less optimal for certain chaotic applications. As re-
search in this field advances, hybrid systems that integrate the
strengths of these platforms may emerge as a promising solution
for complex chaotic system modeling. In the second part of the
study, general information about FPGA chips has been given. In
the Third Section, literature review results have been presented.
In the last section, the results obtained from the studies have been
evaluated.

FPGA CHIPS

FPGA chips are integrated circuits with semiconductor technology
that allowing their internal structure may reconfigured and pro-
grammed according to the designer’s requirements or the desired
system. Advantages of FPGA chips include rapid prototyping
(time-to-market), high speed and performance, flexibility, paral-
lel signal processing, and low power consumption. These chips
are widely utilized in various fields, including defense industries,
cryptography, image and audio processing, artificial intelligence,
satellite and radar communications, consumer electronics, and
medical electronics. An example of a modern FPGA architecture is
presented in Figure 1 (Xilinx 2017a). The basic FPGA architecture is

sufficient for most applications and designs. In addition, modern
FPGA architectures include many additional elements that increase
computational density and efficiency. Examples of these structures
include embedded memory for data storage (e-RAM/Block RAM),
Phase-Locked Loops, high-speed serial transceivers, DSP48 Blocks,
Soft/Hard processors, Gbit-level fast transceiver blocks.

FPGA chips are currently produced by leading companies such
as AMD (Xilinx), Intel (Altera), Actel, Anadigm, Atmel, Leopard
Logic, and Quick Logic using advanced technological processes.
Instead of being offered solely as individual components, these
chips are often integrated into FPGA development boards. These
boards, which combine the FPGA chip with peripheral devices,
power management systems, and programming/configuration
infrastructures, provide significant advantages, including stream-
lined digital system design, prototyping, verification, and reduced
time-to-market. Notably, manufacturers assign unique names to
their chips to differentiate product lines. For instance, AMD cat-
egorizes its FPGA chips under names such as Artix, Kintex, and
Virtex, each targeting different performance and application needs.
As illustrated in Figure 2, the ML605 development board, featur-
ing the Virtex-6 chip from Xilinx (now part of AMD), exemplifies
a comprehensive solution for development and testing (Xilinx
2017b).

FPGA BASED CHAOTIC OSCILLATOR DESIGNS

One of the most basic structures used in real time chaos-based
applications is chaotic oscillators. Considerable attention has been
devoted in the literature to the FPGA-based modeling of chaotic
oscillators. In a 2024 study, Sambas and colleagues introduced a
novel 3D Jerk chaotic oscillator, which they implemented on the
Virtex-6 ML605 FPGA chip. The design was developed in VHDL
using a feedforward artificial neural network (ANN) model and
adhered to the floating-point standard (32-bit IEEE-754-1985).

According to the findings, the maximum operating frequency
of the proposed unit was determined to be 114.903 MHz. Addition-
ally, the FPGA-based oscillator was utilized in applications such
as pseudorandom number generation (PRNG) and image encryp-
tion, demonstrating its practical utility and versatility (Sambas
et al. 2024b). In this study conducted in 2025, Moreira Bezerra and
colleagues implemented both a discrete-space chaotic map and a
chaotic image encryption scheme based on sequences generated us-
ing this map on an FPGA platform (Bezerra et al. 2025a). The study
utilized two different FPGA architectures: the Altera Cyclone X
10CX105YF672E5G and the Xilinx Spartan 7 XC7S75FGGA676-1Q.

The researchers reported that the FPGA-implemented encryp-
tion scheme demonstrated lower resource utilization and power
consumption compared to other proposed methods in the liter-
ature, highlighting its efficiency and practicality. In their study
conducted in 2020, Hagras and colleagues developed an FPGA-
based 4-D memristor chaotic oscillator design to implement a
low-power, high-speed FPGA-based image encryption applica-
tion (Hagras and Saber 2020). The design was implemented in a
32 fixed-point number format on the Xilinx Spartan-6 X6SLX45
board. The results demonstrated that the FPGA-based memristor
chaotic system achieved a maximum operating frequency of 393
MHz, highlighting its efficiency and performance for real-time ap-
plications. Amdouni and colleagues implemented a chaos-based
block cipher image encryption application using a 3D chaotic map
oscillator on an FPGA platform (Amdouni et al. 2023).

The proposed approach introduced a robust chaos-based pseu-
dorandom number generator (PRNG) relying on four 3D chaotic
maps to generate high-quality keys. Additionally, to enhance the
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Figure 1 Modern FPGA structure

Figure 2 Xilinx/AMD ML605 development board

diffusion process and increase the complexity of the generated
keys, the encryption process incorporated certain biological opera-
tions, such as DNA-based algebraic processes. The cryptosystem
was implemented on the Xilinx ZedBoard Zynq Evaluation and
Development Kit platform, achieving an operating frequency of
194.906 MHz. In a 2023 study, Gafsi and colleagues designed a
robust cryptosystem for image encryption and decryption using
high-quality keys and four different chaotic oscillators on the Xilinx
FPGA-Zynq kit (Gafsi et al. 2023).

The system achieved an operating frequency of 142.8 MHz. The
results of this study demonstrated that the system generated high-
quality random number sequences, making it suitable for real-time
applications, particularly for image encryption and decryption.
Yu and colleagues presented a new approach in the literature by
designing a 5D Memristive Hyperchaotic Sprott-C system on an
FPGA platform (Yu et al. 2023b). Koyuncu and colleagues designed
a 3D chaotic system using the 32-bit IQ-Math fixed-point number
standard and the Euler numerical algorithm on an FPGA platform,
implemented in VHDL (Koyuncu et al. 2020).

The system achieved an operating frequency of 464 MHz. Fur-
thermore, they used the FPGA-based design to implement a true
random number generator (TRNG) application with a dual en-
tropy core. Another study published in 2019, Alçın and colleagues
designed a high-speed true random number generator (TRNG) us-
ing a 3D chaotic system and artificial neural networks on an FPGA
kit, implemented in VHDL (Alcin et al. 2019). The system achieved

an operating frequency of 231.616 MHz. The results demonstrated
that the designed system could provide high operating frequencies
and high-quality random bit sequences, making it suitable for a
wide range of embedded cryptographic applications. This study
introduces a novel hardware implementation of Artificial Neural
Networks (ANNs) for modeling the Pehlivan–Uyaroglu Chaotic
System (PUCS) on a FPGA. The research is divided into two main
sections. Initially, a 3-8-3 Feed Forward Neural Network (FFNN)
was developed and trained using the back propagation algorithm
in Matlab R2015a, achieving high precision.

