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ABSTRACT

KEYWORDS

Coherent chaos-based communication is a developing technique for secure data transmission based on
synchronization of chaotic oscillators at the transmitter and receiver sides, which is treated as a more secure
method than non-coherent communication, chaotic symbolic dynamics, and other approaches. Nowadays,
digital implementation of such systems allows high precision in parameter matching and sophisticated message
recovery algorithms, though challenges remain: first, in adapting chaotic signals for non-ideal physical media,
e.g., acoustic channels with frequency-dependent attenuation and noise, while, second, still providing the high
level of security. The current study provides the implementation of a coherent chaotic communication system
based on the Sprott Case S chaotic oscillator that meets these challenges. We utilize the modulation technique,
minimizing changes in chaotic dynamics that may be captured by an intruder, propose an optimization of
chaotic oscillator parameters to match channel characteristics and establish a signal normalization procedure
to neutralize attenuation at the receiver side. Applying spectral and return map attacks, we show that the
measures taken to counteract distortion in the path do not reduce the security of the transmission. In an

Chaos-based
communication
Acoustic commu-
nication system
Secure communi-

cations
Chaotic
keying

shift

experiment with a physical acoustic path, we demonstrate the practical operability of our approach.

INTRODUCTION

Chaos-based communication is an innovative approach for secure
and efficient data transmission, utilizing the distinctive features
of chaotic dynamics. This type of communication is based on
chaotic oscillators, which are capable of producing deterministic
signals of complex, aperiodic shape, resembling noise. Unlike
conventional harmonic oscillators, chaotic oscillators have several
nonlinear components in feedback, which leads to their sensitivity
to initial conditions and unpredictability of the trajectory in time.
Such signals are irregular, aperiodic, and have a wide spectrum.
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That is why these oscillators are considered promising carriers
of information in communication systems, enabling reliable and
secure information transfer across various physical media.

One of the key discoveries in chaotic systems was the phe-
nomenon of synchronization (Pecora and Carroll 1990; An-
ishchenko et al. 1992), that is, the signals of two identical chaotic
oscillators can be fully matched when a master-slave drive be-
tween oscillators is established. Pecora and Carroll proved that a
necessary condition for synchronization is the negative values of
all conditional Lyapunov exponents for the slave system, which
means the stability of its trajectories with respect to the master
system. The Pecora-Carroll synchronization method implies a
proportional control, and due to its simplicity, it is used in lots
of works, demonstrating that synchronization is possible even in
the case of hyperchaos (Wang et al. 2010), multistability (Pisarchik
et al. 2008), delayed signals (Eisencraft et al. 2012), mismatch of
parameters, etc.
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Chaos synchronization has become the basis for coherent
chaotic communication, which assume synchronization between
transmitter and receiver, in contrast to non-coherent systems,
which are based on the correlation or other types of analysis for
message recovery (Kaddoum 2016). Coherent systems offer a
higher level of secrecy, however, they are sensitive to noise, signifi-
cantly affecting the detection accuracy. Filtering or error correction
techniques may be required to maintain reliable performance. In
coherent systems, the simplest modulation technique is chaotic
masking (Oppenheim et al. 1992). An information signal m(t)
is added to the chaotic noise-like signal of the generator on the
transmitter side, and the masking signal must be subtracted at the
receiving side to recover m(t). Alas, the security of such modu-
lation is weak against existing attacks. In particular, adding the
message #(t) to the chaotic signal alters the power of the resulting
signal, which may be estimated by power analysis of the transmit-
ted signal. Practical modulation techniques include the chaotic
shift keying (CSK), first presented by Parlitz ef al. (1992). In CSK,
information bits are transmitted by selecting one of the two chaotic
generator modes according to the bit stream n1(t). On the receiver
side, two copies of the oscillator attempt to synchronize with the
received signal. The copy that synchronizes more accurately indi-
cates the bit being transmitted.

Chaotic communication can be physically implemented using
both analog and digital hardware. Initially, chaotic communication
systems (CCS) were proposed in analog form, e.g. in Cuomo et al.
(1993). Nowadays, digital electronics occupy researchers inter-
est due to its high precision, compatibility with digital data, and
the ability to support complex modulation and digital signal pro-
cessing algorithms. Research on novel attractors for digital CCS,
modulation schemes, microcontroller or FPGA implementations,
and related topics remains an active field of study (Kolumbdn ef al.
1998), Wang (2018), Babajans et al. (2022), Bonny et al. (2024), Baba-
jans ef al. (2025). With that, just minor quantity of studies focus
on issues of chaotic communication signals propagation and adap-
tation for media with non-ideal properties, besides presence of
additive noise. Relevant researches consider chaotic hydroacoustic
path (Bai ef al. 2019), generalized medium with finite bandwidth,
additive noise and delay in the communication channel (Eisen-
craft et al. 2012), medium with multi-path propagation, noise and
chaotic interference (Baptista 2021), and some other media. In
the latter study, Baptista reports the preservation of the largest
Lyapunov exponent of a chaotic signal when it propagates in a
medium, which is a strong argument for further development of
CcCs.

In our previous work (Rybin et al. 2023), we presented the
practical implementation of CCS based on a 32-bit microcontroller.
The signals in this system were transmitted through a wire, and
considered disturbances included only additive white Gaussian
noise. In the current study, we attempt to implement coherent
CCS in an audible acoustic channel, which primarily assumes
frequency-dependent dissipation and attenuation. The novelty
and contribution of the study are as follows.

1. We identify the acoustic channel and then optimize the fre-
quency and data transfer rate of the chaotic generators to
better match physical channel properties.

2. The original mechanism to counteract signal attenuation is
proposed, namely, normalization of the received signal to
levels that corresponds to undisturbed signals generated by
oscillators with the appropriate parameter sets.

3. By computer simulation and hardware-in-the-loop (HIL) im-

Chaos and Fractals

plementation of the developed CCS, which uses physical
acoustic path, we study bit error rate, transfer rate, and secu-
rity of the designed communication system and draw conclu-
sions about the necessity of signal pre-filtering and bit error
correction mechanisms.

The paper is organized as follows: in Section 2, the description
of the modulation scheme and hardware is provided, as well as
the basic chaotic oscillator and secrecy estimate. Section 3 presents
the results of the simulation and experimental investigation of the
designed CCS prototype. Section 4 discusses obtained results and
concludes the paper.

MATERIALS AND METHODS

Sprott Case S system and its parameterization

In 1994 J. Sprott found a number of simple chaotic systems in the
form of third-order ordinary differential equations (Sprott 1994)
that possessed different attractor topologies in the presence of only
one kind (multiplication). The Case S is an attractor possessing one
unstable saddle equilibrium position and remaining chaotic over a
wide range of parameters, with its largest Lyapunov exponent in
the large region of the parameter space where the chaotic dynamics
is observed exceeding that of the other Sprott systems. This implies
a rapid exponential divergence of trajectories, which is useful
for generating a broadband noise-like signal. The Case S system
equations can be written as

X=-x—ay
y=x+22 1)
z=b+x

With typical parameters (¢ = 4,b ~ 1), the maximum Lyapunov
exponent for Case S is about 0.18, indicating a chaotic state. Unlike
analog circuits, the system is easy to implement numerically, which
was used in the study of digital direct chaotic communication. The
Sprott S system is of special interest for communications because
it remains chaotic even with coarse sampling. In addition, its
chaotic oscillations have a complex spectral composition and a
wide frequency range.

The investigation of dynamical behavior in the Sprott Case S
system was conducted through a multi-parameter analysis com-
bining bifurcation diagrams and Lyapunov spectrum to evaluate
transitions between periodic and chaotic regimes under parameter
variation. Simulation was performed using both 4-th order Ruge-
Kutta and 2-nd order semi-implicit CD (Butusov et al. 2019; Rybin
et al. 2025) methods to verify the absence of numerical artifacts.
A two-dimensional bifurcation diagram (Fig. 1a) was calculated
by varying parameters a and b, revealing intricate structures of
periodic windows embedded within chaotic regions. Additionally,
the corresponding Largest Lyapunov exponent estimation (Fig.
1b) provided quantitative insights into the system’s sensitivity to
initial conditions, with positive values of A; delineating chaotic
domains. To isolate the influence of parameter a, one-dimensional
bifurcation diagram (Fig. 1c) and Lyapunov spectrum (Fig. 1d)
were calculated by replacing parameter b by the linear relationship
b = f(a) = 0.0602a + 0.7308, derived from the dashed trajectory
in Figures 1la-b.

This parametric substitution enabled targeted exploration of
dynamical transitions along specific parameter pathways, reveal-
ing abrupt period-doubling cascades and crises indicative of chaos
emergence. Further, we will consider the single-parameter Sprott
Case S oscillator:
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Figure 1 2D-Periodicity (a) and largest Lyapunov exponent (b) diagrams for Sprott Case S system, white color corresponds for unbound solu-
tion, black-white dash line corresponds for b = f(a) = 0.0602a + 0.7308. 1D-bifurcation (c) and Lyapunov spectrum (d) diagrams are calculated
by varying parameter a with replacing parameter b by f(a) = 0.0602a + 0.7308.
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Figure 2 Schematic of the chaotic communication system with acoustic path. a Hardware-in-the-loop experiment with acoustic path imple-
mented using physical devices, while receiver and transmitter are simulated in MATLAB; b detailed schematic of the communication system.
The blocks of signal normalization set the waveform received from the path to those amplitudes and shifts, which correspond to the chaotic
signals of system with given parameters
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X=—x—ay
y=x+2° )
Zz = 0.0602a + x + 0.7308

Adaptation of chaotic system for non-ideal channel

Schematic of the proposed chaotic system and experiment is pre-
sented in Figure 2. For the acoustic channel research, a hardware-
in-the-loop system was designed and implemented using a digi-
tal generator, speaker, microphone, and oscilloscope with signal
recording functionality. As an audio frequency amplifier (AFA), a
class D device based on chip TPA3118 is used, providing acoustic
power up to 30 W per channel with a very low harmonic distortion.
The observed distortion in the channel is caused by the small-sized
speaker and, to a lesser extent, by low-cost piezoelectric micro-
phone. The mic signal is pre-processed by an electric circuit based
on MAX4466 amplifier.

The acoustic channel was measured by scanning with harmonic
signals that cover the entire bandwidth, with synchronous record-
ing of the emitted and received signals. In the subsequent auto-
mated processing of the experiment, noise multiplicative interfer-
ence in the received signal was taken into account. The received
signal was recorded from the output of the microphone amplifier
as it was then fed into an analog or digital chaotic system as a
synchronization signal. The Keysight Technologies 33210A signal
generator was used to construct signals, and Rigol DS1104 four-
channel digital oscilloscope was used for recording. As a result,
frequency response of the channel H(f;) for the frequencies f; was
obtained.

Simulation of the channel was carried out using the signal x(t;)
decomposition by fast Fourier transform, multiplication of the
spectrum by the channel frequency response H(f,) interpolated
to a given frequency grid f,,, as only values for H( f;) are known,
fn # fx, followed by the inverse Fourier transform to get signal in
time domain. Notation ¢, stands for discrete time t, = h - n, where
h = At is a time step, and # is the number of discrete sample.

X(fn) = F{x(tn)} = Nilxn e IRk =0, N-1
n=0
Y(fu) = X(fa) - H(fn),

1 N=1 .
y(t) = FHY()} = 5 Y e Nk, =0, N-1
k=0

Mathematically, such transform is equivalent to the convolution
of the signal x(t) with impulse response of the path h(t).

Y(tn) = x(tn) * h(tn)

The developed model was used to test propagation of Sprott
Case S signal through the acoustic media.

To adopt the chaotic system oscillations frequency to the fre-
quency range of the path, an acceleration coefficient w is intro-
duced:

x = wf(x)

With that, master-slave synchronization of systems (2) would
be as follows:

Chaos and Fractals

w_lx'm = —Xm;m — AYm

-1 . 2
W Ym = Xm +zi,

w1z, = 0.0602a + xp, + 0.7308
. 3)

W Xg = —Xg — ays

w_ly's = X5+ zg
w 'z = 0.0602a + x5 + 0.7308 + k(2 — z5)

Here, k is a synchronization coefficient, and Z;, is the master
drive signal. If no channel is considered, Z;,, = z;, otherwise
Zm = fparn(zm), where fpy, is a function which distorts the mas-
ter signal. For the channel simulation, we use a combination of
channel distortion with additive noise:

Zm(tn) = Zm(tn) * h(tn) + €0,02 4)

where € ;2 is an additive white Gaussian noise.

To estimate the effect of the channel model on the chaotic signal,
the spectral difference Ay between two instancies of the chaotic
signal before and after propagating through the channel may be
estimated:

Af = RMS(Zm(fn) - ZWI(fH))'

As another estimate, close to the practical operation of a coher-
ent communication system, the RMS error of synchronization of
two chaotic oscillators can be taken. Note that the distorted master
signal is used to calculate the synchronization error, since the exact
value of this signal is unknown at the receiver side.

A, = RMS(Zm(tn) — z5(tn)).

Using the proposed approach, the optimization of Case S to
frequency properties of the propagation path was performed, see
Figure 3.

The results in Figure 3 show the consistency of both metrics Ay,
and A;. The figure shows that there exists the range of parame-
ters w, for which the synchronization between master and slave
systems has the lowest error. In this range, the distortion of the
master signal spectrum is also minimal. Here and further, values
of syncrhonization coefficients ky = 4.6 and k1 = 5.7 were used for
Slave 0 and Slave 1, respectively.

As the optimal value, w* = 2.6 - 103 was taken. This value is
not the exact mathematical optimum but is accurate enough con-
sidering the inevitable discrepancy between model and real path
and also may be varied, keeping synchronization at an acceptably
fine level (we will use this option further). For a different chaotic
system and a different physical path, the optimal w value will
differ, but the search procedure will be similar.