Subsequently, the trained FFNN was implemented in hardware
using VHDL on a Xilinx Virtex 6 (XC6VCX240T) chip. The im-
plementation employs IEEE 754 single-precision floating-point
format and the Xilinx CORDIC algorithm for approximating the
Log-Sigmoid transfer function. Operating at a clock frequency
of up to 266.429 MHz, the design demonstrates the feasibility of
modeling chaotic systems with ANNs on FPGA (Alcin et al. 2016).
Koyuncu et al. (2019) focuses on the implementation of the 5-D
hyperchaotic Lorenz system on an FPGA using the Heun algo-
rithm to enhance chaos-based embedded engineering applications.
The design employs the 32-bit IEEE-754-1985 floating-point for-
mat and is coded in VHDL. The FPGA-based system achieves a
maximum operating frequency of 430.146 MHz. Additionally, the
system is realized as a physical circuit using analog components.
Comparative analysis between FPGA-based results and computer-
based numerical simulations was conducted, with error metrics
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■ Table 1 Comparison of Chaotic Generator Implementations on FPGA Platforms

Study Chaotic Generator Platform Max. Freq. (MHz) Numerical Method Application

(Tasdemir et al. 2024) Modified Chua Xilinx Virtex-6 273.631–50.242 Forward Euler –

(Sambas et al. 2024b) New 3-D Jerk Oscillator Xilinx Virtex-6 114.903 ANN PRNG,
Image En-
cryption

(Bezerra et al. 2025a) Discrete-Space Chaotic Map Altera Cyclone X 474 Fractional Order Image En-
cryption

(Hagras and Saber 2020) 4-D Memristor Chaotic Oscillator Xilinx Spartan-6 393 RK4 PRNG,
Image En-
cryption

(Amdouni et al. 2023) 3D Chaotic Oscillator Xilinx Zed Board 194.906 XSG-Xilinx System Generator PRNG,
Block-
Cipher
Encryp-
tion

(Gafsi et al. 2023) 3D Chaotic Oscillator Xilinx FPGA-Zynq 142.8 XSG-Xilinx System Generator Image En-
cryption,
Decryp-
tion

(Yu et al. 2023b) 5D Memristive HC Sprott-C Xilinx FPGA – RK4 –

(Koyuncu et al. 2020) 3D Chaotic Oscillator Xilinx Virtex-6 464 Euler TRNG

(Alcin et al. 2019) 3D Chaotic Oscillator Xilinx Virtex-6 231.616 ANN TRNG

(Alcin et al. 2016) Pehlivan–Uyaroglu Xilinx Virtex-6 266.429 FFNN TRNG

(Koyuncu et al. 2019) 5-D Hyperchaotic Lorenz Xilinx Virtex-6 430.146 Heun MSE

(Sambas et al. 2022) 3D Chaotic System Xilinx Virtex-6 462.731 Euler PRNG

(Tuna et al. 2019) Lü-Chen CO Xilinx Virtex-6 464.688 Heun –

(Zourmba et al. 2025) 1D CO Altera Cyclone-III 50 – Image En-
cryption

(Kemdoum et al. 2024) Perturbed Chen Xilinx Nexys 4 113 XSG-Xilinx System Generator PRNG
and En-
cryption

(Rodríguez-Muñoz et al. 2024) 7 Lorenz-Type Oscillators Altera Cyclone II 50.69 Forward Euler –

(Bonny et al. 2024) Switching-Type Oscillator Altera Cyclone IV 100 Euler Image En-
cryption

(Gonzalez et al. 2025) Multiscroll Chaotic Network Altera DE1 33.83 Euler PRNG

(Capligns et al. 2025) Modified Chua Intel Cyclone V 50 Simulink-Forward Euler Communication

(Li et al. 2025) Novel 3D-PCHCS Altera Cyclone IV 50 Euler Encryption

(Bezerra et al. 2025b) Discrete-Space Chaotic Map Xilinx Spartan 7 473.78 Euler-RK4 Image En-
cryption

(Yu et al. 2023a) Memristive Oscillator Altera Cyclone IV – Euler Method Flux
Control
Synchro-
nization

(Sambas et al. 2024a) Hyperjerk Oscillator Xilinx Zybo Z7-20 111 Forward Euler Image En-
cryption

(Wang et al. 2022) Fractional-Order Colpitts Altera Cyclone IV 72.06 Multi-Step FDTM –

such as Mean Squared Error (MSE) and Root Mean Squared Error
(RMSE) evaluated. This work highlights the potential for FPGA
implementation in chaos-based engineering applications.

Sambas et al. (2022) introduces a novel three-dimensional
chaotic system with line equilibrium and explores its dynamic
properties, including Lyapunov exponents, phase portraits, equi-

librium points, bifurcation diagrams, multistability, and coexisting
attractors. Synchronization results based on integral sliding mode
control (ISMC) are derived for the system, and an electronic circuit
implementation is presented, demonstrating strong agreement be-
tween theoretical Matlab simulations and MultiSim results. The
study also implements an FPGA-based PRNG using the chaotic
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system, achieving a throughput of 462.731 Mbps and passing all
NIST-800-22 randomness tests. Additionally, an image encryption
algorithm combining pixel-level scrambling, bit-level scrambling,
and pixel value diffusion is proposed. Experimental results show
the algorithm effectively resists brute force and differential attacks
by shuffling pixel positions and altering pixel values.

Tuna et al. (2019) focuses on a 3D chaotic system without equi-
librium points, an emerging area in chaotic system research, with
potential applications, particularly in encryption. The system,
lacking homoclinic and heteroclinic orbits, was examined, and its
electronic circuit implementation was completed, yielding phase
portraits via oscilloscope outputs. The system was also modeled
on LabVIEW Field Programmable Gate Array (FPGA), with FPGA
chip statistics and outputs analyzed. Additionally, using VHDL
and the RK-4 algorithm, a new FPGA-based chaotic oscillator de-
sign was developed. Comparative analysis of LabVIEW-based and
VHDL-based designs was conducted using the Xilinx ISE Simula-
tor. A novel chaos-based Random Number Generator (RNG) was
created, passing FIPS-140-1 and NIST-800-22 randomness tests.
Finally, the RNG was applied to video encryption, with security
analyses confirming its robustness.

In other paper investigates the design and implementation of
the Modified Chua chaotic oscillator on FPGA using fixed-point
and floating-point number representations, comparing their per-
formances. The Euler numeric algorithm was employed to design
the oscillator. Initially, the fixed-point version was modeled in
MATLAB Simulink and converted to VHDL using the MATLAB
HDL Coder Toolbox. Subsequently, the floating-point version
was directly designed with VHDL. Both versions were tested and
synthesized for the Virtex-6 FPGA on the ML605 development
board using Xilinx ISE Design Tools 14.2. The results revealed
that the fixed-point representation achieved a maximum operating
frequency of 50.242 MHz, whereas the floating-point representa-
tion reached 273.631 MHz. This demonstrates the performance
trade-offs between the two number standards in chaotic oscillator
implementations (Tasdemir et al. 2024).

With the study implements the autonomous Lü-Chen (2002)
chaotic system on an FPGA using the Heun numerical algorithm in
VHDL with a 32-bit IQ-Math fixed-point format to support chaos-
based embedded engineering applications. Core components like
multipliers, adders, and subtractions, compatible with the fixed-
point standard, were created using the Xilinx IP CORE Generator.
The design was simulated, synthesized, and tested on a Virtex-6
FPGA chip, with chip statistics, phase portraits, and Place and
Route results presented. The FPGA-based design achieves a maxi-
mum operating frequency of 464.688 MHz, the highest reported
in the literature for such systems, and exhibits superior resource
utilization compared to other 3D FPGA-based chaotic oscillators.
Accuracy was validated through Mean Square Error (MSE) and
Root Mean Square Error (RMSE) analyses, confirming its reliability.
The study demonstrates that the hardware-based Lü-Chen chaotic
oscillator is highly effective for applications like cryptography, se-
cure communication, and random number generation (Zourmba
et al. 2025). FPGA-based chaotic oscillators in literature have been
given in the Table 1.