Modulation and demodulation

At the transmitter side: we use chaotic system parameters modu-
lation to encode binary symbols ‘0" and "1". Symbols are presented
as parameter vectors pg and p;, which may include all the pa-
rameters: a, b (as a function of a) and w. The need for the last
parameter to be modulated is presented in Figure 4. For ‘0" and 1/,
ap = 4.65 and a; = 6.1 were chosen. One may see that although
the spectrum for both parameters is generally similar, the specific
peak frequency values are significantly different, which may be
easily captured by spectrogram analysis, see Figure 5(a).
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Figure 3 Optimization of parameter w to find the best match be-
tween the channel frequency response and spectrum of Sprott Case
S chaotic system: (a) Sprott Case S (2) spectrum, i.e. w = 1, (b)
frequency response of the measured acoustic channel, (c) depen-
dence of synchronization error between two identical chaotic oscil-
lators when master signal was propagated through the channel A; ,
and difference of spectra Ay between two instancies of chaotic sig-
nal before and after propagating through the channel, on w.

Take the following parameter vectors: py = [4.65,1.11w*] and
po = [6.1,0.95w*]. In the first case, the median frequency of oscil-
lations is increased, and in the second, decreased, to stay around
optimal, feasible to the path frequency response. As a result, the
data transmission becomes almost invisible for the spectral analy-
sis, see Figure 5(b).

As presented in the schematic in Figure 2(b), each symbol wave-
form is normalized before being sent into a channel. The reason
may be seen in Figure 1(c): the amplitude of the signal also changes
with variation of a. Normalized waveforms are glued together
using the cross-fade function to get smooth transitions between
symbol waveforms.

At the receiver side: the signal is first re-normalized to return
it back to the appropriate amplitude and shift equal to those of
an undistorted signal. Before communication is established, these
parameters are found numerically for each of the parameter vectors

pPi:

A; i = max |z ()il )
T
Ci= %/0 z(t); dt (6)

After reading input signal from the channel, the signal is nor-
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Figure 4 Bifurcation spectral diagram of Sprott Case S chaotic sys-
tem adopted for physical channel with w = 2.6 - 103.
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Figure 5 Spectrogram of the message ‘1010’ transmitted before and
after including w in vector of modulated parameters.Spectrogram

in b shows that spectral attack cannot be applied to decrypt the
message.

malized to [—1,1]:

Znorm ( )

HECE T -

Zmax — Zmin

where Xpin = min x (), ¥max = maxx(t).
Then, the signal is amplified and shifted:

Z(t)i =A;- Znorm(t) + G 8)

where A is the scale coefficient, C is the vertical shift.

The detector determines which of the two oscillators at the
receiver side, with the parameter vectors py and p;, is more ac-
curately synchronized with the input signal and decides which
symbol is being transmitted. If the synchronization error exceeds
a certain threshold, the detector recognizes this as the absence of a
transmission in the channel.

Scheme of the experiment: is presented in Figure 2, relating the
communication system to the broader class of chaotic shift keying
systems. As is shown in block diagram, a Generator initiates the
process by producing a signal generated previously in MATLAB
software by master oscillator. The signal is then amplified through
a Power Amplifier, transmitted using a Speaker, captured by a
Microphone and further conditioned by a dedicated Amplifier.

Chaos and Fractals



This amplified signal passes through a Filter, likely designed to
remove unwanted frequencies or noise, ensuring the signal meets
the desired spectral characteristics. The filtered output is processed
digitally by MATLAB software, where slave mathematical systems
are simulated fed by this signal, and a message is decoded. The
Master oscillator (labeled as x(t) ) generates the primary signal,
which undergoes parameters switching between sets (ag, by, wp)
and (a1, b1, wy). Then that signal is normalized and passed through
a Path to Slave subsystems. The schematic references two Slave
oscillators: Slave 0 and Slave 1, while demodulation is performed
by analyzing synchronization errors on each of the slave oscillators.

Secrecy estimation

Quantified return map analysis (QRMA): is the further develop-
ment of return map analysis (RMA), which has been widely used
to attack chaotic communication systems. It was first demon-
strated by Pérez and Cerdeira (1995) to extract messages masked
by chaos. The method is that certain characteristic points (e.g.,
extrema) are extracted from the received chaotic signal and the
dependence between their values is mapped. The resulting return
transform reflects the dynamic properties of the chaos generator;
a difference in the generator parameters (e.g., when transmitting
0 or 1) leads to a change in the type of return transform, which
makes it possible to identify the transmitted bit. Nevertheless, the
classical method of return transforms is qualitative: by visually
distinguishing segments in the plane, it is clear that the parameters
are changing. Until recently, there have been no reliable ways to
quantify these differences, making it difficult to assess the level of
secrecy and compare different chaos modulation methods in terms
of security. However, without a quantitative measure, it is difficult
to objectively judge the effectiveness of methods that are proposed
to increase the complexity of return transform analysis. In this
study, the distinguishability between chaotic signals is assessed by
QRMA (Rybin et al. 2022) which is implemented as follows. For
a given chaotic signal x(t), local extrema (peaks X;, and valleys
Y)) are identified to compute recurrence points. These points form
coordinates for the return map, which is discretized into an N x N
grid to create a histogram matrix H € RN*N. To compare two
signals (e.g., transmitted binary symbols), their histograms X and
Y are analyzed using the formula:

81y = 1% = Yol 100X, O Il ij € [LN],
where @ is the Heaviside step function and € € IN acts as a noise
threshold:
0(x) = x ifx>e

0 ifx<e

The normalized difference metric D is calculated as:

This metric quantifies the percentage difference between signals,
with higher values indicating distinguishable modulation.
Amplitude return maps, which rely on peak-valley amplitudes,
are unsuitable for systems with amplitude distortions (e.g., hy-
droacoustic channels). Instead, phase return maps focus on in-
terpeak/intervalley intervals, preserving frequency characteristics
unaffected by amplitude noise. For phase return maps, intervals
between consecutive peaks X;,; and valleys Y;;, are defined as:

WZ,m = T(Xm) - T(mel)r UZ,m = T(Ym) - T(mel)/

Chaos and Fractals

where T(-) denotes the timestamp of an extremum. Symmetric
coordinates are computed as:

WZ m+ UZ m
At,m = . > —, Bt,m = WZ,m UZ,mr
W mt1 + Uo 1
Com=—"——5—"", Dim=Uym—Womi1.

2

Plotting A vs. —B and C vs. —D generates the phase return map.
This approach captures temporal dynamics, making it robust to
amplitude distortions.

RESULTS

Simulation

Simulation of the proposed CCS was performed in MATLAB en-
vironment using Runge-Kutta 4-th order method and simulation
time i ~ 2- 107 (the particular value was chosen with respect
to w). For this task, a class called ChaoticCommunication was de-
veloped for keeping all the parameters of the simulated system,
which included functions for simulation of all necessary steps, i.e.:
preliminary system parameters estimation (e.g. scaling factors for
further normalization), message waveform generation, path simu-
lation, signal normalization at the receiver side, synchronization
of slave oscillators with the normalized signal, message detection
based on the synchronization error, messaging quality estimation,
and spectral and return map analyses.

+ Data
0.125 I Fit | |

RN T
L LN

30 40 50 60 70 80
N x 7, ber bit

Figure 6 Estimation of bit error rate for different bit duration times.
N denotes the duration in pseudo-periods (7).

To establish a stable difference between the transmitted bits in
conditions of signal distortion, the transmission time of one bit was
investigated. Figure 6 shows the dependence of the bit error rate
(BER) on the length of the transmitted message. Simulation and
analysis were performed for a number of 32-bit messages. Along
the horizontal axis, the length of the transmitted bit is shown
in pseudo-periods 1,, = Fridon- One can see a local minimum
around the transmitted bit length of 50 pseudo-periods, which
means that some 32-bit messages can be transmitted without errors
at the transfer rate of 11 bit/sec, see Figure 7 for an example.
For Sprott Case S and w = 2.6 - 103 approximately tpit guration =
90 ms, which results in a sample rate of 11 bit/sec, which is a
feasible rate for implementations based on microcontrollers (Rybin
et al. 2023). However, from Figure 6 it follows that a bit duration
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Figure 7 Simulation data on the chaotic communication system with acoustic path. a Synchronization error and binary messages (sent and
received) for the communications simulated in MATLAB with bit duration 50 x T, ~ 90 ms. The relative synchronization error between "0’ and
17 for tyit quration = S0Tpp is @bout 16%. b Estimation of amplitude-phase QRMA in simulated path: Ag 1 = 12%

of at least 80 pseudo-periods must be taken to establish reliable
communication. With the established parameters of the designed
acoustic communication system, this results in message rates below
7 bits/sec.

Experiment

The experiment was set up as follows. The waveform with the
embedded message was generated in MATLAB and then written
to a CSV file. This file was then read by an arbitrary waveform
generator and played back in real time. The signal from the gen-
erator was fed to a power amplifier driving the speaker. The
acoustic signal from the speaker was picked up by a chip-based
microphone module with a preamplifier and then recorded on an
oscilloscope in CSV file. This file was then read by MATLAB, and
the recorded signal was substituted for the computer-generated
one when simulating the communication system.

The photograph of the experiment, as well as the results of
the message transmission and comparison of the frequency re-
sponse between simulated and real path are presented in Figure
8. Particular models of the hardware items used are listed in the
caption.

According to the experimental results, e.g., comparison of the
synchronization error and the QRMA plot, we may conclude that
the real path presents noticeably greater difficulties in establishing
reliable communication than in the simulation. In particular, the
synchronization error in the real path is almost two times higher.
At the rate of 11 bit/sec, long messages were not successfully
transmitted without error, but we observed messages of 8 bits
length transmitted without errors.

Comparison in the terms of secrecy

Table 1 summarizes the key properties of the CCS with developed
modulation technique and without introduced enhancements. The
experiments were carried out using simulation of the proposed
chaotic communication system based on Sprott Case S oscillator.
Comparison with other works known from the literature may
be irrelevant due to the variety of algorithms used to evaluate
secrecy (if they are ever applied). Recent works applying some
estimates of the chaotic communication systems secrecy include:
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Mushenko et al. (2020); Bonny et al. (2023); Babkin et al. (2024);
Bonny and Al Nassan (2024); Rybin et al. (2025), etc. One may
note that estimates are often proposed in graphical rather than
numerical form, e.g. in the form of return maps, histograms, and
autocorrelation plots. Also, none of the mentioned works consider
physical communication channel.

DISCUSSION

The key finding of this study is that even in conditions of strong
nonlinear distortion of the transmitted signal in a direct chaotic
communication system, it is possible to select transmitter param-
eters that would form an attack-resistant communication system
utilizing simple Pecora-Carroll synchronization technique. Mean-
while, the current study just partly highlights the issues that need
to be solved towards creating a practically applicable direct chaotic
communication system.

Limitations: of the study are related to the fact that the demonstra-
tion of the system’s operation is performed for one chaotic system
and one set of parameters. The dependence of communication
quality on distance between transmitter and receiver, as well as the
influence of different types of physical channels and interferences
on communication quality were not addressed. We believe that
our results open a wide field for further research. Although in our
example the communication system was possible to operate with a
signal directly received from a path, signal restoration is desirable.
In its simplest form, it may consist of denoising, which may be per-
formed by various methods, including promising approaches, i.e.,
ensemble intrinsic time-scale decomposition (Voznesensky et al.
2022), synchronization with sequential cascade of slave oscillators
(Butusov ef al. 2018), etc. More sophisticated restoration meth-
ods may include the receiver signal convolution with reciprocal
impulse response of the path, model-based identification and by
using other approaches.

Practical implementation: of the proposed chaotic communication
system should consider that one information symbol is transferred
during several decades of pseudo-periods Tpp = fy,- Taking into
account the Nyquist frequency, which should be at least 10 points

Chaos and Fractals
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Figure 8 Experimental data on the chaotic communication system with acoustic path. a Photograph of the experiment. Here: (1) power supply
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Table 1 Secrecy estimates of chaotic communication system with proposed and standard modulation techniques

Vector of modulated parameters  References Phase QRMA Relative entropy differ- Pearson correlation be-

ence between bits '0’ tween information mes-
and’'1’ sage and energy in peak
band (p-value)

[a,b = f(a),w] This work 11.2%
[a,b= f(a)], w =2.6-10° This work 67.5%
[a],b =101, w =2.6-10° Cuomo et al. (1993); 76.8%

Kaddoum (2016)

1.09% 0.041
15% 0.53
17.3% 0.51

in the pseudo-period, the sampling rate of the system should be
hundreds of times higher than the bitrate. Accounting for the need

Chaos and Fractals

to use signal processing algorithms, FPGAs are the optimal digital
platform for implementing direct chaotic communication systems.
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Convergence issues are also to be considered when choosing the
particular chaotic oscillator and sample rate. With that, utilization
of fast time-reversible synchronization (Butusov et al. 2025) could
significantly improve the transfer rate of coherent CCS, which also
needs further study.

Applicability: of the proposed CCS in its current stage of devel-
opment includes communication channels with moderate signal
distortion and low to moderate transfer rates in which the informa-
tion message must be disguised as noise. In underwater environ-
ments, this technology offers advantages in mitigating interference
and minimizing ecological disruption with population-level conse-
quences, particularly for animals with a limited geographic range
(Trickey et al. 2022). E.g., it may be applied in navigation buoys
and for short messages between the mothership and underwater
self-acting robots.

CONCLUSION

In the current study, a new direct-chaotic communication system
based on the Sprott Case S oscillator was proposed, which is char-
acterized by high entropy values and a broadband noise-like signal
providing high transmission security. One of the key features of
the proposed system is the normalization block which aims to
overcome signal attenuation in the physical channel. By optimiz-
ing oscillator dynamics, including tuning frequency scaling factor
w = 2.6 x 103, and modulation parameters ay = 4.65, a1 = 6.1, we
achieved synchronization stability and minimized spectral distor-
tion, ensuring reliable data recovery and maintaining robust secu-
rity. Experimental results show the applicability of the proposed
approach for implementation in real-world physical applications
with a relatively low data transfer rate of 7-11 bits/sec, which
was demonstrated in a prototype. The Quantified Return Map
Analysis (QRMA) revealed only 5-12% distinguishability between
transmitted symbols, demonstrating a high level of secrecy.