CONCLUSION

This study provides a comprehensive review of chaotic systems
implemented on FPGA chips, highlighting their various features
and characteristics. These features, including application domains,
numerical systems, maximum operating frequency, target devices,
and applied methodologies, are systematically presented in a

detailed table. The research incorporates advanced numerical
methods and computational techniques, such as artificial neural
networks, fourth-order Runge-Kutta (RK4), fractional-order cal-
culations, Heun’s method, Euler’s method, and Xilinx System
Generator (XSG). Notably, a system designed using the Altera Cy-
clone X 10CX105YF672E5G FPGA chip, based on the discrete-space
chaotic map numerical method, achieved a maximum operating
frequency of 474 MHz. This performance highlights the potential
of FPGA-based chaotic systems in high-speed and computationally
demanding applications. The study not only emphasizes the tech-
nical advantages of these implementations but also contributes to
the growing body of literature on the efficient utilization of chaotic
systems on FPGA chips for various real-world and industrial ap-
plications.
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ABSTRACT This paper is interested in the study of the dynamics and control of the permanent magnet
synchronous motor with load torque (PMSMLT). PMSMLT has three fixed points where one is saddle and the
two others are saddle focus. PMSMLT exhibits no oscillations, periodic characteristics, chaotic characteristics
and coexistence between no oscillations and chaotic characteristics. In order to validate the results obtained
numerically, an electronic implementation of PMSMLT is performed in probe simulation program with integrated
circuit emphases (PSPICE) environment which reveals a concordance between the numerical simulations and
the experimental verifications. The coexisting characteristics is eliminated by the linear augmentation control
method.

KEYWORDS
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synchronous motor
Load torque
Chaos
Coexisting character-
istics
Linear augmentation
control
Implementation
circuit

INTRODUCTION

Rotating machines are electrical systems intended for the majority
to control industrial systems linked to their mechanization (Wildi
2006; Chapman 2005; Santoso and Beaty 2018). These machines are
classified into two main categories depending on their use. There
are direct current machines and alternating current machines. Due
to its relatively simple control, DC machines are increasingly used
and considered as electric actuators for motorizing multiple engi-
neering applications such as high-speed trains, elevators, drones,
crushing mills, etc. (Fitzgerald et al. 1991; Wildi 2006; Borisavljevic
2013). The synchronous machine in most cases is used in three
phases. It behaves as a reversible electromechanical energy con-
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verter. Thus, it can operate in motor mode or in generator mode
depending on the voltage: In motor operation, the electrical energy
provided by the source is transformed into mechanical energy and
in generator or alternator operation, the mechanical energy is trans-
formed into redirected electrical energy towards the source (Say
and Taylor 1980; Hughes 2006; El-Sharkawi 2000). In generator
operation, the synchronous motor can redirect the electrical energy.
This application finds opportunities in wind turbines for the pro-
duction of electricity, thanks to the possibility of providing reactive
energy by modulating the excitation current. The synchronous
machine in alternator operation can be used in power plants for
the conversion of mechanical energy into electrical energy (Chau
and Wang 2011; Machowski et al. 2012; Leine and Nijmeijer 2004).

The synchronous machine consists of a rotating part and a
fixed part, the two separated by an air gap. The rotor, which
is the rotating part of the synchronous machine, can consist of
permanent magnets or consist of a winding powered by direct
current and a magnetic circuit (electromagnet). Permanent magnet
synchronous motors (PMSM) have advantages and applications
in the automotive sector: lower inertia and weight than those
with a wound rotor, improved efficiency thanks to the absence of
consumption in the rotor, and reduced maintenance due to the
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absence of brooms (Iqbal and Singh 2019; Cheukem et al. 2020; Hua
et al. 2022). Several works have already been carried out on PMSM.
This work essentially focuses on the search for chaos in the machine
and the control of undesirable dynamic states such as chaos (Dong-
lian et al. 2005; Luo 2014; Luo et al. 2014). In the mathematical
model of PMSMs proposed in the literature, the authors do not
consider the saliency ratio, which is very low. However, it should
be noted that a low saliency ratio has a negative impact on the
machine in the sense that the power factor (which increases with
the saliency ratio) of the electrical installation will be very low,
thus resulting in a lower active power developed by the very weak
motor, which favors a very high current which, from an economic
point of view, generates losses for the user. Furthermore, we note
that the work on PMSMs was carried out when they are empty,
that is to say, the load torque is zero (Maeng and Choi 2013; Vadivel
et al. 2023; Yamdjeu et al. 2024; Mao and Liu 2019; Du-Qu and Bo
2009).

In light of what was presented earlier, it appears that the lit-
erature still remains vague on the behavior of PMSMLT (TL ̸= 0:
continuous or discrete variable). It would therefore be interesting
to fully study these motors in the presence of load torque because
in reality, a motor is made to be used and therefore cause a move-
ment. The objective of this paper is to study the dynamics of a
PMSMLT in the presence of mechanical load torque and to carry
out its control in order to make it operate in the manner desired by
the user. To carry out this paper, it is structured into four sections.
The first section presents the introduction. Section two is devoted
to the dynamic analysis of PMSMLT and its electronic implemen-
tation. Section three presents the control of unwanted dynamic
states. The paper ends with a conclusion in section 4.

THEORETICAL ANALYSIS OF PMSMLT AND ITS ELEC-
TRONIC IMPLEMENTATION

The PMSMLT is described by the set of equations (Cheukem et al.
2020):

dx
dt

= −x + yz, (1a)

dy
dt

= −y − xz + γz, (1b)

dz
dt

= σ(y − z) + TL, (1c)

where x and y are the dimensionless direct and quadrature cur-
rents, respectively, z the angle speed, TL the dimensionless load
torque and σ, γ are the system parameters. System (1) is invari-
ant under the coordinate transformation (x, y, z)(x,−y,−z). The
PMSMLT is dissipative because ∇V = ∂ẋ

∂x +
∂ẏ
∂y + ∂ż

∂z = −(2 + σ).
The fixed points of PMSMLT are obtained by solving the system of
equation ẋ = ẏ = ż = 0 which gives

x = z
(

z − TL
σ

)
(2a)

y =
TL
σ

+ z (2b)

σz3 − TLz2 − (γ − 1)σz − TL = 0 (2c)

Equation 2c admits fixed points whose number varies depending
on the values of the torque TL and the parameter σ. Using a digital
calculator as well as the fixed values of the parameters (σ = 4.56;

γ = 20; TL = 6.5), three fixed points are obtained:

E1 = (0.1132,−1.5009,−0.0754),

E2,3 = (19.2762,±3.7352,±5.1606).
(2)

The stability of the system for each fixed point is determined by
the evaluation of the eigenvalues of the Jacobian matrix

J =


−1 z y

−x −1 −x + γ

0 σ −σ

 . (4)

The characteristic equation corresponding to the first fixed point
E1 obtained using det(J − λI) = 0 is given by:

λ3 + (σ + 2)λ2 + (2σ + 0.1132σ + γσ + 1.0056)λ

+ σ(0.7679 − γ) = 0.
(5)

The eigenvalues, the fixed points E1,2,3 are presented in Table 1.
Table 1 reveals that the fixed point E1 is a saddle while the fixed

■ Table 1 Eigenvalues of fixed points E1,2,3.

Eigenvalues E1 E2,3

λ1 −0.9940 −0.0586 + 5.7173i

λ2 6.9039 −0.0586 + 5.7173i

λ3 −12.4698 −6.4420

points E2,3 are saddle focus.