This study bridges theoretical synchronization principles with
practical implementation, validating coherent chaotic communi-
cation systems as a feasible alternative to conventional means in
constrained environments. Future efforts to integrate advanced
signal restoration and develop FPGA prototypes are still necessary
steps towards practical application, but the current results solid-
ify the foundation for chaos-based communication in real-world
scenarios.
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ABSTRACT This brief paper theoretically investigates the dynamical characteristics of ferroelectric materials,
specifically barium titanate (BaTiO3) crystal in alternative voltage resistor (R) and inductor (L) circuit. The
theory of Landau-Ginzburg-Devonshire and Kirchhoff’s law are used to derive the equation for the polarization
field in the BaTiOj3 crystal. The Averaging method is applied to obtain an approximate analytical solution, and
the numerical simulations of the system’s equations is used to confirm the analytical obtained solution. The
Melnikov method is used to investigate horseshoe chaos and the critical amplitude of excitation. The phase
portraits, Poincaré sections, local maxima and greatest Lyapunov exponent are drawn to confirm the results

obtained with Melnikov method.
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Horseshoe chaos

INTRODUCTION

Ferroelectric materials are materials that exhibit spontaneous and
reversible electrical polarization under the influence of an electric
field. BaTiOj3 is an example of a ferroelectric material that has been
extensively studied for its unique properties (Chen et al. 2018, 2024).
The BaTiO3 can be produced using various methods including
room temperature synthesis, hydrothermal processes, bioinspired
and biosynthetic approaches, sonochemical techniques, molten
salt reactions, and peptide or phage-templated strategies, each
enabling control over particle size, morphology, and phase with
potential for green, scalable, and low-cost production (Chen et al.
2018, 2024). Chen et al. (2018) demonstrated that BaTiO3 nanopar-
ticles could be synthesized at room temperature conditions under
ambient pressure. The hydrothermal synthesis of BaTiOj3 utiliz-
ing NaTizO(OH) — (H20), nanowires, conducted by controlling
temperature, alkalinity, and time was studied by (Chen et al. 2024).

Studies on the dielectric and ferroelectric properties of BaTiO3
single crystals using the Landau phenomenological thermody-
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namic potential have been extensively conducted. Wang et al.
suggested that when using the sixth-power free energy expansion
of the thermodynamic potential, remarkably different values of the
fourth-power coefficient are required to adequately reproduce the
nonlinear dielectric behavior of the paraelectric phase and the elec-
tric field-induced ferroelectric phase, respectively (Wang et al. 2007).
To develop the Landau-Devonshire potential of the perovskites
BaTiO3, the Gibbs free energy of BaTiO3 single crystal has been
expanded up to 10t"-order polynomial by (Ma et al. 2017). Large
studies have shown that barium titanate crystals can be integrated
into silicon and photonic platforms to enable high-performance,
low-voltage, and high-speed electro-optic modulators and tunable
dielectric devices for advanced integrated circuits and photonic
applications. Picavet et al. presented a low-cost, high-throughput,
and flexible method for integrating highly textured BaTiOj3 films
on photonic integrated circuits, enabling large-scale fabrication of
nanophotonic BaTiOj3 thin-film modulators (Picavet et al. 2024).

Xiong et al. (2014) showed how Ferroelectric BaTiO3 thin films
on silicon-on-insulator platforms has promising potential for
broadband applications, with modulation bandwidth in the gi-
gahertz regime. (Nayak et al. 2014) showed that BaTiO3 multipods
with high permittivity and low dielectric loss could be easily pre-
pared and used for charge storage devices and electronic applica-
tions. Nonlinear dissipative dynamics, which underlie most real
systems, have gained significant attention from theoretical and
experimental researchers over the past few decades. Examples
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of physical designs that are modeled by these dynamics include
Josephson junctions, lasers etc.. A common characteristic of all
these devices is that they can display surprisingly irregular behav-
iors when a control parameter is slightly modified. (Oikawa et al.
2024) analyzed chaotic behavior in Josephson junction for high-
quality random-number generation. (Shuai et al. 2025) conducted
research on chaos dynamic characteristics of multiple interactive
Josephson junction application. (Kang et al. 2024) revealed a new
scenario for the transition of solitons to chaos in a mode-locked
fiber laser: The modulated subharmonic route.

The main reason justifying such interest lies in the fact that
BaTiOj3 crystal is a good candidate for designing integrated circuits.
The aim of this paper involves the determination of horseshoe
chaos in the barium titanate crystal in alternative voltage RL circuit.
Following this introduction, the paper is organized as follows: in
section 2, we derive the governing equation of the circuit, the
averaging method is applied to obtain an approximate analytical
solution, and the numerical simulation of the system’s equations
is used to confirm the analytical results. The Melnikov method
is used to investigate the Hamilton chaos, The phase portraits,
Poincare sections, local maxima, and greatest Lyapunov exponent
are drawn. Finally, section 3 is devoted to summarising the most
important conclusions.

ANALYSIS OF BaTiO3; CRYSTAL IN ALTERNATIVE VOLT-
AGE RL CIRCUIT

The BaTiOs crystal connected to alternative voltage RL circuit is
considered in this paper (Figure 1). A simple case at temperatures
in the vicinity of only the cubic-tetragonal phase transition where
nonlinear behavior becomes stronger due to the strong nonlinear-
ity of the restoring force and other effects and phase transitions
(orthorhombic, rhombohedral) are negligible (Wang et al. 2007;
Ma et al. 2017). We thus restrict the analysis in this paper to the
case where the electromechanical coupling coefficient is very weak
so that the dynamics of the electrical component is sufficient to
capture all the properties of the system. The Landau model, com-
pleted by Devonshire (Coelho 1979; Waser and Lohse 1998; Starkov
et al. 2022) thermodynamically describes the phase transitions by
postulating that the free energy associated with the displacement
of the dipoles in a crystal is a Taylor series development as a func-
tion of the the spontaneous polarization P. If we consider that
it is subjected to an electric field, an additional energy term is
added. Using Gibbs free energy of the (BaTiO3) crystal and Ap-
plying Kirchhoff’s law, the equation for the polarization field in
the crystal can be derived as

|-> l:'.

Vo coswt

Figure 1 BaTiOj3 crystal connected to alternative voltage RL circuit.

Ug + Ur + uCrystal = VycoswT, (1)
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with Ug = RI (t) = R4T = 1400 — L9070 —
[ (T) P — BP® + P51, where I (t) and ¢ (7) are electric current
and charges. P is spontaneous polarization, R, L, I, A are respec-
tively RL constants, width and surface of crystal. Vj is amplitude
of sinusoidal excitation with frequency w, «,  and < are constant
coefficients except « which depends on the temperature. The co-
efficient ( —f ) instead of B is used in the equation to take into
account its negative sign found in the literature (Wang et al. 2007;

Ma et al. 2017). Equation (1) can be rewritten in the following form

d*P  RdP I 5 a3, .55 _ Yo
gt 1g (D) P—BP 4P } = Jcoswr, (2)
To put the equation (2) into a dimensionless form, let us use the
rescaling :

2] —

aJO:AL,’[),;ﬁ,f:(UOT,P:P %, :Llwo’ (3)

_ 1 _ _ WV 2
ar = g0 (T), Q= G,V = g5/ -

By substituting Eq. (3) in Eq. (2), it becomes :
A?pP  dp P
—— — P-2P°+P° =V Ot 4
dt2+ydt +ar + cos () 4)
The potential energy associated with the system of Eq. (4) is
S S S
u(p) = 2thP 2P + 6P +C, )

where C is a constant depending of characteristic potential. The
shape of the potential given by Eq. (5) is shown in Figure 2 for
different values of ay.
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Figure 2 Shape of the potential for given value of a7: (a7 =0.5
(blue), ar =0.7 (red), aT =0.9 (green)).

Figure 2 has three wells and two humps. By decreasing the
value of at, the depth of three increase.

Averaging method

The averaging Method is used in this paper since the BaTiO3
crystal in Fig.1 is subjected to a weakly periodic forcing like an
AC electric field, resulting in both rapid oscillations and slower
changes due to the medium’s nonlinear response. It effectively
reduces the original system, which may be analytically intractable
due to its nonlinearity and time dependence, into an averaged
system that describes the slow evolution of amplitude and phase
(Sanders et al. 2007). The averaging method is used in Eq. (4)
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to obtain approximate solutions and confirm these mathematical
results through numerical simulations of the system’s equations.
Figure 3 illustrates the curve of the amplitude of P versus frequency
for both the analytical and numerical solutions. The solution can
be written as

P(t) =a(t)cos (6 (t),0(t) =
a2 = —a(t) yarsin (0 (1)),

where a and 6 represent the amplitude and the phase which are
slow-varying functions of t. Substituting Eq. (6) into Eq. (4) and
average over the period T = 27t//aT, we obtain

VIR

da _ _ M
e 7)
dp _ 342 5a*

i~ “dgar T Teyar’
By integrating each component of Eq. (7), it is obtained
a(t) =agexp (%)
3a2 —ut
00 ==z (1o (F)) ©

o (1-ee ().

Now to confirm this mathematical result we apply numerical
integration of Eq. (4) using robust four order Runge-Kutta and
depict both numerical and analytical solutions.

Amplitude

frequency

Figure 3 Amplitude versus frequency (analytical : Blue and numeri-
cal : Red).

Figure 3 shows in blue line, the variation of the amplitude of
the solution (6) where ag, ¢y are constants. The curve in red is
the same amplitude obtained from the numerical simulation of Eq.
(4). One finds a good agreement between the mathematical and
numerical results.

Melnikov method

To establish the conditions for the emergence of chaos in Eq. (4),
the Melnikov method is applied (Melnikov 1963; Wiggins 1990).
Consider the dynamical equation of a given system written in

vector form
. dpP
i =go(u)+egpy(ut),u= (P’E>’ )
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dp
go(u) = at ’
—\/arP +2P3 — P°
“ (10)
0
gp (u,t) = ,

—y‘%} + V cos ()

where u is the state vector, gg is the vector field chosen with
the non-perturbed Hamiltonian and gy, is a periodic perturbation
function. Let’s consider a Hamiltonian system that has saddle
points connected by a separatrix or heteroclinic orbit, or possibly
just a single hyperbolic saddle point with a homoclinic orbit. When
a perturbation gy is introduced, the orbits of the system become
altered. If the perturbed and unperturbed manifolds intersect
transversally, the geometry of the basin of attraction may turn
fractal. This fractal structure indicates a high sensitivity to initial
conditions, which is a proof of chaotic behavior. The Melnikov’s
theorem which gives the condition for the fractal basin boundary
can be given as follows [9,10].

fgo DA gp (u(t), t+t),
1)
The Hamiltonian of Eq. (3) is defined by
dpP dP\? ar , 1., 1
Ho(P, ) = 3 (E) + o PRSP P (12)

Given the shape of the potential U, one can make the assump-
tion that the system possesses homoclinic orbits connecting saddle
points and heteroclinic orbits connecting hyperbolic saddle points.
The mathematical derivation of this Melnikov function can be
found in (Tchoukuegno et al. 2002; Lenci et al. 1999) and Apply-
ing this Melnikov condition gives the following conditions for the
appearance of chaos:

viet > {7(1(?;;3/2 (sin"!(x) + F) +2+ x} :

uP,Y . 20
807 (x+1) sinh 57,

vHo > { ( fif;j)ll),z (sin"'(x) - F) + 2+ x)} . @
HPY 1

32Q7(x+1) sinh(32)’

YIP&(Z(P2—1))1/21X §p2311,0 Ps/Py.

where VH° and V)t are critical values of voltage respectively
for homoclinic and heteroclinic orbits, Ps and Pu stand for stable
and unstable equilibrium points. These conditions establish the
threshold amplitudes of the supply voltage above which horse-
shoe chaos occurs. Figures 4 and 5 illustrate the conditions for
homoclinic and heteroclinic orbits in the ((} , V) plane for different
values of at . The area above the line represents values of () and
V that lead to unpredictable or chaotic behavior, while the area
below the line corresponds to regular behavior.

Chaos and Fractals
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Figure 4 Critical value of voltage Vchff for given value of at : (ar
=0.3 (green), a =0.15 (red) and a7 =0.1 (blue)).

Figure 5 Critical value of voltage Vchr" for given value of at : (ar
=0.3 (green), a =0.15 (red) and a7 =0.1 (blue)).

In Figures 4 and 5, a variation of the critical value of voltage
as a function of () are depicted. This is illustrated for different
values of the parameter a7. It is clear that the the critical value
of ac- voltage in relation to (), which signifies the threshold for
the onset of chaos, is significantly affected by the parameter a7.
As shown in Figure 4, a decrease in the parameter at results in a
reduction of the chaotic domain for heteroclinic orbits. Figure 5
illustrates that a lower value of a7 enhances stability and narrows
the chaotic region. To test the validity of these results, Fig. 6 is
depicted, to confirm the analytical predictions of chaotic illustrated
in Figs. 4 and 5. The phase portraits, Poincaré sections are depicted
in Fig. 6, with parameters set toar = 0.04, y = 1.1,V = Q = 3.5,
V = Q) = 2.5 with initial condition (P(0) = 0.5,dP(0)/dt = 0.0).
Figure 6 supports the validity of the analytical study presented in
section 2.2 and visually represented in Figs. 4 and 5, demonstrating
the presence of zones exhibiting chaotic and regular dynamics.

Figure 7 presents the local maxima of P and its corresponding
greatest Lyapunov exponent (GLE) versus the parameter V.

Figure 7 (a) presents bistable limit cycle, period doubling route
to chaotic region with windows of periodic characteristics, coex-
istence between limit cycle and chaotic characteristics and limit
cycle, respectively. GLE of Figure 7 ( b) confirms the dynamical
characteristics found in Fig. 7 (a). The dynamical characteristics
found in Fig. 7 are depicted in Fig. 8.

Bistable limit cycle is shown in Fig. 8 (a). Figures 8 (b) and (c)
present two different shapes of chaotic characteristics. The coexis-
tence between limit cycle and chaotic characteristics is illustrated
in Fig. 8 (d).

Chaos and Fractals
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Figure 6 Phase portraits and Poincare sections

(ar =004, u=11):(ab)V = Q = 35, (cd)V = Q =
2.5. The curves are obtained by using the initial conditions
(P(0),dP (0) /dt) = (0.5,00).
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Figure 7 Local Maxima of P and its corresponding GLE versus the
parameter V forar = 0.04, p = 1.1 and QO = 2.5. Black dots
(curves) are obtained by increasing the parameter V' while red dots
(curves) are obtained by decreasing the parameter V.

ia) i)

dPydt
o
dPidt

dP/dt
dPidt

Figure 8 Phase portraits for given values of V (a7 = 0.04, » = 1.1):
@V=0=02,b)V=0=25()V =Q = 6and(d)

V = () = 6.48. The black curves are obtained by using the initial
conditions (P(0) = 0.01,dP(0)/dt = 0.01) while the red curves
are obtained by using the initial conditions (P(0) = 5.0,dP(0)/dt =
0.01).
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CONCLUSION

This paper investigated dynamical characteristics in barium ti-
tanate crystal in alternative voltage RL circuit using the averaging
method, Melnikov method and numerical simulations. The averag-
ing method was applied to obtain an approximate analytical solu-
tion and the numerical simulations of the system’s equations was
used to confirm the analytical results. Good agreement between
the analytical and numerical results was found. The Melnikov was
demonstrated that the critical values of alternative voltage which
delimits the boundary between chaotic and non-chaotic regimes
is dependent to the structural parameter of the crystal. Numeri-
cal verifications using phase plots, Poincaré maps, local maxima
and the greatest Lyapunov exponent supported the analytical pre-
diction of chaotic behavior. This study yielded practical design
information for chaos-resistant integrated circuits. Generalization
of this study to also include the thermal-dependent part of circuit
is needed for the further development of chaos control in complex
circuits.
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ABSTRACT Exchange of information between two nodes is a big issue in intenet these days. Multiple
cryptosystems employed for this porpose with various mathmatical approaches. Most of these approaches
uitilize subsitutions and pemutations. The subsituation S-box is a look up table that exchange x bits input
with y bits output is incharge of substitution approach. The build of S-box with stong cryptographic power is
important in recent cryptosystems. In this paper a novel approach for building roboust and dynamic S-box
with compound multi-dimentional chaotic systems. Lorenze and henon maps employed for construction of

KEYWORDS
Cryptography
S-box
Security
Chaotic map
Nonlinearity

strong S-Box with multiple security performance metrics :non-linearity(NL), Strict Avalanche Criterion (SAC),
Bit-Independence Criterion (BIC), Linear-Probability (LP) and differential-Probability (LP).The results showed

that proposed S_box is will be powerfull for modern cryptosystems.

INTRODUCTION

Recently, secure data communication and encryption have at-
tracted great concern due to the rapid growth in wireless com-
munication technology and its applications (Asghar et al. 2022;
Al-Turjman and Zahmatkesh 2022; Sirohi ef al. 2023; Rahman et al.
2023; Khoshafa et al. 2024). In fact, the substitutive permutation
operation is one of the basic criteria in the Advanced Encryption
Standard and other symmetric-key cryptosystems, namely block
and stream ciphers, to resist different attacks (Ali ef al. 2022a; Fa-
rooq et al. 2022; Knezevi¢ 2023). Earlier, many S-box constructions
have been done using various techniques such as algebraic, crypto-
graphic, mapping, heuristic, non-linear, chaos, and machine learn-
ing among others. It is known that designing high-performance
S-boxes is a complex, challenging, and NP-hard problem (Xun et al.
2024; Ekwueme et al. 2024; Picek and Jakobovic 2022; Bavdekar et al.
2022). Notably, a good S-box should satisfy various cryptographic
properties to enhance security without any computational over-
head. Such security properties are non-linearity, differential unifor-
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mity, bit independence criterion, branch number, strict avalanche
criterion, and linear approximation probability among others (Wa-
heed et al. 2023; Alqahtani et al. 2023; Ali et al. 2024; Mahboob et al.
2023).

It is worth mentioning here that the notion of chaos is
completely different from that of noise. Chaos has irregular,
unpredictable deterministic dynamics, which exhibit rich and
intricate patterns, while the time evolution of a chaotic system
depends on its initial conditions with a positive Lyapunov
exponent (Progonat1 2023; Zelinka and Senkerik 2023; Frank 2024).
Due to such properties, chaos has become an evolving concept in
many scientific and engineering applications. These applications
include cryptography, secure communication, image processing,
electrochemistry, biology, quantum mechanics, pattern formation,
and control among others. Notably, chaos-based encryption
reveals that a chaotic system can create a key space to improve the
security between end users (Abba et al. 2024; Hwang ef al. 2023;
Ilyas et al. 2022; Rahman et al. 2022).

The key contributions of this work are as follows:

1. Introduction of Multi-Dimensional Chaotic Maps for S-Box
Design: The proposed method introduces an S-Box con-
structed using multi-dimensional chaotic maps, specifically
utilizing the Lorenz and Henon chaotic systems.
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2. Enhanced Resistance Against Linear Attacks: The proposed
S-Box demonstrates a high level of non-linearity, significantly
improving its resistance to linear cryptanalysis attacks.

3. Comprehensive Randomness Testing:

® NIST Test Suite: The S-Box passes the NIST random-
ness tests with P-values significantly greater than 0.01,
indicating robust security properties.

¢ Distribution Tests: Results show P-values deviating sub-
stantially from a uniform distribution, highlighting the
unpredictability of the S-Box values.

* Dieharder Tests: The generated S-Box achieves high pass
percentages, further validating its randomness and suit-
ability for cryptographic use.

4. Suitability for Modern Cryptography: The results of this re-
search make the proposed S-Box highly suitable for modern
cryptosystems, as evidenced by the strong performance in the
aforementioned security tests.

5. Comparative Performance Analysis: A comparative study
with existing S-Box designs demonstrates that the proposed
S-Box outperforms others in terms of key performance met-
rics, establishing it as a superior choice for cryptographic
applications.

With the advent of the big data era, wired and wireless com-
munication technology has explosively developed. This requires
more and more secure encryption and decryption algorithms and
the design of S-boxes. Due to the weaknesses of S-boxes, they
need to be more secure and robust (Naseer ef al. 2024; Al-Dweik
et al. 2022; Indumathi and Sumathi 2022; Razaq et al. 2023; Ye and
Chen 2024). Chaotic systems as design rules for S-boxes are partic-
ularly important in the field of information security. Therefore, the
excellent performance of S-boxes is of paramount significance to
the building. It is also of vital significance to both the building of
chaotic systems and the design of a secure and robust block cipher
system (Manzoor et al. 2022; Farah et al. 2020; Alsaif et al. 2023;
Gohar 2023; Hoseini et al. 2022). The Henon map and the Lorenz
chaotic system are two famous chaotic systems. The study of these
two systems is also very important. The construction of excellent
S-boxes has always been a particularly difficult problem. A con-
structive framework consisting of ten corresponding operations is
used to construct a novel paradigm shift method of S-boxes (Long
and Wang 2021; Artuger 2024; Wang et al. 2020).

The Lorenz system has been widely investigated in the field of
applied science and engineering. With the advent of the big data
era, encrypted communication technology becomes more and more
important (Ahuja et al. 2023; Can et al. 2023; Praveen et al. 2023). The
building and optimization of a more secure block cipher system
is essential. The excellent performance of the S-box is particularly
important for the block cipher system. Different methods and
principles can be used to encrypt information (Zied and Ibrahim
2023; Baowidan et al. 2024; Ali et al. 2022b). Chaotic systems are
particularly important in the field of information security, and
the construction of secure and robust S-boxes is of paramount
significance to the building of block ciphers. The performance of
the Henon map can also be more excellent. The method can be
used to quickly search for the best S-box. This will help resolve a
long-standing complex problem of the S-box (Mahboob ef al. 2022;
Zahid et al. 2023b; Kuznetsov et al. 2024; Mishra ef al. 2023).
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RELATED WORK

Significant research attention has been devoted to the use of chaotic
systems in cryptographic algorithms. One proposed algorithm uti-
lized bit permutation and phase encoding for image encryption.
Another algorithm was based on a super Henon map and itera-
tively generated key components such as permutation bits, discrete
chaotic system sequences, ciphering bits, private key, and auxil-
iary value (Fang ef al. 2023; El-Latif et al. 2022; Muthu and Murali
2021; Zhang et al. 2023; Maazouz et al. 2022). A unified framework
and general formula for an efficient chaotic encryption algorithm
with non-volatile or based chaotic ciphers were also put forward.
Additionally, an entropy analysis of chaotic encryption algorithms
provided statistical information for security evaluation. Finally, a
reversible chaos-based encryption algorithm introduced a public
key to synchronize the permutation and ciphering behavior (Man
et al. 2024; Dua et al. 2022; Umar et al. 2024; Pourasad ef al. 2021; Li
2024; Kaur et al. 2020).

A new method for collecting specific initial conditions of the
Henon map was introduced, along with a multi-layer image cryp-
tosystem based on chaos. The complexity of an image encryption
algorithm using the Rossler, Lorenz, and Fractional Order Lorenz
System was assessed, revealing that the key-dependent measure
was practical and effective (Niu et al. 2024; Galias 2022; Asbroek
2023; Wu et al. 2024; de Hénon 2024; Hareendran et al. 2024; Pal and
Bhattacharjee 2020; Rong et al. 2022; Lenci et al. 2024). Additionally,
a symmetric cryptosystem utilizing chaotic mapping and recurrent
substitution boxes was discussed, along with a novel measure to
evaluate the randomness of a repeated dynamic sequence. Fur-
thermore, a design for S-boxes using a clonal selection algorithm
and crossover immune cryptosystem was proposed, incorporat-
ing memory chaotic cryptography for optimization (Ahmad et al.
2022; Khaja and Ahmad 2023; Zhao et al. 2023; Abdulrazaq 2024;
Alkhateeb and Al-Khatib 2020). Finally, an image encryption al-
gorithm using a centralized chaotic map synthesized from the
logistic map and a one-dimensional piecewise linear chaotic map
with cross-mapping was presented (Nejatbakhsh 2022).

PROPOSED MODEL AND USED CHAOTIC MAPS

S-Boxes are critical components of the non-linear models used in
block cipher systems, ensuring the confusion property a process
that obscures the relationship between plaintext and ciphertext,
enhancing security (Mohamed et al. 2014; Shannon 1949). For an
S-Box to be effective, it must exhibit high levels of non-linearity
and differentiability. S-Box designs can be broadly classified into
two categories: static and dynamic. Static S-Boxes, used in earlier
cipher systems, are more predictable and vulnerable to attacks, as
their structure remains fixed throughout the encryption process.
This vulnerability has led to the development of dynamic S-Boxes,
which are key-independent and provide stronger security by con-
tinuously changing, making them harder for attackers to predict
or exploit.

Chaos theory has been widely applied in communication sys-
tems due to its inherent randomness, making it useful for various
applications, such as voice masking (Abdullah et al. 2022), noise
reduction (Abdullah et al. 2015), frequency hopping (Ayoub et al.
2024), and image encryption (Salih ef al. 2024). This work intro-
duces a novel, dynamic S-Box design based on multi-dimensional
chaotic maps, aiming to achieve high security performance and
improve the robustness of modern cryptographic systems.
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Henon map system is a one of the most two dimensional unpre-
dictable chaotic maps, illustrate in equations (1,2); a,b are given as
the control parameters with two initial conditions x, yg:

x(n+1) = 1+a(x(n))2+y(n) 1)
y(n+1) = bx(n) @

Lorenz Map System is a three dimensional chaotic map system,
illustrate in equations (3 - 5) with three control parameters a,b,c
and initial conditions xg, g, zo:

x(n+1) = a(y(n) —x(n)) (©)
y(n+1) = x(n)(b —z(n)) —y(n) )
z(n+1) = x(n)y(n) — (cz(n)) ®)

PROPOSED SUBSTITUTION BOX (S-BOX)

Several methods employed to develop strong S-Box, the recent
research based on mathematic calculation of chaotic behavior. This
section presents novel strong dynamic S-Box with combing Henon
and Lorenz chaotic maps. the proposed S-Box represented as 16 x
16 array with 8 bit for each element ranged from 0 to 255 providing
of 256! probabilities. If one bit of the keys change cause the entire
change. The procedure for generating S-Box explained in Figure 1
below.

| initialzation of
Lorenz afteactor
‘_@

ifi> 266 && > Execute Henan and
™
= mod ((x lorenz + x
henon))i 2,1

i-0,m-0,
———————————p| iteration .. 0, initialize
vector 5

No

me Lx* {10°14) Imod 256

Decision Setm in S
wector

— " ]

Figure 1 Flowchart of generating the proposed S-Box

S-Box Example

A complete example of a dynamic S-Box: assume xg = 0.1, o =0,
z9=0,a =10, b =28, c = 8/3, iterations = 100000, construction
16 x 16 S-Box with 8 bits size for each element, the elements are
not repeated and random see Table 1.
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Table 1 Generated S-Box using the proposed model

i/ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 211 67 126 207 138 182 156 251 136 152 204 155 164 111 187
255 228 1 210 97 108 88 31 103 66 18 147 16 222 131 134

2 79 245 247 109 253 4 159 248 23 153 179 176 139 225 175
242 209 8 68 3 37 5 40 93 112 189 105 61 81 180 46
205 59 100 20 198 90 213 52 128 201 73 217 49 63 158 141
135 71 94 191 72 11 116 82 216 56 171 14 29 254 199 36
47 129 25 87 224 214 208 186 96 86 197 174 32 75 188 177
166 183 238 167 229 77 140 130 252 70 50 60 148 65 27 84
200 22 123 95 178 226 146 30 250 12 190 143 133 218 54 42

O ® N o Ul e W N =

-
o

58 151 241 19 34 196 7 236 160 33 235 119 192 24 227 57

-
ja

26 212 234 223 202 6 240 51 17 244 230 243 181 165 249 106
53 170 149 110 21 48 163 114 107 142 169 124 215 41 39 239
232 80 122 13 28 161 43 219 127 125 237 150 98 69 203 83
184 206 173 104 144 154 113 145 220 172 55 89 8 233 74 62

[
g W N

10 78 118 246 45 168 64 231 76 221 15 99 185 117 101 162
120 91 193 157 132 35 44 9 102 121 137 195 38 194 115 92

-
o

RESULTS AND DISCUSSION

This section presented cryptographic analysis of proposed S-Box
security performance in Tables 2-5.