Numerical analysis of PMSMLT

In order to know the influence of the load torque and other pa-
rameters on the dynamical behaviours of PMSMLT, the 2D largest
Lyapunov exponent (LLE) are illustrated in Figure 1.
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Figure 1 2D LLE in the planes: (a) (TL, σ) with γ = 20, (b) (γ, σ)
with TL = 2.0, and (c) (TL, γ) avec σ = 8 for the initial conditions
(x0, y0, z0) = (0.01, 0.01, 0.01).

Figure 1 makes it possible to distinguish between chaotic zones
(for positive LLE) and periodicity zones (for negative LLE) de-
pending on the system parameters. Figure 2 represents the phase
portrait of the chaotic state for fixed values of the system parame-
ters.

Figure 2 Phase portraits following the planes: (a) (x-y), (b) (y-z), (c)
(x-z), and (d) (x, y, z) for the following parameter values: σ = 4.56,
γ = 20, TL = 6.5 obtained for the initial conditions (x0, y0, z0) =
(0.01, 0.01, 0.01).

Figure 2 shows the chaos encountered in the PMSMLT. Figure
3 presents the forward (in black) and return (in red) bifurcation
diagrams of the PMSMLT forward current as well as their graphs
of the corresponding LLE as a function of the TL load torque.

The coexistence between chaos and no oscillations is observed
in Figure 3 for the torque values between 6.448 ≤ TL ≤ 5.824 on
the one hand and 5.824 ≤ TL ≤ 6.448 on the other hand. In order

Figure 3 Bifurcation diagram showing the local maxima of x of the
PMSMLT as a function of TL load as well as the graph of the cor-
responding LLE for σ = 4.56 and γ = 20. The graphs in black
represent the forward digraphs, and those in red represent the re-
turn.

to find the initial conditions leading to coexisting attractors, the
drawing of the basin of attraction is carried out in Figure 4 by
considering the parameter values leading to coexistence and the
initial conditions are varied in the plane (x0, y0).

Figure 4 (a) Phase portrait in the plane (x, y) and (b) basin of at-
traction following the plane (x0, y0) putting for σ = 5.46, γ = 20,
TL = 6.5. The black lines are obtained using the initial conditions
(x0, y0, z0) = (0, 0, 0), while the red lines are obtained using the
initial conditions (x0, y0, z0) = (0, 0.2, 0).

Figure 4(a) shows the coexistence between chaos and the fixed
point obtained respectively by the initial conditions (x0, y0, z0) =
(0, 0, 0) and (x0, y0, z0) = (0, 0.2, 0). The set of initial conditions in
Figure 4(b) leads to the chaotic attractor and a fixed point.
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Electronic implementation of PMSMLT
The electronic implementation of PMSMLT on PSPICE software
was done to verify the results found during the numerical simu-
lations of PMSMLT. The advantages of electronic implementation
include reduced costs and energy consumption, enhancing their
performance and reliability. The electronic circuit diagram of the
PMSMLT is given in Figure 5.

Figure 5 Circuit of the electronic implementation of the PMSMLT.

Figure 5 includes six operational amplifiers, two analog multi-
pliers, three capacitors, fourteen resistors, a 15 V voltage source,
and a symmetrical power supply of ±15 V. The phase portraits in
Figure 6 are obtained from PSPICE.

Figure 6 Phase portraits under PSPICE showing the chaotic be-
havior in the MSAP under load obtained for the resistance value
R14 = 10 kΩ corresponding to the chaotic attractor. The other com-
ponent values are R2 = R4 = 10 kΩ; R5 = 5 kΩ; R1 = R3 = 100
kΩ; R8 = R9 = R10 = R11 = R12 = R13 = 1 kΩ;
R6 = R7 = 18.315 kΩ, and C1 = C2 = C3 = 10 nF. The initial
conditions are (IC1, IC2, IC3) = (0.01, 0.01, 0.01).

The chaos encountered during the numerical simulations in

Figures 2 (a) to (c) can be reproduced using electronic execution as
shown in Figure 6.

CONTROL OF COEXISTING ATTRACTORS

Chaos and coexisting attractors encountered in PMSMLT are unde-
sirable dynamical states in electrical machines. The linear augmen-
tation control method is used to control the coexistence between
chaos and no oscillations in PMSMLT (Sharma et al. 2015). The
controlled system is written:

dx
dt

= −x + yz, (6a)

dy
dt

= −y − xz + γz, (6b)

dz
dt

= σ(y − z) + TL, (6c)

dv
dt

= −βv − δ(x − e), (6d)

where Equation 6d is the control associated with the PMSMLT with
β the decay parameter and δ the coupling parameter between the
linear controller system and PMSMLT to be controlled. Figure 7
presents the superposition of the bifurcation diagrams obtained by
control for the initial conditions having led to the coexistence be-
tween the chaos having the initial conditions (x0, y0, z0) = (0, 0, 0)
and the fixed point having the initial conditions (x0, y0, z0) =
(0, 0.2, 0).

Figure 7 Bifurcation diagrams of x as a function of the coupling
parameter δ of the controlled system obtained for the two initial con-
ditions leading to multistability: (x0, y0, z0) = (0, 0, 0) for the color
blue and (x0, y0, z0) = (0, 0.2, 0) for the color red. The parameter
values are as follows: σ = 5.46, γ = 20, TL = 6.5, β = 0.01, and
e = 5.

In Figure 7, it reveals that when the coupling δ ≤ 0.02, the
PMSMLT presents a coexistence of chaos and no oscillations. When
this coupling force δ is adjusted in an increasing manner, the dy-
namics of the system tends towards monostability, corresponding
to a limit cycle with two periods. Thus, Figure 7 shows the transi-
tion from multistability to monostability. In order to highlight the
different transitions leading to the control of multistability in the
PMSMLT, the phase portraits are made in Figure 8.
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Figure 8 Phase portraits showing the coexistence of the fixed point
and chaos obtained for σ = 5.46, γ = 20, TL = 6.5, β = 0.01, e = 5,
and δ = 0. The lines in blue are obtained using the initial conditions
(x0, y0, z0) = (0, 0, 0), while the lines in red are obtained using the
initial conditions (x0, y0, z0) = (0, 0.2, 0).

For δ = 0, the starting coexistence between chaos and no oscilla-
tions is illustrated in Figure 8. Figure 9 highlights the monostability
of the PMSMLT by plotting the phase portraits.

Figure 9 Phase portraits following the planes: (a) (x-y), (b) (y-z),
and (c) (x-z) obtained for σ = 5.46, γ = 20, TL = 6.5, β = 0.01,
e = 5, and δ = 0.8.

For δ = 0.8, we observe monostability in the PMSMLT charac-
terized by a two-period limit cycle illustrated by Figure 9.

CONCLUSION

The aim of this paper was to study the dynamics, electronic imple-
mentation, and control in permanent magnet synchronous motors
with load torque (PMSMLT). PMSMLT presented no oscillations,
periodic oscillations, chaos, and the coexistence between no oscil-
lations and chaos, this for certain values of the load torque. The
electronic implementation of the PMSMLT was carried out using
the PSPICE software. The results obtained from the numerical sim-
ulations and the electronic implementation of the PMSMLT agree.
The linear augmentation control method used made it possible
to eliminate the coexistence between no oscillations and chaos in
the PMSMLT. This paper helps in the field of electrical drives for
industrial processes with variable speed and variable torque.
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ABSTRACT This study investigates the impact of alloying elements on the mechanical properties of Ni-
Cr-Fe-based superalloys using a computational materials science approach. Fifty different compositions
of superalloys, commonly known as Inconel and Incoloy, were modeled using the JMatPro software. The
mechanical properties, including 0.2% proof stress (MPa), fracture stress (MPa), and Young’s modulus (GPa),
were simulated across a temperature range from 540°C to 920°C at 20°C intervals for each alloy. The
simulation generated a comprehensive dataset comprising 1000 rows. This dataset was then utilized to train
an explainable artificial intelligence (XAI) model, leveraging advanced techniques such as SHAP (SHapley
Additive exPlanations), LIME (Local Interpretable Model-agnostic Explanations), and Partial Dependence Plots
(PDP). The dataset was analyzed using an XAI-based regression model employing the XGBoost algorithm.
The interpretability graphs were analyzed to evaluate the individual contributions of each alloying element to the
mechanical properties over the entire temperature range. The findings provide detailed insights into the positive
or negative effects of alloying elements, enabling a better understanding of their role in optimizing superalloy
performance under various thermal conditions. This work highlights the potential of integrating computational
materials modeling and explainable AI to advance the design and development of high-performance materials.
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INTRODUCTION

Nickel-based superalloys have long been integral to industries
requiring materials that sustain mechanical strength and resistance
to oxidation at high temperatures, such as aerospace, power gen-
eration, and petrochemical applications (Hamdi and Abedi 2024).
These alloys derive their exceptional properties from complex
microstructures, primarily composed of austenitic γ-matrix and
strengthening γ′ or γ′′ phases (Zhang et al. 2023). Elements like
chromium, molybdenum, and aluminum are strategically added
to enhance specific attributes, including oxidation resistance, creep
strength, and precipitation hardening. However, the intricate inter-
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play of these alloying elements under varying operational condi-
tions remains a subject of extensive investigation (Monzamodeth
et al. 2021).

Recent advancements in computational tools, such as JMatPro,
have enabled high-throughput simulations of phase equilibria,
mechanical properties, and thermal stability across a range of com-
positions and temperatures (Zhu et al. 2024). These simulations
provide foundational insights for alloy design but often fail to
elucidate the nuanced contributions of individual elements. Con-
sequently, machine learning and explainable AI (XAI) approaches,
such as SHAP (SHapley Additive exPlanations) and LIME (Local
Interpretable Model-agnostic Explanations), have gained traction
for interpreting the role of compositional variables in material
properties (Zhang et al. 2024). These methods have proven ef-
fective in correlating microstructural features with performance
metrics, such as proof stress and fracture toughness, particularly
in alloys subjected to high-temperature deformation (Huang et al.
2024).
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The Ni-Cr-Fe alloy system, including widely used grades such
as Inconel and Incoloy, exemplifies the importance of composi-
tional control. Studies have shown that chromium improves oxida-
tion resistance, while iron balances cost-effectiveness and thermal
stability (Cheng et al. 2024). However, the presence of secondary
phases, such as topologically close-packed (TCP) structures, can
detrimentally impact mechanical properties, necessitating care-
ful optimization of alloying elements and processing conditions
(Zhang et al. 2023).

This study builds on the existing body of knowledge by in-
tegrating computational materials science and XAI methodolo-
gies to analyze the mechanical properties of Ni-Cr-Fe superalloys.
By leveraging a dataset comprising simulations at incremental
temperatures, it aims to quantify the contributions of each alloy-
ing element to properties like proof stress, fracture stress, and
Young’s modulus. The findings are expected to provide action-
able insights for alloy design and performance optimization in
high-temperature applications.

MATERIALS AND METHODS

This study employs a computational materials science approach
combined with explainable artificial intelligence (XAI) to investi-
gate the influence of alloying elements on the mechanical prop-
erties of Ni-Cr-Fe-based superalloys. Using JMatPro software,
fifty different Ni-Cr-Fe alloy compositions, including Inconel and
Incoloy, were modeled to simulate mechanical properties such
as 0.2% Proof Stress (MPa), Fracture Stress (MPa), and Young’s
Modulus (GPa) over a temperature range of 540°C to 920°C at
20°C intervals. The simulations produced a dataset comprising
1000 entries, which served as input for an XAI-driven regression
model utilizing the XGBoost algorithm. This model enabled the
generation of SHAP (SHapley Additive exPlanations), LIME (Lo-
cal Interpretable Model-agnostic Explanations), and PDP (Partial
Dependence Plots) to elucidate the contribution of individual alloy-
ing elements to the mechanical properties across the temperature
range.

Figure 1 illustrates the proposed model workflow, detailing the
integration of computational simulations, dataset generation, ma-
chine learning model training, and XAI-based interpretative analy-
sis. This framework aims to provide comprehensive insights into
how each alloying element influences mechanical performance,
paving the way for optimized superalloy design tailored to high-
temperature applications.

Figure 1 Proposed Model

Dataset Preparation

This study focuses on Ni-Cr-Fe-based superalloys, such as Inconel
and Incoloy, widely used in industry due to their high mechani-
cal performance and ability to undergo precipitation hardening
through solution treatment and aging processes. These heat treat-
ment procedures stabilize the microstructure and enhance the
material’s ability to maintain mechanical properties at elevated
temperatures over prolonged periods. Precipitation hardening is a
key process that significantly improves the strength of Inconel and
Incoloy alloys at high temperatures (Zhang 2019).

The compositions modeled in JMatPro were based on key ele-
ments of Ni-Cr-Fe superalloys, including Ni, Cr, Fe, Co, Mo, Nb,
and Ti. Elements such as Al, Mn, Si, and Cu, which enable pre-
cipitation hardening and aging treatments, were held constant at
specific levels across all alloy combinations (ASM International
1991). The alloy compositions were designed to optimize their me-
chanical properties by simulating the solution treatment and aging
parameters. The weight fractions of the primary elements were
varied within the following ranges: 50–75% Ni, 14–21% Cr, 5–15%
Fe, 0–2% Co, 0–3% Mo, 1–5% Nb, and 1–2.5% Ti. Additionally, the
following weight fractions were kept constant in all compositions:
0.5% Al, 1% Mn, 0.5% Si, and 0.5% Cu. Phase Fraction Diagrams

■ Table 1 Elemental Composition Ranges of Alloys in the
Dataset (values represent wt%)

Ni
(%)

Cr
(%)

Fe
(%)

Co
(%)

Mo
(%)

Nb
(%)

Ti
(%)

Al
(%)

Mn
(%)

Si
(%)

Cu
(%)

50–
75

14–
21

5–
15

0
and
2

0
and
3

1
and
5

1
and
2.5

0.5 1 0.5 0.5

and TTT (Time-Temperature-Transformation) Diagrams were gen-
erated for each alloy composition. Table 1 outlines the range of
alloying elements used to design 50 distinct alloy compositions.
Each composition was evaluated across 20 different temperatures
ranging from 540°C to 920°C, in increments of 20°C. The simu-
lated mechanical properties - 0.2% Proof Stress (MPa), Fracture
Stress (MPa), and Young’s Modulus (GPa) - were recorded for each
temperature. As a result, a comprehensive dataset consisting of
50 alloy compositions and their mechanical properties across 20
temperature points was developed, yielding a total of 1,000 data
rows.