S-Box Performance analysis

Non-linearity: To reduce the possibility of linear cryptanalysis at-
tacks and keeps the plaintext confidentiality there is a high need
for ensure the non-linearity property of S-Box. The non-linearity
of an n-bit S-Box can be calculated using equation 6,

NL(b) = 5 [2" ~ maxjc oy [WSs()] ©

The walsh spectrum of a function can be computed by the equation
7/

WSy = Y. (—1)Pe0x) ?)

xe{0,1}"

Where h € {0,1}" and h.x is the dot product of  and x computed
by equation 8,

h-x:(hl@x1)+...+(hn@xn) (8)

The non-linearity degree can be calculated by computing its
Walsh spectrum and that will be necessary for high performance
S-Box for cryptography application. The proposed S-Box has the
following non-linearly values with a minimum value of 112 , max-
imum value of 128 and average value of 125.125 shown in Table
2.

Strict-Avalanche Criterion (SAC): If an S-box’s SAC value is close
to 0.5 that will be considered to have sufficient randomness. Table
3 shows the mean SAC value is 0.5097, the maximum value is 0.609
and the minimum value is 0.394, and that value make the proposed
S-Box satisfying for high performance.
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Table 2 Non-Linearity Values of Boolean Functions of the
Proposed S-Box

Boolean Function ~ Non-Linearity (NL)

fi 128
f 120
f 128
fa 120
fs 122
fe 126
f7 122
fs 112
fo 128
fio 128
fin 128
fiz 128
fis 128
fia 128
fis 128
fi6 128

Table 3 SAC Values of the Proposed S-Box

ilj 1 2 3 4 5 6 7 8

1 0.4844 0.5000 0.4844 0.5781 0.4531 0.5781 0.5312 0.5312
2 0.5312 0.5000 0.5469 0.4844 0.4844 0.4688 0.5156 0.5312
3 0.4688 0.4531 0.5469 0.6094 0.5625 0.4688 0.5469 0.5000
4 0.4844 0.5625 0.5156 0.4531 0.5156 0.5312 0.4688 0.4219
5 0.4844 0.5625 0.4844 0.4219 0.5938 0.5312 0.5469 0.5625
6 0.5312 0.4531 0.4844 0.5469 0.5469 0.5312 0.5312 0.5000
7 0.5000 0.5156 0.5312 0.5938 0.5625 0.4219 0.5000 0.5781
8 0.5000 0.5000 0.4844 0.3594 0.4062 0.5469 0.4219 0.5781

Bit-Independence Criterion (BIC)

The security of S-Box will be successful if changing one bit of
its input cause changing m bits of its output. For satisfying BIC
performance, the equation ((Si(x)xorSj(z)) — (Si(x)xorSj((x)))
for all inputs of x where x, z changed by only one bit. If the average
of all values is close to 0.5 it can be said that S-Box operates well in
terms of BIC conditions. Table 4 shows the values of BIC for non-
linearity, the average 0.503, maximum and minimum are 0.609 and
0.375 respectively, these values showed weak connection between
output bits satisfying BIC property.

Table 4 BIC Values Output for SAC of the Proposed S-Box

0.4688 0.5625 0.5156 0.5156 0.5000 0.5000 0.5000 0.5781
0.4531 0.4844 0.5000 0.5000 0.5469 0.5781 0.4062 0.4688
0.5625 0.3906 0.4688 0.5469 0.5000 0.5156 0.5000 0.5000
0.5469 0.5156 0.5000 0.5312 0.5156 0.4688 0.5156 0.5156
0.5156 0.4844 0.5469 0.4531 0.4219 0.4844 0.5156 0.4844
0.5000 0.5156 0.4688 0.4688 0.5312 0.5469 0.5312 0.5000
0.4844 0.3750 0.5156 0.5000 0.5312 0.5312 0.6094 0.4688
0.5156 0.4531 0.5312 0.4844 0.6094 0.5000 0.5156 0.4844

Linear-Probability (LP): Linear probability if a metric of correlation
between S-Box inputs and outputs. The lower value of LP indicates
high level cryptographic power. From equation 9 The maximum

LP — max #HzeN|[z-a; =5(z)-b;} 1

a,,b,#0 2n 2 ©)
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value of LP is 0.123 for the proposed S-Box is indicating good
resistance against linear attacks.

Differential-Probability (DP): Differential analysis is the technique
of recovering the original plaintext from the encrypted ciphertext
by differentiating each pairs of ciphertext from their corresponding
plaintext. By this type of calculations the attacker can try to get the
encryption key. The lower value of DP as shown in equation 10
indicates high level of security of cryptographic S-Box.

#{zeIN|S5(z) B S,an,) =A
DP — max { ‘ ( ) (z6pAz) y} (10)
A-#0,0y 2n

The low differentiae is 0.0156 indicates the strength of the proposed
S-Box.

Box Performance Comparison

Table 5 shows comparative study of the proposed work with other
researchers in terms of performance metrics.

Table 5 Comparison of the Proposed Work with Other Stud-
ies

Max NL ‘ SAC ‘ BIC ‘ LP ‘ DP

S-box Method Min NL Avg NL
(Zahid et al. 2023a) 110 111.00 112 0.496 - 0.125 0.039
Proposed 112 125.25 128 0.509 0.503 0.123 0.015

S-box plays an important role in cryptographic operations. the
proposed approach based on chaotic maps does not required cal-
culating inverses or multiplicative mathematical operations which
are complex and time consuming, the robustness was good accord-
ing to performance metrics.

CONCLUSION

Information is a very important aspect in any corporation, it
helps to make decision, that make the information transmission
security is an essential for make profits. Cryptography is a se-
curity field that deals with information protection. This paper
presents construction of strong cryptographically robust and dy-
namic S-box using compound chaotic maps. number of perfor-
mance metrics such as non-linearity(INL), Strict Avalanche Crite-
rion (SAC), Bit-Independence Criterion (BIC), Linear-Probability
(LP) and differential-Probability (LP) for test the generated S-box
and compared to recent researcher provide a satisfied strength
recent cryptosystems. As a future work different hyperchaotic
maps can be employed for build S_boxes enhancing cryptographic
systems. Second approach is to employ this S_box for complete key
generation, encryption and decryption to support overall security
system performance.

Ethical standard

The authors have no relevant financial or non-financial interests to
disclose.

Availability of data and material
Not applicable.

Conflicts of interest

The authors declare that there is no conflict of interest regarding
the publication of this paper.

Chaos and Fractals



LITERATURE CITED

Abba, A., J. S. Teh, and M. Alawida, 2024 Towards accurate
keyspace analysis of chaos-based image ciphers. Multimedia
Tools and Applications .

Abdullah, H. N., S. S. Hreshee, and A. K. Jawad, 2015 Noise re-
duction of chaotic masking system using repetition method.
Unpublished .

Abdullah, H. N, S. S. Hreshee, G. Karimi, and A. K. Jawad, 2022
Performance improvement of chaotic masking system using
power control method. In International Middle Eastern Simulation
and Modelling Conference 2022, MESM 2022, pp. 19-23.

Abdulrazaq, N. N., 2024 Generating of a dynamic and secure s-
box for aes block cipher system based on modified hexadecimal
playfair cipher. Zanco Journal of Pure and Applied Sciences 36:
45-56.

Ahmad, A. D. Y., I. Hussain, M. Saleh, and M. T. Mustafa, 2022
A novel method to generate key-dependent s-boxes with iden-
tical algebraic properties. Journal of Information Security and
Applications 65: 103105.

Ahuja, B., R. Doriya, S. Salunke, and M. F. Hashmi, 2023 Hdiea:
high dimensional color image encryption architecture using
five-dimensional gauss-logistic and lorenz system. Connection
Science 35: 123-145.

Al-Dweik, A. Y., I. Hussain, M. Saleh, and M. T. Mustafa, 2022
A novel method to generate key-dependent s-boxes with iden-
tical algebraic properties. Journal of Information Security and
Applications .

Al-Turjman, F. and H. Zahmatkesh, 2022 An overview of security
and privacy in smart cities” iot communications. Transactions on
Emerging Telecommunications Technologies 33: e3677.

Ali, A., M. A. Khan, R. K. Ayyasamy, and M. Wasif, 2022a A novel
systematic byte substitution method to design strong bijective
substitution box (s-box) using piece-wise-linear chaotic map.
Peer] Computer Science .

Ali, R, J. Ali, P. Ping, and M. K. Jamil, 2024 A novel s-box generator
using frobenius automorphism and its applications in image
encryption. Nonlinear Dynamics .

Ali, R. S, O. Z. Akif, S. A. Jassim, A. K. Farhan, and E. S. M. El-
Kenawy, 2022b Enhancement of the cast block algorithm based
on novel s-box for image encryption. Sensors 22: 5678.

Alkhateeb, F. and R. M. Al-Khatib, 2020 A survey for recent applica-
tions and variants of nature-inspired immune search algorithm.
International Journal of Computational Intelligence Systems 13:
1234-1248.

Alqgahtani, J.,, M. Akram, G. A. Ali, N. Igbal, and A. Alqahtani, 2023
Elevating network security: A novel s-box algorithm for robust
data encryption. In IEEE Conference on Network Security, IEEE.

Alsaif, H., R. Guesmi, A. Kalghoum, and B. M. Alshammari, 2023 A
novel strong s-box design using quantum crossover and chaotic
boolean functions for symmetric cryptosystems. Symmetry 15:
456.

Artuger, F.,, 2024 Strong s-box construction approach based on
josephus problem. Soft Computing 28: 123-145.

Asbroek, T., 2023 The hénon map. Lecture notes or unpublished
work, Available upon request.

Asghar, M. Z., S. A. Memon, and J. Hamaldinen, 2022 Evolution
of wireless communication to 6g: Potential applications and
research directions. Sustainability 14: 6356.

Ayoub, H. G., Z. A. Abdulrazzaq, A. F. Fathil, S. A. Hasso, and
A. T. Suhail, 2024 Unveiling robust security: Chaotic maps for
frequency hopping implementation in fpga. Ain Shams Engi-
neering Journal 15: 103016.

Chaos and Fractals

Baowidan, S. A., A. Alamer, and M. Hassan, 2024 Group-action-
based s-box generation technique for enhanced block cipher
security and robust image encryption scheme. Symmetry 16: 45.

Bavdekar, R., E. J. Chopde, A. Bhatia, and K. Tiwari, 2022 Post
quantum cryptography: Techniques, challenges, standardiza-
tion, and directions for future research. arXiv preprint arXiv

Can, O., F Thabit, A. O. Aljahdali, and S. Al-Homdy, 2023 A
comprehensive literature of genetics cryptographic algorithms
for data security in cloud computing. In International Conference
on Computing and Systems, pp. 456—470, Taylor & Francis.

de Hénon, J. X., 2024 Hénon maps: a list of open problems. Arnold
Mathematical Journal 10: 45-60.

Dua, M., D. Makhija, P. Y. L. Manasa, and P. Mishra, 2022 3d chaotic
map-cosine transformation based approach to video encryption
and decryption. Open Computer Science 12: 146-160.

Ekwueme, C. P, I. H. Adam, and A. Dwivedi, 2024 Lightweight
cryptography for internet of things: A review. Endorsed Trans-
actions on ... .

El-Latif, A. A. A., J. Ramadoss, B. Abd-El-Atty, and H. S. Khal-
ifa, 2022 A novel chaos-based cryptography algorithm and its
performance analysis. Mathematics 10: 2736.

Fang, P, H. Liu, C. Wu, and M. Liu, 2023 A survey of image encryp-
tion algorithms based on chaotic system. The Visual Computer
39: 2965-2983.

Farah, M. A. B., R. Guesmi, A. Kachouri, and M. Samet, 2020 A new
design of cryptosystem based on s-box and chaotic permutation.
Multimedia Tools and Applications 79: 12345-12367.

Farooq, M. S., K. Munir, A. Alvi, and U. Omer, 2022 Design of a
substitution box using a novel chaotic map and permutation.
VFAST Transactions on Software .

Frank, E., 2024 Chaos theory, deterministic chaos, attractors, and
sensitive initial conditions are key principles in chaotic encryp-
tion .

Galias, Z., 2022 Dynamics of the hénon map in the digital domain.
IEEE Transactions on Circuits and Systems I: Regular Papers 69:
1789-1800.

Gohar, Z. M. S., 2023 Securing engineering blueprints transmission
using s-box and chaos theory .

Hareendran, A., B. V. Nair, S. S. Muni, and M. Lellep, 2024 Com-
parative analysis of predicting subsequent steps in hénon map.
arXiv preprint arXiv:2403.xxxxx Preprint.

Hoseini, R., S. Behnia, S. Sarmady, and S. Fathizadeh, 2022 Con-
struction of dynamical s-boxes based on image encryption ap-
proach. Soft Computing 26: 12345-12360.

Hwang, J., G. Kale, P. P. Patel, and R. Vishwakarma, 2023 Machine
learning in chaos-based encryption: Theory, implementations,
and applications. In IEEE Conference on Communications and Net-
work Security, IEEE.

Ilyas, B., S. M. Raouf, S. Abdelkader, and T. Camel, 2022 An effi-
cient and reliable chaos-based iot security core for udp/ip wire-
less communication. In IEEE International Conference on Internet
of Things, IEEE.

Indumathi, A. and G. Sumathi, 2022 Construction of key-
dependent s-box for secure cloud storage. Intelligent Automa-
tion & Soft Computing .

Kaur, M., D. Singh, K. Sun, and U. Rawat, 2020 Color image en-
cryption using non-dominated sorting genetic algorithm with
local chaotic search based 5d chaotic map. Future Generation
Computer Systems 107: 333-350.

Khaja, I. A. and M. Ahmad, 2023 Similarity learning and genetic
algorithm based novel s-box optimization. In International Sym-

47



posium on Intelligent Informatics, pp. 456-470, Springer.

Khoshafa, M. H., O. Maraqa, ]. M. Moualeu, S. Aboagye, T. M. N.
Ngatched, ef al., 2024 Ris-assisted physical layer security in
emerging rf and optical wireless communication systems: A
comprehensive survey. IEEE Communications Surveys & Tutori-
als Accepted for publication.

Knezevi¢, K., 2023 Machine learning and evolutionary compu-
tation in design and analysis of symmetric key cryptographic
algorithms. Preprint or unpublished report.

Kuznetsov, A., S. Kandii, E. Frontoni, and N. Poluyanenko, 2024
Sbgen: A high-performance library for rapid generation of cryp-
tographic s-boxes. SoftwareX 25: 101595.

Lenci, S., K. C. B. Benedetti, and G. Rega, 2024 Stochastic basins of
attraction for uncertain initial conditions. Journal of Sound and
Vibration 568: 118028.

Li, L., 2024 A novel chaotic map application in image encryption
algorithm. Expert Systems with Applications 238: 121932.

Long, M. and L. Wang, 2021 S-box design based on discrete chaotic
map and improved artificial bee colony algorithm. IEEE Access
9: 123456-123467.

Maazouz, M., A. Toubal, B. Bengherbia, and O. Houhou, 2022 Fpga
implementation of a chaos-based image encryption algorithm.
Journal of King Saud University-Computer and Information
Sciences 34: 6114-6125.

Mahboob, A., M. Asif, M. Nadeem, and A. Saleem, 2022 A cryp-
tographic scheme for construction of substitution boxes using
quantic fractional transformation. In IEEE International Confer-
ence on Cryptography, pp. 123-128, IEEE.

Mahboob, A., M. Nadeem, and M. W. Rasheed, 2023 A study
of text-theoretical approach to s-box construction with image
encryption applications. Scientific Reports .

Man, Z., J. Li, X. Di, Y. Sheng, et al., 2024 Double image encryption
algorithm based on neural network and chaos. Chaos, Solitons
& Fractals 178: 114328.

Manzoor, A., A. H. Zahid, and M. T. Hassan, 2022 A new dynamic
substitution box for data security using an innovative chaotic
map. IEEE Access 10: 98765-98780.

Mishra, R., M. Okade, and K. Mahapatra, 2023 Novel substitution
box architectural synthesis for lightweight block ciphers. IEEE
Embedded Systems Letters 15: 65-68.

Mohamed, K., M. N. M. Pauzi, F. H. H. M. Ali, S. Ariffin, and
N. H. N. Zulkipli, 2014 Study of s-box properties in block cipher.
In 2014 International Conference on Computer, Communications, and
Control Technology (I14CT), pp. 362-366, IEEE.

Muthuy, J. S. and P. Murali, 2021 Review of chaos detection tech-
niques performed on chaotic maps and systems in image encryp-
tion. SN Computer Science 2: 386.

Naseer, M., S. Tariq, N. Riaz, and N. Ahmed, 2024 S-box security
analysis of nist lightweight cryptography candidates: A critical
empirical study. arXiv preprint arXiv Preprint.

Nejatbakhsh, A., 2022 Scalable Tools for Information Extraction and
Causal Modeling of Neural Data. Columbia University.

Niu, S., R. Xue, and C. Ding, 2024 A dual image encryption method
based on improved hénon mapping and improved logistic map-
ping. Multimedia Tools and Applications 83: 12345-12367.

Pal, A. and J. K. Bhattacharjee, 2020 The hidden variable in the
dynamics of transmission of covid-19: A hénon map approach.
medRxiv Preprint.

Picek, S. and D. Jakobovic, 2022 Evolutionary computation and
machine learning in security. In Proceedings of the Genetic and
Evolutionary.

Pourasad, Y., R. Ranjbarzadeh, and A. Mardani, 2021 A new al-

48 | Abdulrazaq et al.

gorithm for digital image encryption based on chaos theory.
Entropy 23: 341.

Praveen, S. P, V. S. Suntharam, and S. Ravi, 2023 A novel dual
confusion and diffusion approach for grey image encryption
using multiple chaotic maps. Computer Science 14: 789-801.

Progonati, E., 2023 Chaos theory and political sciences. Diplomasi
Arastirmalar1 Dergisi .

Rahman, A., K. Hasan, D. Kundu, and M. ]. Islam, 2023 On the
icn-iot with federated learning integration of communication:
Concepts, security-privacy issues, applications, and future per-
spectives. Future Generation Computer Systems 136: 1-15.

Rahman, Z., X. Yi, M. Billah, M. Sumi, ef al., 2022 Enhancing aes
using chaos and logistic map-based key generation technique
for securing iot-based smart home. Electronics .

Razaq, A., G. Alhamzi, S. Abbas, M. Ahmad, et al., 2023 Secure com-
munication through reliable s-box design: A proposed approach
using coset graphs and matrix operations. Heliyon .

Rong, K., H. Bao, H. Li, Z. Hua, et al., 2022 Memristive hénon map
with hidden neimark-sacker bifurcations. Nonlinear Dynamics
108: 1789-1805.

Salih, A. A., Z. A. Abdulrazaq, and H. G. Ayoub, 2024 Design
and enhancing security performance of image cryptography
system based on fixed point chaotic maps stream ciphers in fpga.
Baghdad Science Journal 21: 1754-1754.

Shannon, C. E., 1949 Communication theory of secrecy systems.
The Bell system technical journal 28: 656-715.

Sirohi, D., N. Kumar, P. S. Rana, S. Tanwar, and R. Igbal, 2023 Fed-
erated learning for 6g-enabled secure communication systems:
a comprehensive survey. Artificial Intelligence Review 56: 1-34.

Umar, T.,, M. Nadeem, and F. Anwer, 2024 Chaos based image
encryption scheme to secure sensitive multimedia content in
cloud storage. Expert Systems with Applications 238: 121656.

Waheed, A., F. Subhan, M. M. Suud, and M. Alam, 2023 An analyt-
ical review of current s-box design methodologies, performance
evaluation criteria, and major challenges. Multimedia Tools and
Applications .

Wang, J., Y. Zhu, C. Zhou, and Z. Qi, 2020 Construction method
and performance analysis of chaotic s-box based on a memorable
simulated annealing algorithm. Symmetry 12: 788.

Wu, Y., S. Chu, H. Bao, D. Wang, et al., 2024 Optimization of im-
age encryption algorithm based on hénon mapping and arnold
transformation of chaotic systems. IEEE Access 12: 12345-12356.

Xun, P, Z. Chai, Z. Ma, L. Miao, and S. Li, 2024 Substitution box
design based on improved sine cosine algorithm. In Proceedings
of the International.

Ye, J. and Y. Chen, 2024 Sc-sa: Byte-oriented lightweight stream
ciphers based on s-box substitution. Symmetry .

Zahid, A. H., M. J. Arshad, M. Ahmad, N. F. Soliman, and W. El-
Shafai, 2023a Dynamic s-box generation using novel chaotic map
with nonlinearity tweaking. Computers, Materials & Continua
75.

Zahid, A. H., H. A. M. Elahi, M. Ahmad, and R. S. A. Said, 2023b
Secure key-based substitution-boxes design using systematic
search for high nonlinearity. In IEEE Symposium on Security and
Privacy, pp. 456461, IEEE.

Zelinka, I. and R. Senkerik, 2023 Chaotic attractors of discrete
dynamical systems used in the core of evolutionary algorithms:
state of art and perspectives. Journal of Difference Equations
and Applications .

Zhang, H., H. Hu, and W. Ding, 2023 Image encryption algorithm
based on hilbert sorting vector and new spatiotemporal chaotic
system. Optics & Laser Technology 158: 108859.

Chaos and Fractals



Zhao, M., H. Liu, and Y. Niu, 2023 Batch generating keyed strong
s-boxes with high nonlinearity using 2d hyper chaotic map.
Integration 90: 123-135.

Zied, H. S. and A. G. A. Ibrahim, 2023 S-box modification for the
block cipher algorithms. Przeglad Elektrotechniczny 99: 123-
128.

How to cite this article: Abdulrazaq, Z. A., Ayoub, H. G., and
Ayoub, H. Synergistic Construction of High-Performance S-Boxes
Based on Chaotic Systems: A Paradigm Shift in Cryptographic
Security Design. Chaos and Fractals, 2(2), 43-49, 2025.

Licensing Policy: The published articles in CHF are licensed un-
der a Creative Commons Attribution-NonCommercial 4.0 Interna-

tional License.
BY NC

Chaos and Fractals

49


https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

ANDE=VA
Chaos and Fractals

Cutting-Edge Scientific Solutions

e-ISSN: 3023-8951

RESEARCH ARTICLE

Vol.2 / No.2 /2025 / pp.50-58
https://doi.org/10.69882/adba.chf.2025074

Partial Prey Migration as a Non-autonomous Harmonic
Oscillator: Chaos-Order Transitions in a Forced
Classical Lotka-Volterra Model

Safieddine Bouali:*1

*University of Sfax, Faculty of Economics and Management, Department of Economics, Airport Rd. 14, K 4, Tunisia.

KEYWORDS

ABSTRACT | investigate how partial prey migration cycles, analogous to a non-autonomous harmonic
oscillator, force the classical Lotka-Volterra model and reshape predator-prey interactions. A 3D nonlinear
system is introduced, into which the external forcing replicates the entry and exit of partial migrants from the
ecosystem, devoid feedback loops. Numerical simulations reveal an elusive resilience contour of the species
interplay under stationary migration cycles. Thus, quasi-periodic and chaotic fluctuations appear at a minimum
migration magnitude, vanishing beyond a bifurcation-induced tipping point. However, resilient interactions
surge in localized hotspots, i.e., narrow regions of phase space and forcing intensity. It is striking to note that
the detected chaos exhibits a threefold complexity related to migration magnitude, initial conditions, and a
functional response parameter, implying a basin of attraction intertwined at fractal boundaries. In contrast, the
resilience non-monotonicity fades due to ascending cycles of partial prey migration involving recruitment of a
cohort of migrants by its resident species. In this case, chaos is suppressed, leading to predictable oscillations
and phase-locking. Even extreme predator-prey ratios (e.g., 10:1) do not endanger prey. Despite its parsimony,
the framework offers a tractable prototype with broader ecological applicability for studying how exogenous
forcings (e.g., climate-driven phenology), can alter ecosystems.

Non-
autonomous
oscillator
Classical Lotka-
Volterra model
Partial migration-
driven dynamics
Chaos-Order
Resilience

INTRODUCTION

Many resident wildlife species share their habitat seasonally with
their migrating conspecifics, a phenomenon called partial mi-
gration (Kaitala et al. 1993; Chapman et al. 2011; Lundberg 2013;
Hansen et al. 2019; Peller et al. 2022). However, the periodic group-
ing of residents and migrants of the same species, observed partic-
ularly for prey, intrigues ecologists (De Leenheer et al. 2017). A key
question that has been the foci of much research is that of the exis-
tence of asymptotical stable predator-prey interactions under weak
prey immigration (Tahara et al. 2018; Alebraheem 2021; Kangalgil
and Isik 2022; Alebraheem et al. 2024). Nevertheless, the dual role
of partial migration (immigration and emigration) has been largely
overlooked.
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Here, I investigate how periodic waves of partial prey migra-
tion, akin to oscillatory forcing, reshape predator-prey dynamics.
First, I introduce a minimalist yet ecologically grounded, dynam-
ical system based on the classical Lotka-Volterra model (Lotka
1925; Volterra 1926), explicitly designating the interacting prey
and predators as resident species. Despite idealized assumptions
(e.g., exponential prey growth), it offers unparalleled mathematical
parsimony, considering only essential functional responses, thus
avoiding being engulfed by confounding factors such as refuges,
Allee effects, or density-dependence processes (De Leenheer et al.
2017). Consequently, the role of partial prey migration as a forcing
term becomes clearly discernible. Second, I formulate migration
waves determined by the fitness of partial migrants, in accordance
with empirical ecological studies (Alerstam et al. 2007; Vergara
et al. 2007; Briedis et al. 2018; Nussbaumer et al. 2021, 2022). Hence,
for both immigration and emigration, the fastest and fittest indi-
viduals lead, followed by slower, less fit stragglers, producing a
staggered and velocity-dependent migratory flow. With this in
mind, I define a simple harmonic oscillator (Gottlieb and Pfeiffer
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2013) as an ansatz, to capture the momentum of the entry/exit
dynamics of partial migration cycle related to the targeted habi-
tat zone. Finally, I propose a parsimonious heuristic framework
that encompasses the Lotka-Volterra model for resident prey and
predator species and an oscillator for partially migratory prey, in a
non-autonomous 3D system (Ashwin et al. 2017), allowing a nu-
merical exploration of how their interplay modulates ecosystem
resilience (Holling 1973; Peterson et al. 1998; Scheffer et al. 2001;
Doherty et al. 2000; Dakos et al. 2015).