Table 2 illustrates an example of the dataset, showcasing two
alloy compositions. The second alloy composition differs from the
first by the addition of 1% Co, which is observed to enhance the me-
chanical property values. This dataset serves as the foundation for
subsequent analysis, enabling the systematic investigation of how
individual alloying elements influence the mechanical behavior of
superalloys under various thermal conditions.

Heat Treatment Simulation and Microstructure Optimization The
simulations for this study were performed using the JMatPro soft-
ware, which is based on principles of computational materials
science. The software was used to model 50 different compositions
of Ni-based superalloys, with specific alloying elements added
to nickel at varying proportions. For each composition, Phase
Fraction Diagrams and TTT (Time-Temperature-Transformation)
Diagrams were generated and analyzed to determine the optimal
heat treatment temperature for forming the two precipitate phases,
gamma prime (γ′) and gamma double prime (γ′′). These phases
were selected as they contribute significantly to the mechanical
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■ Table 2 The First Two Compositions (C1, C2) in the Dataset

Ni (%) Cr (%) Fe (%) Co (%) Mo (%) Nb (%) Ti (%) Al (%) Mn (%) Si (%) Cu (%) Temperature (ºC) 0.2% Proof Stress (MPa) Fracture Stress (MPa) Young’s Modulus (GPa)

67 22 5 0 0 1 2.5 0.5 1 0.5 0.5 920.0 89.27 332.99 137.5

67 22 5 0 0 1 2.5 0.5 1 0.5 0.5 900.0 165.08 551.78 139.74

67 22 5 0 0 1 2.5 0.5 1 0.5 0.5 880.0 218.35 729.71 141.92
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.
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.

.

67 22 5 0 0 1 2.5 0.5 1 0.5 0.5 580.0 768.34 1380.38 168.64

67 22 5 0 0 1 2.5 0.5 1 0.5 0.5 560.0 767.79 1392.7 170.14

67 22 5 0 0 1 2.5 0.5 1 0.5 0.5 540.0 767.28 1404.43 171.62

66 22 5 1 0 1 2.5 0.5 1 0.5 0.5 920.0 110.51 387.26 138.29

66 22 5 1 0 1 2.5 0.5 1 0.5 0.5 900.0 176.07 582.59 140.53

66 22 5 1 0 1 2.5 0.5 1 0.5 0.5 880.0 226.97 756.4 142.73
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66 22 5 1 0 1 2.5 0.5 1 0.5 0.5 580.0 770.05 1382.07 169.35

66 22 5 1 0 1 2.5 0.5 1 0.5 0.5 560.0 769.51 1394.4 170.85

66 22 5 1 0 1 2.5 0.5 1 0.5 0.5 540.0 769.02 1406.14 172.34

properties of the alloys (Peachey et al. 2024). The resulting me-
chanical property values at the determined temperatures were
incorporated into the dataset.

Each composition was simulated using heat treatment parame-
ters tailored to produce gamma (γ), gamma prime (γ′), and gamma
double prime (γ′′) phases while excluding undesired phases such
as delta, eta, laves, MC, M6C, and M3B2. These phases were disre-
garded due to their formation only during prolonged aging pro-
cesses and their potential to negatively affect mechanical properties
(Schulz et al. 2024). The simulations were performed under equi-
librium conditions, ensuring that unwanted phases, which would
typically appear under extremely slow cooling or extended dura-
tions in real-world applications, were excluded. This approach
enabled the modeling of results that accurately reflect practical heat
treatment processes. The grain size of the matrix phase (gamma)

Figure 2 Input Parameters and Bimodal Distribution Settings for Ni-
Based Superalloy Simulation in JMatPro

was set at 100 microns, while the precipitate sizes for gamma prime
(γ′) and gamma double prime (γ′′) phases were defined as 10 nm
and 50 nm, respectively. To simulate the microstructure effectively,

the "Bimodal" distribution option was selected, as shown in Figure
2. The heat treatment parameters, including temperature and dura-
tion, were optimized for each composition to ensure the complete
precipitation of gamma prime (γ′) and gamma double prime (γ′′)
phases within the matrix (Gontcharov and Lowden 2024). The
temperature range for these simulations was set between 540°C
and 920°C, ensuring a comprehensive evaluation of the material’s
mechanical properties across relevant service conditions.

The results from these simulations provided critical insights
into the microstructure and mechanical properties of the modeled
alloys, serving as the foundation for further analysis and optimiza-
tion.

Development of the Explainable Artificial Intelligence Model In
this study, a powerful machine learning algorithm, the XGBoost
regression model, is used and Explainable Artificial Intelligence
(XAI) methods are integrated to ensure the explainability of the
artificial intelligence model developed for the prediction of me-
chanical properties of Ni-Cr-Fe based superalloys.

XGBoost (Extreme Gradient Boosting) is a high-performance
and scalable gradient boosting algorithm widely used in machine
learning. Developed by Chen and Guestrin (2016), this method
is particularly notable for its capacity to achieve effective results
on large datasets and high-dimensional feature spaces. XGBoost
is a decision tree-based model that gradually adds new trees at
each iteration to reduce errors. This process aims to minimize
overfitting while increasing the generalization capability of the
model. Furthermore, XGBoost’s regularization techniques keep
the model’s complexity under control, resulting in more robust and
reliable predictions. Thanks to its parallel processing capabilities
and optimized computational processes, XGBoost outperforms
other gradient boosting algorithms in terms of both speed and
accuracy. Thanks to these features, XGBoost has a wide range of
applications in both academic research and industrial applications
(Chen and Guestrin 2016).

To make the inner workings and decision-making processes
of the model transparent, widely accepted XAI methods such as
SHAP (SHapley Additive exPlanations), LIME (Local Interpretable
Model-Agnostic Explanations) and Partial Dependence Plots (PDP)
were used.
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SHAP is an advanced explainable artificial intelligence (XAI)
method developed to interpret the predictions of machine learning
models transparently and understandably. Using Shapley values
based on game theory, SHAP distributes the contribution of each
feature to model prediction fairly and consistently. This approach
reveals the inner workings of complex and black box models, mak-
ing the reasons for model decisions more understandable for users.
SHAP, as defined by Lundberg and Lee (2017), can provide both lo-
cal (for individual forecasts) and global (model-wide) explanations.
One of the key advantages of SHAP is that it is compatible with dif-
ferent types of models and can work model independently, making
it ideal for a wide range of applications. Furthermore, the descrip-
tions obtained with SHAP provide reliability and transparency
for model users, which increases model acceptance, especially in
high-risk areas (Lundberg and Lee 2017).

LIME is an explainable artificial intelligence (XAI) method de-
veloped to make the predictions of complex machine learning
models locally understandable and interpretable. This method, de-
scribed by Ribeiro, Singh, and Guestrin (2016), creates a simple and
local model to explain a particular prediction of any model. LIME
generates new data around a specific data point decided by the
target model and trains a simple model (e.g., linear regression) on
this data, trying to understand the behavior of the original model
on this data point. In this way, it provides a visual and quantitative
representation of how complex and black box models are affected
by which inputs for certain predictions. LIME’s model-agnostic
nature makes it compatible with different machine learning al-
gorithms and offers a wide range of applications. These features
make LIME a valuable tool for engineering-oriented problems such
as the optimization of mechanical properties of superalloys Ribeiro
et al. (2016).