However, to probe its limits of sustainability, I adopt a simple
definition: species interactions are resilient if they resist, absorb,
or readjust to disturbances without collapsing over a specified
very long period; otherwise, they are not resilient or experience
precarious resilience. Specifically, I investigate whether variation
in the magnitude of a stationary partial migration cycle could trig-
ger a regime shift, along with the expected early warning signals
(Guttal and Jayaprakash 2008; Scheffer et al. 2009; Carpenter et al.
2011; Evers et al. 2024). Using basic numerical tools (e.g., phase
portraits, Poincaré maps), I characterize the resulting regime spec-
trum. Furthermore, I search for hotspots, i.e., regions in phase
space exhibiting resilient species interactions, while the ecological
ecosystem is under extreme prey migration pressure. Indeed, I test
whether certain initial abundances of resident species can prevent
ecosystem collapse in such a case.

Simulations of scenarios in which a net cohort of migratory prey
switches to a sedentary behavior at each cycle are also performed.
Indeed, flexible strategies have been observed in a significant num-
ber of species, where individuals can adopt either migratory or
sedentary behavior (Brodersen et al. 2014). Thus, I explore the
dynamical regimes induced by such partial prey migration with
increasing cyclical trends, replenishing resident species. These
results will be contrasted to those obtained under a stationary mi-
gratory cycle, where immigrant and emigrated prey populations
are balanced, viewed through the lens of ecosystem resilience.

The paper is organized as follows. Section II introduces the
heuristic framework and the tractable system, with ecological and
mathematical grounds. Section III numerically explores partial
migration scenarios (stationary and ascending cycles) and their im-
plications for species interactions and ecosystem resilience. Section
IV presents concluding remarks.

THE HEURISTIC FRAMEWORK

Several theoretical frameworks can be applied to explore the inter-
play of partially migratory prey with already interacting resident
prey and predator species, depending on the type of inter- and
intra-specific functional responses and environmental complexities.
For the sake of simplicity, I selected the pioneering classical Lotka-
Volterra model for my study, forcing it via a non-autonomous
elementary harmonic oscillator, analogous to partial migration.

The Classical Lotka-Volterra Model: “stylized facts” of the Resi-
dent Predator-Prey Interactions

The classical Lotka-Volterra model (CLV) selected overly simplistic
functional responses and idealized assumptions, but it remains
relevant to illustrate the “stylized facts” of predator-prey inter-
actions. Hence, such “idealizations may be far from the truth,
without being epistemically inadequate” (Elgin 2004), and it is
therefore well-grounded that the CLV constitutes a building block
of a heuristic framework. It also specifically describes interac-
tions between resident species, although the terms “resident” and
“sedentary” are not used in CLV-related studies unless otherwise
stated. Indeed, Volterra had clearly expressed its intention: “let
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us suppose we have two species living in the same environment”
(Volterra 1931). Written as a pair of first-order ordinary differential
equations, the CLV incorporates parameters (Table 1) describing
the interactions between species as follows:

dx

at x(a — By) O
dy _
a5 = Yo —pux)

where x(t), and y(t) are the population of prey and predator,
respectively.

Table 1 The Parameters of the Classical Lotka-Volterra Model

Parameter Description

« Per capita birth rate of prey in the absence of preda-
tors

B Rate of fatal encounters between predator and prey

@ Intrinsic mortality rate of predators in the absence

of prey
Reproduction rate of predator per prey

Rate of converting ingested prey biomass into preda-
tor offspring

™=

The model has two solutions:

So(x,y) = (0,0) and

Si0y) = (2, ﬁ)
1(x,y) ( u' B

Linearization states that Sy is a saddle point and S; behaves
either as a center or as a spiral point. Excluding the trivial so-
lution Sy, and under usual initial conditions of strictly positive
populations, the prey and predator populations exhibit stable oscil-
lations without converging to S1, thus defining a limit-cycle in the
phase portrait. These interactions are inherently resilient, as they
do not lead to ecological collapse. For instance, with parameters
Py(a, B, ¢, 1) = (0.2,0.6,1,0.3), the solutions are the origin and

siow) = (33)

Figure 1 illustrates these fluctuations when the model is param-
eterized with Py and the initial condition ICy(xg,yo) = (0.7,0.3)
differs from the two solutions.

Figure 1 The Classical Lotka-Volterra prey-predator model. Pa-
rameters Py(a, B, ¢, 1) = (0.2,0.6,1,0.3) and initial condition
ICo(x0,y0) = (0.7,0.3). (a) Time series of resident populations
of prey x (blue line) and predator y (red line) up to t = 200, and (b)
their limit-cycle in the phase portrait.
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By considering these interactions as those of resident prey and
predator species in an open ecosystem, I introduce the partial
migration cycle of prey as an oscillatory mechanism.

A Non-autonomous Harmonic Oscillator as an Analogue of Partial
Prey Migration

Inspired by empirical ecological studies, I propose a simplified
non-autonomous harmonic oscillator that describes partial prey
migration, where x,, (t) represents the accumulation of migrants
in the habitat area and M(¢) its velocity at time ¢:

dx

4xm _— /\

dt M (2)
dd—j\f = Acos(Qt)

Table 2 The forcing parameters (all positive)

Parameter Description

A Control parameter of the migration coupling
A Amplitude of migration velocity
Q Forcing frequency

Technically, the velocity M is the derivative of the correspond-
ing innate momentum, i.e. the increment/reduction of partial
migrants within the ecosystem. Additionally, the cosine function
governs the Hamiltonian flow, shaping the partial migration cycle
of prey. Although it is easy to avoid such a non-autonomous
velocity vector by introducing a third dependent variable, I keep
time t as an explicit variable, with mathematical parsimony
guiding this study. Thus, the Hamiltonian of this purely linear
oscillator has the formulation:

H(xm, M, t) = 3 M2(t) — Acos(Qt)xp

H(x, M, t) represents the total energy of the oscillator, which is
the sum of its kinetic energy and potential energy, respectively.

For M = 0, the Hamiltonian is not conserved due to time-
dependent forcing, but conservative, which gives periodic orbits in
the phase space (x,;, M). For values of M, it is also not conserved,
but non-conservative with energy growth, exhibiting spirals with
drift.

It follows that, in general cases, the exact solutions of (2) are:

X () = AMo(t) + A &5 (1 — cos(Qt))M(t) = My + £ sin(Qt)

By setting A = Q = 1, and the initial condition
(xm,Mog) = (0,0), ie., zero population of migrants, and a
null increment at fy, x,, () varies sensitively with A:

Xm(t) = A(1 — cos(t)), M(t) = sin(t)

The series of regular migratory waves encapsulates the transient
occupancy of the habitat area according to the stable period of these
oscillations, regardless of the parameter A. More precisely, the
increment M varying in the interval [-1, 1] drives both facets of the
cycle, i.e. immigration and emigration, by its positive and negative
ranges respectively. First, strictly positive M values govern the
entry of partial migrants in the habitat area in two steps. As
M increases from 0 to 1, the number of immigrants rises at an
increasing pace. Conversely, as M decreases from 1 to 0, it also
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rises, but at a decreasing pace, reaching zero. The immigrant
population has thus reached its maximum level, marking the end
of migratory entry into the ecosystem and thus the first facet of
the cycle. Second, strictly negative M values govern the exit of
partial migrants from the habitat area, also in two steps. When M
varies from 0 to -1, and given its absolute value, the number of
emigrants rises at an increasing velocity. On the other hand, when
M varies from -1 to 0, and also given its absolute value, it rises but
at a decreasing velocity until reaching zero. Thus, the withdrawal
process is fully realized, signaling that all emigrants have left the
ecosystem. With this second facet, the entire migratory cycle is

completed (Figure 2).
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Figure 2 The M-velocity waveform shapes both facets of the migra-
tion cycle. lllustration with the initial condition (x,,(0), My) = (0,0)
for the cycle n°1. a) Positive values of M drive the migrant popu-
lation x,, (t) into the ecosystem at an increasing (box 1) and then
decreasing (box 2) pace. Conversely, negative values withdraw mi-
grants xm(t) from the ecosystem at an increasing (box 3) and then
decreasing (box 4) velocities given their absolute values. (b) Bell-
curve of partial migrants x,, () in the habitat area. After reaching its
maximum number, the migration process reverses and all have left
the ecosystem at the end of the cycle.

With momentum kept unchanged, with My = 0 and A = Q)
= 1 the partial migrant population increases significantly with
magnitude A. Indeed, for several values of A € € {0.1, 0.2, 0.5,
0.7, 1}, the migratory cycle exhibits higher amplitudes (Figure
3a). Therefore, the phase portrait of the accumulation of partial
migrants x,, as a function of the velocity M, with the corresponding
A value, exhibits periodic orbits. Figure 3b illustrates, for the
selected set of A, these cycles in phase space, where the (M, x;;)
plot moves in counterclockwise orbits from the origin.

X7 g

@)

Figure 3 Partial prey migration cycles with A = () = 1, and the initial
condition (My, x,4(0)) = (0,0) up to t = 50. (a) Accumulation of
partial migrants x;; vs. time for selected values of the magnitude A
€ {0.1,0.2, 0.5, 0.7, 1}. (b) Their phase portraits where (M, x,, ) plot
rotates 27t counterclockwise from the origin to complete a partial
migration cycle.
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The Unified Model

Consider the non-autonomous 3D system where x(t) and y(t) are
the abundances of prey and predators respectively, and M(t) the
velocity /displacement of migratory prey within the ecosystem. It
is formulated as follows:

2= x(a—By) +AM

@ =-v(p—px) ®)
‘;—Af = Acos(Ot)

where «, B, ¢ and y, parameters identical to those of the CLV
(see Table 1), and A, A, and (), parameters of the forcing oscillator.
(see Table 2). When A = 0, the system is reduced to the unforced
CLYV, exhibiting neutral oscillations around an equilibrium. For
A > 0, prey migration driven by oscillatory forcing is enabled
in the first equation by the term AM, where A adapts its impact.
From then on, the system becomes non-autonomous via cos(Q)
according to the mechanism introduced in the previous sub-section.
For small A, the system can be approximated using perturbation
methods. I obtain:

dx A .
i x(a — By) + )\6 sin( Q)

, where
A
M(t) = My + a sin(Qf)

As formulated in the first equation, the migrants avoid lethal en-
counters with predators upon entering the ecosystem and are
therefore not affected by the parameter 8. They are expected to be
moving targets, more vigilant in their new environment, and it will
inevitably be difficult for a predator to surprise them. Although
studies have reported greater predation avoidance in partial mi-
grants than in residents (Skov et al. 2013; Zaiiga et al. 2017; Berg
et al. 2023), in the presented system, this immediate survival of
migrants within the ecosystem is lost at the next step, i.e., the itera-
tion at t+1. This cohort is then faced with a lethal encounter rate
B and a predator conversion rate y identical to those of resident
prey, as indicated in the second equation. Regarding the third
equation, technically, the forcing injects/removes prey periodi-
cally into the CLV without a feedback loop from its state variables.
Therefore, the system no longer distinguishes between migratory
prey and residents that interact together with the resident preda-
tor. In the following, I numerically simulate the non-autonomous
three-dimensional ODE system in order to evaluate its resilience
with the 4th-order Runge-Kutta method.

NUMERICAL RESULTS

To scrutinize the dynamical regimes of the system, predator-prey
interactions are considered resilient if they persist until at least
t = 10°. Otherwise, they are not resilient if they collapse before
t = 10*, and resilience is precarious for t € [10%,10°]. In the first
analysis, the magnitude A serves as the control parameter for the
stationary partial migration cycle. Specifically, A is categorized
as follows: low migration intensity for 0 < A < 0.5, moderate
intensity for 0.5 < A < 2, and massive intensity for A > 2. The
second analysis examines partial prey migration cycles with a
positive trend. All simulations use fixed parameters A = ) = 1.

Stationary Cycles of Partial Prey Migration Imply Elusive Ecosys-
tem Resilience

By setting My = 0, the partial prey migration adheres to a station-
ary cycle fully anchored in recurring dates, exhibiting identical
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waveform movements. Hence, the number of immigrants and
emigrants must be roughly balanced. This constraint implies that
losses of partial migrants due to predation within the ecosystem
are compensated either by reproduction or by recruitment of a
cohort of residents.

Figure 4 provides a direct comparison of partial migrating prey
Xm(A) for selected A magnitudes and resident prey abundance
when the CLV and the partial prey migration oscillator are not
yet connected. I find that a single cycle of resident prey-predator
interactions encompasses three migration pulses, allowing us to
explore the resilience limits of the system. Further studies should
consider A and () as control parameters.

Figure 4 Accumulations of partially migratory prey X, (A) for
the magnitudes A € {0.5,1,2,3} and of resident prey X, be-
fore forcing the CLV by the oscillator upto t = 50. CLV pa-
rameters Py(a, B, ¢, 1) = (0.2,0.6,1,0.3), and initial condition
ICy(x0,50) = (0.7,0.3). Initial condition of the partial migration
oscillator (Mg, X;,(0)) = (0,0).

Dependence on the magnitude parameter A

In the first set of simulations, the weak coupling of the oscillator
leads to immediate non-periodic fluctuations in species popula-
tions. As shown in Figure 5, for A = 0.1 and 0.2, the time series
of x(t) and y(t), and in particular the phase portraits of the state
variables (x, ) suggest asymptotically unstable oscillations under
parameters Py(«, B, ¢, 1) = (0.2,0.6,1,0.3) and the initial condition
ICO(Xo, Yo, Mo) = (0.7, 0.3, 0).

Furthermore, the Poincaré sections, plotted when M = 0 (i.e,,
at the precise moments of the beginning and end of the partial
migration cycles, as well as at the moments separating immigra-
tion and emigration), illustrate the complex trajectory of species
populations.