Partial Dependence Plots (PDPs) are an analysis method used
in machine learning models to visualize the effect of one or more
features on the model output. PDPs show, on average, how the
model’s predictions change if the value of the examined feature
changes while all other features are held constant. This method
is particularly important for understanding the general trends of
complex and so-called black box models and for interpreting the
effects of specific features on the model. The PDPs developed
by Friedman (2001) allow us to better understand the effects of
features on target variables such as mechanical properties by re-
vealing how the model reacts to which features. This makes it
possible to determine which elements and ranges are critical in
optimizing the mechanical properties of superalloys (Friedman
2001).

RESULTS AND DISCUSSION

In this chapter, a comprehensive analysis of the effect of alloying
elements on the mechanical properties of Ni-Cr-Fe based superal-
loys is presented by using descriptive artificial intelligence (XAI)
methods. The study modeled the mechanical properties (tensile
strength, proof stress, and modulus of elasticity) at temperatures
between 540°C and 920°C for 50 different compositions and an-
alyzed these data with XAI methods to highlight the effects of
alloying elements.

In the study, data generated with JMatPro software were an-
alyzed with an XAI-based regression model shaped using the
XGBoost algorithm. The findings revealed the significant effects
of elements such as Titanium (Ti), Niobium (Nb), and Nickel (Ni)
on tensile strength and proof stress, while emphasizing the impor-
tance of Cobalt (Co) and Molybdenum (Mo) for the modulus of
elasticity. The visibility obtained from the XAI analyses details nu-

merically and graphically the positive and negative effects of each
element on the mechanical properties, and a meaningful roadmap
for alloy design is presented below. Figure 3 presents the results

Figure 3 Importance of Alloying Elements on Fracture Stress (MPa)

of different analysis methods to explain the influence of alloying
elements on Fracture Stress. The model feature importance plot
shows the feature importance scores determined by the artificial
intelligence model. In this analysis, Titanium (Ti) stands out as
the element with the highest influence, while Niobium (Nb) and
Nickel (Ni) rank second and third, respectively. Other elements
such as Fe (Iron), Mo (Molybdenum), and Cr (Chromium) have
lower levels of significance. This suggests that the effects on frac-
ture strength are largely associated with Ti, Nb, and Ni.

The correlation-based importance graph evaluates the linear
relationship between the fracture stress and each element based
on absolute correlation values. According to this method, Nickel
(Ni) has the highest correlation coefficient and shows a strong
influence on fracture strength. Titanium (Ti) and Niobium (Nb)
also exhibit high correlation values on fracture strength, while
elements such as Cr and Mo have a lower effect. This analysis
provides an important perspective to quantify the magnitude of
direct and indirect effects on fracture strength.

Permutation importance plot is another analysis method that
evaluates the contribution of each element to model performance.
According to this method, Nickel (Ni) was identified as the most
important element for model performance, followed by Titanium
(Ti) and Niobium (Nb). The contributions of Fe, Mo, and Cr are
relatively low. These results indicate that Ni, Ti, and Nb are the
elements that improve the fracture stress prediction performance
of the model the most.

Finally, the cumulative feature importance graph describes the
cumulative impact of the features on the model. As can be seen in
the graph, the combined contributions of Titanium (Ti), Niobium
(Nb), Nickel (Ni), and Iron (Fe) together explain more than 90%
of the model performance. The total contribution of the other
elements is very limited. This indicates that the content ratios of
these four elements should be optimized properly in the design
of high-performance superalloys. Figure 4 contains the results
evaluating the effects of alloying elements on 0.2% Proof Stress by
different analysis methods.

The model feature importance plot shows the feature impor-
tance scores calculated by the artificial intelligence model. This
analysis reveals that Titanium (Ti) and Niobium (Nb) have the
highest impact on proof stress. After these two elements, Nickel
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Figure 4 Importance of Alloying Elements 0.2% Proof Stress (MPa)

(Ni) and Iron (Fe) contribute with lower importance levels. The ef-
fect of other elements (Co, Cr, Mo, Al, etc.) on model performance
is very limited. These results emphasize that Ti and Nb are critical
for 0.2% proof stress.

The correlation-based importance plot evaluates the linear re-
lationship of each element with proof stress based on correlation.
Here, Nickel (Ni) stands out as the element with the highest corre-
lation coefficient. Niobium (Nb) and Titanium (Ti) rank second and
third respectively, while other elements such as Cr and Mo show
moderate correlation. This graph reveals that Ni has a significant
influence on proof stress and that the contributions of Nb and Ti
are also significant.

The permutation importance plot evaluates the contribution of
the properties to the model performance in a commutativity-based
approach. In this method, Nickel (Ni) is identified as the element
with the highest impact on proof stress. Ti and Nb are ranked
second and third in this order, with other elements such as Fe
contributing less. Permutation-based analysis shows that Ni, Ti,
and Nb play a key role in explaining model performance.

Finally, the cumulative feature importance plot shows how
much the alloying elements explain the model performance in
total. This graph shows that Titanium (Ti), Niobium (Nb), Nickel
(Ni), and Iron (Fe) can explain more than 90% of the total model
performance. The cumulative contribution of the other elements
is very low. This suggests that the content ratios of these four
elements should be prioritized to optimize the 0.2% proof stress.

Figure 5 presents the findings of various analytical methods
that examine the effects of alloying elements on Young’s Modulus
determination. The model features an importance plot that reveals
the importance ranking of the elements that contribute to the pre-
dictive power of the model. The results show that Cobalt (Co) in
particular has a strong influence on Young’s Modulus, followed
by Niobium (Nb), Molybdenum (Mo), and Nickel (Ni). This kind
of significance analysis makes it clear which elements need to be
considered more to improve the mechanical properties.

Another method of analysis, the correlation-based importance
plot, investigates whether each element has a linear relationship
with Young’s Modulus. This approach shows that Chromium
(Cr) has the highest linear relationship, with elements such as
Nickel (Ni) and Cobalt (Co) making significant contributions to
this relationship. However, it should be noted that in this method,
the influence of elements on mechanical properties may not be
limited to correlation alone. This suggests that Cr may have a

Figure 5 Importance of Alloying Elements on Young’s Modulus
(GPa)

more significant effect than expected under some conditions.
The permutation importance plot evaluates the weight of ele-

ments in model performance from a different perspective. Here,
Cobalt (Co) again emerges as the leading element, followed by
Niobium (Nb) and Nickel (Ni). This type of analysis highlights the
need to integrate these elements more intensively into the design
process to improve Young’s Modulus.

Finally, the cumulative feature importance plot provides an
overall picture of how much the elements together explain the
model performance. It can be seen that the contributions of Co,
Nb, and Mo explain a large part of the model performance, while
the other elements make only marginal contributions. This indi-
cates the importance of optimizing the doping ratios in designs
for enhancing mechanical properties. Figure 6 comprehensively

Figure 6 Dependence and Effect Distribution of Alloying Elements
on Mechanical Properties

evaluates the effects of alloying elements on mechanical properties,
both in terms of dependence and influence distribution. Firstly, the
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analysis on Fracture Stress reveals that elements such as Niobium
(Nb), Nickel (Ni), and Cobalt (Co) play a critical role in this me-
chanical property. In particular, a steady increase in fracture stress
was observed with increasing Nb content. This trend emphasizes
that Nb is a key element in terms of fracture strength. Similarly,
Ni and Co also have significant effects on fracture stress, but these
effects are concentrated in certain content ranges. The elemental
influence distribution plots clearly show that the influence of Ni on
the fracture stress is more dominant than that of the other elements
and affects a wider range of contents.