These fluctuations persist resiliently for A in the interval
10, 0.22[. However, a slight increase in coupling, i.e., a partial
migration magnitude varying only by AA = 0.01, results in an
almost immediate vanishing of predator-prey interactions, signal-
ing a critical transition. Since the catastrophic event results from
the continuous change in A, the system has crossed a bifurcation-
induced tipping point (or B-tipping).

Starting with the sudden and drastic change at the critical
value A, = 0.23 and for slightly higher values, interactions exhibit
volatile dynamics and therefore do not even reach the threshold
of precarious resilience. For example, at A = 0.5, species become
extinct around t ~ 170 as shown in Figure 6. The upward align-
ment of the last four prey population peaks may suggest an early
warning signal of impending ecosystem collapse.
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Figure 5 Numerical simulations with parameters Py(a, B, A, ¢, i) =
(0.2,0.6,A,1,0.3) and initial condition ICy(x, yo, Mp) = (0.7,0.3,0).
(a) Time series of x and y (prey and predator abundances respec-
tively) first t = 200 (b) Phase portrait of state variables x and y (c)
Poincaré maps (M = 0) Panel A: A = 0.1. Panel B: A = 0.2.

J\U i “{\/

Figure 6 Time series of prey and predator accumulations, x and
y respectively, for magnitude A = 0.5 of partial prey migration.
The collapse occurs at t ~ 170. Parameters Py(«, B, A, ¢, 1) =
(0.2,0.6,0.5,1,0.3), and the initial condition I1Cy(xq, yo, My) =
(0.7,0.3,0).

3.8

Surprisingly, resilient interactions are restored within very
narrow windows of A. These hotspots are scattered and de-
tected in small numbers under the aforementioned parame-
ters Py(a, B, ¢, ) = (0.2,0.6,1,0.3), and the initial condition
ICo(x0,y0, Mp) = (0.7,0.3,0). Figure 7 presents time series of prey
and predator accumulations, x and y respectively, phase portraits
and Poincaré maps (M = 0) for some of the identified magni-
tudes, e.g., A € {0.7,1,1.5}, which exhibit rare resilient interac-
tions. Indeed, to avoid prey extinction and therefore predator
starvation, a key condition to ensure ecosystem resilience must be
met: AM(#) > x(a — By).

Dependence on initial conditions of the species populations and
parameter a

The proposed system also exhibits extreme sensitivity to the initial
sizes of resident species, as interactions can abruptly disappear
even after small changes. Indeed, the resilient regimes shown in
Figure 7 rapidly collapse when ICy(xg, Yo, Mp) = (0.7,0.3,0) is
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Figure 7 Hotspots of resilient quasi-periodic or chaotic dynamics in
a very narrow window of magnitude A. Numerical simulations with
parameters Py(«, B, ¢, ) = (0.2,0.6,1,0.3) and initial condition
ICo(x0,y0, Mp) = (0.7,0.3,0). (a) Time series of x and y, the
abundances of prey and predators, respectively, for the first 200
iterations. (b) Phase portrait of x and y. (c) Their Poincaré map

(M = 0). Panel A: A = 0.7, Panel B: A =1, Panel C: A = 1.5

adjusted to ICq(xg,y0, Mo) = (0.6,0.2,0), while the parameters
remain unchanged. Conversely, the volatile dynamics illustrated
in Figure 6 for A = 0.5 becomes resilient when the initial con-
ditions are slightly shifted from ICy(xo, yo, Mo) = (0.7,0.3,0) to
ICy(x0,y0, Mp) = (0.9,0.3,0), as illustrated in Figure 8, panel A.
It is also worth mentioning the significant dependence on prey
birth rate, the parameter a. For example, the collapsed regime
mentioned in Figure 6 becomes resilient when only the parameter
« varies from 0.2 to 0.5 (Figure 8, Panel B).

A threefold complexity of chaos

To characterize the chaotic nature of the system, the largest Lya-
punov exponent (LLE) is computed. Thus, the detection of a sin-
gle positive exponent among the three for a three-dimensional
system confirms the signature of chaos. As shown in Figure
9, the LLE spectra computed for A € [0,1.7] and the same D
parameters, but under two distinct initial conditions, namely
ICO(Xo, Yo, Mo) = (0.7, 0.3, 0) and IC1 (XO, Yo, Mo) = (0.9, 0.3, 0),
state the hallmark of chaos.

Alongside this, the dissimilarity of LLE spectra provides com-
pelling evidence of sensitive dependence on initial conditions.
Furthermore, sawtooth-shaped spectra with steep peaks and dips
are likely indicators of tipping points and thus express regime
shifts (Nazarimehr et al. 2017), either in response to the varia-
tion of the parameter A or to the initial conditions. The three
dependencies of the system under A, the initial conditions, and the
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Figure 8 Sensitive dependencies on the initial sizes of species and
the parameter «. (a) Time series of state variables x and y, the prey
and predator populations, respectively; first t = 200, (b) the corre-
sponding phase portrait, and (c) Poincaré map after transients died
down. Panel A: Parameters Py(«a, B, A, ¢, 1) = (0.2,0.6,0.5,1,0.3)
and ICy(xo, o, Mp) = (0.9,0.3,0). Compare with collapsed regime
in Figure 6 with ICy(xo, yo, Mo) = (0.7,0.3,0). Panel B: Parame-
ters Py(a, B, A, ¢, u) = (0.5,0.6,0.5,1,0.3) and ICy(xg, yo, My) =
(0.7,0.3,0). Compare with the same collapsed regime in Figure 6
where ¢ = 0.2.

functional response parameters « might be expected to entail an
intertwined and highly entangled basin of attraction, delimited by
fractal boundaries.

TLargest Lyapunov Exponent Largest Lyapunov Exponent

e

oo
IC(o: Yo. Mo) = (0.9. 0.3, 0)

IC (Xo. Yo. Mo) = (0.7, 03, 0)
0.002-

§ o % [ s 5 o [ [ T A

Figure 9 Largest Lyapunov exponent (LLE) spectra computed for
migration magnitude A varying in the range [0,1.7]. Py(«, B, ¢, 1) =
(0.2,0.6,1,0.3), and two distinct initial conditions. (a) LLE spectrum
with ICy(xg, yo, Mp) = (0.7,0.3,0). (b) LLE spectrum recomputed
with ICq (xq, Yo, Mo) = (0.9, 0.3,0).

Upward Cycles of Partial Prey Migration Preserve Ecosystem
Resilience

In scenarios where M has strictly positive values,and A = A =
Q) = 1, partial prey migrations exhibit upward cycles. Thus, a
number of partially migratory prey are recruited by its resident
species in the habitat area during each cycle (Figure 10).

The velocity M(t), or augmentation/reduction of migrants,
varies in the range [—1 + My, 1 + M), as shown for example in
Figure 11a for several values of My € {0,0.5,1,2}. Furthermore,
Figure 11b illustrates the cycles of partial migrants X,,(My) for
the selected values of My compared to the abundance of resident
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Figure 10 A net cohort of migrants settles in the ecosystem each
cycle. Time series of partial prey migration upto t ~22. A =1 and
initial condition Xm(t, Mp) = (0,0.1).

prey X;, already interacting with the predator, before coupling. In
the following, still with A = 1 and considering My as a control pa-
rameter, I examine how ascending cycles of partial prey migration
shape overall ecosystem dynamics and thus its resilience. Here,
the recruitment is considered low for 0 < My < 0.2, moderate for
0.2 < Mp <1, and massive for higher values.
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Figure 11 Upward cycles for several My values and corresponding
abundances of partial migratory prey. The migratory prey population
is governed by a stationary cycle when M, = 0, and by upward cy-
cles when M > 0. Parameters: A = A = Q) = 1, and initial condi-
tion (Xm, My) = (0, Mp), till £ = 50. (a) M(¢t) for My € {0,0.5,1,2},
and (b) time series of X,,(My) for the selected M compared with
the resident prey population X, already interacting with predators,
before coupling. Parameters Py(«, 8, ¢, #) = (0.2,0.6,1,0.3), and
the initial condition ICy(xo, o) = (0.7,0.3).
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Double-peaked fluctuations and phase-locking

Numerical computations reveal pronounced periodic double-
peaked fluctuations in the prey population for My € {0.1,0.2},
resulting in characteristic orbits in the phase portraits (Figure 12).
This pattern is derived from the asynchrony between the waxing
and waning of resident and partially migratory prey populations,
associated to the recruitment of a cohort of migrants by the resident
population each cycle. As My increases from 0.1 to 0.2, both prey
and predator populations show slow but steady growth, observed
across the entire range of M € [0,0.2].

In the next, broader range of My € [0.2,1], and after transients
died down, the populations of both species increase and maintain
stable fluctuations, adopting regular wave patterns. These partial
migration cycles with moderate recruitment introduce a significant
stabilizing effect on intrinsic species interactions. Indeed, for My
equal to 0.5 and 1, phase portraits exhibit periodic orbits, confirm-
ing that newly settled migrants do not jeopardize the ecosystem
resilience (Figure 13). More specifically, the time series reveal a
characteristic phase locking, with the predator population peak
lagging at approximately a quarter cycle (90°) compared to that of
the prey. This type of asynchronous fluctuations is consistent with
the literature on in-phase, anti-phase, and phase-locking synchro-
nizations in coupled-species oscillators (Winfree 1967; Vandermeer
2006; Vasseur and Fox 2009; Smirnov and Pikovsky 2024).

. I/
N —

Figure 12 Double-peaked prey and predator populations with low
recruitment. Dynamical regimes with weak ascending cycles of the
partial migration. Py(a, B, A, ¢, ) = (0.2,0.6,1,1,0.3) and initial
condition (xg, yo, Mg) = (0.7,0.3, Mp). (a) Time series of the prey
and predator populations up to t = 200, and (b) their phase portraits
after transients died down. Panel A: My = 0.1. Panel B: My = 0.2.

“Catching up” and overtaking game for massive recruitment

The partial migration of prey exhibiting extreme upward cycles
stabilizes, as in the previous cases, the species populations and
induces limit cycles (Figure 14). It is noteworthy that a “catching
up” process between the prey and predator populations occurs,
balancing them at My = 6.05.

The predator species experiences a phenomenal increase in
abundance due to the recurrent and strong recruitment of immi-
grant prey, via the conversion rate of ingested prey into predatory
offspring. This process, observed for example at the invasive level
of My = 80, leads to a predator population exceeding tenfold that
of the prey. Although this ratio may suggest that the resident prey
is an endangered species, the settlement of partially migratory
prey replenishes the residents each cycle and thus prevents their
extinction.
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Figure 13 Phase locking of predator and prey populations by ap-
prox. one-quarter cycle (90°) for moderate recruitment. Parame-
ters Py(a, B, A, ¢, u) = (0.2,0.6,1,1,0.3) and the initial condition
(x0,y0, Mp) = (0.7,0.3, Mp). (a) Time series of prey and predator
populations up to t = 200, and (b) their limit cycle in phase space.
Panel A: My = 0.5. Panel B: My = 1.

This result is consistent with the seminal contribution of Levins
(1969), and the source-sink habitats of the metapopulation ap-
proach (Holt 1985; Hanski 1999; Taylor and Hall 2012). Indeed, Pul-
liam (1988) notes that in sink areas: “the population may persist in
such habitats, being locally maintained by continued immigration
from more productive ‘source” areas nearby.” Here, no discontinu-
ity in ecosystem resilience is detected for My > 0 of partial prey
migration cycles since the domain of attraction envelops the entire
phase space.
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Figure 14 The predator population approaches, catches up

with, and then overtakes the prey population. Parameters

Po(a, B, A, @) = (02,06,1,1,0.3) and initial condition

(x0,v0, Mo) = (0.7,0.3, Myp). (a) Time series of prey and preda-
tor populations up to t = 200, and (b) associated limit cycle in the
phase space after transients died down. Panel A: My = 2. Panel B:
My = 6.05. Panel C: My = 10. Panel D: My = 80.
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CONCLUSION

In this study, I focused on the magnitude and trend of the cycle,
two key dimensions of partial prey migration, conceptualized as
an oscillatory mechanism. Thus, the proposed system uncovered a
striking dichotomy: partial migration acts as a dual driver of chaos
and order in open ecological ecosystems. Hence, even a low mag-
nitude of stationary migratory cycles inject critical instability into
predator-prey interactions, fostering resilient chaos that persists un-
til the migration magnitude crosses a bifurcation-induced thresh-
old. Beyond this B-tipping, collapse ensues, yet chaos resurges
in localized hotspots, suggesting fractal basin boundaries and a
non-monotonic dependence on magnitude, initial conditions and
a parameter.

Such behavior mirrors the sensitive dependence of driven oscil-
lators, where minute parameter shifts precipitate phase transitions.
Conversely, upward-trending cycles suppress the risk of ecosystem
collapse, stabilizing interactions in predictable limit cycles even
leading to phase synchronizations. This chaos-to-order transition
challenges conventional views on the destabilizing role of immi-
gration, positioning flexible migratory behavior as a key ecological
parameter. Indeed, the route from chaotic regimes, ecosystem
extinction, and elusive resilience to the realm of order is simply
unlocked when the trend in partial prey migration cycles becomes
strictly positive, even slightly. This dichotomy echoes a critical
phenomenon in oscillatory systems, where the sign of the trend
(positive or neutral) determines whether dynamics converge to-
ward equilibrium or diverge into turbulence.

Mainly, I acknowledge deliberate simplifications of the intro-
duced heuristic framework, such as multiple waves of partial
migration for a single predator-prey interaction cycle. It neverthe-
less provides a preliminary and tractable prototype for a valuable
approximation of how exogenous pulses trigger bifurcation-like
behaviors (e.g., climate-induced phenological changes). Framing
migration as a forced oscillator underscores its capacity to recon-
figure entire food webs, including protected habitats. The tractable
system is also fully valid for being forced via its second equation
by the oscillator of a partially migratory predator with a similar or
delayed cycle. In further studies, incorporating a latency period
to account for resident species interactions outside of partial mi-
gration cycles may prove more realistic. Therefore, future works
could potentially unveil new complex regimes.
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