Analysis of 0.2% Proof Stress shows that increasing the content
of Nb and Ni significantly increases this property. These two ele-
ments are critical for optimizing proof stress. It was also observed
that other elements such as Titanium (Ti) also have a positive con-
tribution to proof stress, but the effect is not as dominant as Nb
and Ni. The effect distribution plots emphasize the effects of Ni
and Chromium (Cr) on this mechanical property, while Ni’s strong
influence on proof stress is once again confirmed. These analy-
ses suggest that the Ni and Nb content ratios should be carefully
controlled to improve the proof stress of superalloys.

Evaluations on Young’s Modulus show that Molybdenum (Mo),
Niobium (Nb), and Titanium (Ti) have positive effects on this me-
chanical property. In particular, it is noteworthy that an increase in
the content ratio of Mo leads to a steady and significant improve-
ment in the modulus of elasticity. This effect of Mo suggests that
it plays a key role in improving elasticity. Nb and Ti also made
significant contributions to Young’s Modulus at certain content
ranges and improved the mechanical performance of the superal-
loys. The effect distribution plots present the effects of Co and Nb
on elasticity in a broad perspective, emphasizing the importance of
these elements. Figure 7 presents a combination of Principal Com-

Figure 7 PCA Visualization and Element-Mechanical Property Cor-
relations

ponent Analysis (PCA) and heat maps evaluating the correlation
of elements with mechanical properties in superalloys. The graphs
address three key mechanical properties, namely Fracture Stress,
0.2% Proof Stress, and Young’s Modulus. The PCA visualizations

present how the data is distributed in high-dimensional space
reduced to two principal component axes, while the heat maps
show the linear correlation of each element with these mechanical
properties.

The PCA visualization for Fracture Stress reveals that the data
follow a specific distribution pattern and how this mechanical
property can be correlated with different element compositions.
The correlation heatmap shows that Niobium (Nb) has a negative
correlation (-0.36), while Nickel (Ni) has a positive correlation
(0.32). This indicates that Nb tends to decrease the fracture stress,
while Ni has an increasing effect. The effects of Cobalt (Co) and
other elements are relatively less pronounced.

The PCA analysis for 0.2% Proof Stress shows a similar distribu-
tion pattern, but the correlation map highlights the differences in
the elements affecting this property. Nb again has a negative cor-
relation (-0.36), whereas Ni (0.34) and Chromium (Cr, 0.29) stand
out with positive correlations. This finding indicates that Nb has
a decreasing effect on proof stress, while Ni and Cr improve this
property.

The PCA visualization for Young’s Modulus shows a more
homogeneous distribution. The correlation map highlights that
Molybdenum (Mo) has a significant positive effect (0.08) on the
modulus of elasticity. In contrast, the effects of Nb and other ele-
ments on the modulus of elasticity are more limited. This confirms
that Mo is one of the most critical elements for increasing elasticity.

According to the results given in Table 3, the developed model
predicts the 0.2% Proof Stress and Fracture Stress properties of
superalloys with reasonable accuracy (R2 = 0.21 and 0.18). Low
RMSE and MAE values indicate the reliability of the predictions.
Although the performance of Young’s Modulus could be improved,
overall the model is considered a valuable tool in understanding
the mechanical properties of superalloys. Figure 8 shows that the

Figure 8 Element Complexity Analysis and Model Error Distribution

model has achieved significant success in understanding the rela-
tionships between mechanical properties and alloying elements. In
particular, the results of the element complexity analysis revealed
that Titanium (Ti) and Niobium (Nb) play a critical role in Fracture
Stress and 0.2% Proof Stress, while Cobalt (Co) and Molybdenum
(Mo) play a prominent role in Young’s Modulus. This shows that
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■ Table 3 Model Performance Metrics for Predicting Mechanical Properties

Property Mean Squared
Error

Root Mean
Squared Error

R-squared Mean
Absolute Error

Mean Absolute
Percentage

Error

Cross-
Validation R2

Mean

Cross-
Validation R2

Std

0.2% Proof
Stress (MPa)

95077.41 308.35 0.21 266.15 1.79 0.18 0.09

Fracture
Stress (MPa)

171941.42 414.66 0.18 338.22 0.65 0.18 0.05

Young’s
Modulus

(GPa)

125.25 11.19 -0.12 9.73 0.06 0.01 0.01

the model can accurately determine which elements make a greater
contribution to optimizing mechanical properties. Moreover, when
the distribution of prediction errors is analyzed, Young’s Modulus
predictions are within a narrow error range, indicating that the
model works with high consistency for this property. The fact that
the prediction errors for Fracture Stress and 0.2% Proof Stress are
generally concentrated in a reasonable range also supports the
overall accuracy of the model. These findings show that the model
can provide reliable predictions for the design of superalloys in
high-temperature applications and can be used as an effective tool
for optimizing the effects of alloying elements. The results pre-

Figure 9 Cross Validation R² Distribution and Prediction vs Actual
Value

sented in Figure 9 show that the model can predict the Fracture
Stress (MPa) and 0.2% Proof Stress (MPa) with significant accu-
racy. In particular, the relationship between predicted values and
actual values for these two mechanical properties indicates that

the model performs reliably in these areas. The positive trends
observed in the R2 distribution support the model’s ability to con-
sistently explain these properties and provide accurate predictions.
This indicates that the model has effectively learned the interac-
tions between alloying elements and mechanical properties. These
results demonstrate that the model is a reliable tool for predicting
critical mechanical properties such as Fracture Stress and 0.2%
Proof Stress, which can provide useful insights in alloy design.

CONCLUSION

This study comprehensively investigated the mechanical proper-
ties of Ni-Cr-Fe based superalloys under different alloying ele-
ments and temperature ranges through computational materials
science approaches and explainable artificial intelligence (XAI)
methods. The large data set obtained as a result of simulations per-
formed between 540°C and 920°C in 20°C increments was analyzed
with the XGBoost-based regression model and interpreted in depth
using XAI techniques such as SHAP, LIME and PDP. These meth-
ods revealed that critical mechanical properties such as 0.2% proof
stress, fracture stress and Young’s modulus are strongly influenced
by Nb, Ti, Ni, Co and Mo content.

The findings show that the effects of certain alloying elements
on mechanical properties at different temperature conditions can
vary both quantitatively and qualitatively. For example, elements
such as Nb and Ni were found to play more prominent roles on
fracture stress and proof stress with increasing temperature, while
elements such as Mo and Co showed remarkable contributions in
terms of Young’s modulus at elevated temperatures. This shows
that mechanical properties are not only dependent on chemical
composition but also on thermal conditions, which necessitates
the optimization of alloy designs to provide stabilized and durable
performance at elevated temperatures.

The obtained data and analyses emphasize that elemental con-
tents and operating temperatures should be strategically deter-
mined in the design of high-performance superalloys. In partic-
ular, the use of elements such as Nb, Ni, Ti, Co and Mo in the
right proportions will provide superior performance in terms of
fracture stress and proof stress at high temperatures, while keeping
elastic properties under control. In this context, the present find-
ings provide important guidance for future research and industrial
applications.
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