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ABSTRACT | investigate how partial prey migration cycles, analogous to a non-autonomous harmonic
oscillator, force the classical Lotka-Volterra model and reshape predator-prey interactions. A 3D nonlinear
system is introduced, into which the external forcing replicates the entry and exit of partial migrants from the
ecosystem, devoid feedback loops. Numerical simulations reveal an elusive resilience contour of the species
interplay under stationary migration cycles. Thus, quasi-periodic and chaotic fluctuations appear at a minimum
migration magnitude, vanishing beyond a bifurcation-induced tipping point. However, resilient interactions
surge in localized hotspots, i.e., narrow regions of phase space and forcing intensity. It is striking to note that
the detected chaos exhibits a threefold complexity related to migration magnitude, initial conditions, and a
functional response parameter, implying a basin of attraction intertwined at fractal boundaries. In contrast, the
resilience non-monotonicity fades due to ascending cycles of partial prey migration involving recruitment of a
cohort of migrants by its resident species. In this case, chaos is suppressed, leading to predictable oscillations
and phase-locking. Even extreme predator-prey ratios (e.g., 10:1) do not endanger prey. Despite its parsimony,
the framework offers a tractable prototype with broader ecological applicability for studying how exogenous
forcings (e.g., climate-driven phenology), can alter ecosystems.
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INTRODUCTION

Many resident wildlife species share their habitat seasonally with
their migrating conspecifics, a phenomenon called partial mi-
gration (Kaitala et al. 1993; Chapman et al. 2011; Lundberg 2013;
Hansen et al. 2019; Peller et al. 2022). However, the periodic group-
ing of residents and migrants of the same species, observed partic-
ularly for prey, intrigues ecologists (De Leenheer et al. 2017). A key
question that has been the foci of much research is that of the exis-
tence of asymptotical stable predator-prey interactions under weak
prey immigration (Tahara et al. 2018; Alebraheem 2021; Kangalgil
and Isik 2022; Alebraheem et al. 2024). Nevertheless, the dual role
of partial migration (immigration and emigration) has been largely
overlooked.
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Here, I investigate how periodic waves of partial prey migra-
tion, akin to oscillatory forcing, reshape predator-prey dynamics.
First, I introduce a minimalist yet ecologically grounded, dynam-
ical system based on the classical Lotka-Volterra model (Lotka
1925; Volterra 1926), explicitly designating the interacting prey
and predators as resident species. Despite idealized assumptions
(e.g., exponential prey growth), it offers unparalleled mathematical
parsimony, considering only essential functional responses, thus
avoiding being engulfed by confounding factors such as refuges,
Allee effects, or density-dependence processes (De Leenheer et al.
2017). Consequently, the role of partial prey migration as a forcing
term becomes clearly discernible. Second, I formulate migration
waves determined by the fitness of partial migrants, in accordance
with empirical ecological studies (Alerstam et al. 2007; Vergara
et al. 2007; Briedis et al. 2018; Nussbaumer et al. 2021, 2022). Hence,
for both immigration and emigration, the fastest and fittest indi-
viduals lead, followed by slower, less fit stragglers, producing a
staggered and velocity-dependent migratory flow. With this in
mind, I define a simple harmonic oscillator (Gottlieb and Pfeiffer
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2013) as an ansatz, to capture the momentum of the entry/exit
dynamics of partial migration cycle related to the targeted habi-
tat zone. Finally, I propose a parsimonious heuristic framework
that encompasses the Lotka-Volterra model for resident prey and
predator species and an oscillator for partially migratory prey, in a
non-autonomous 3D system (Ashwin et al. 2017), allowing a nu-
merical exploration of how their interplay modulates ecosystem
resilience (Holling 1973; Peterson et al. 1998; Scheffer et al. 2001;
Doherty et al. 2000; Dakos et al. 2015).

However, to probe its limits of sustainability, I adopt a simple
definition: species interactions are resilient if they resist, absorb,
or readjust to disturbances without collapsing over a specified
very long period; otherwise, they are not resilient or experience
precarious resilience. Specifically, I investigate whether variation
in the magnitude of a stationary partial migration cycle could trig-
ger a regime shift, along with the expected early warning signals
(Guttal and Jayaprakash 2008; Scheffer et al. 2009; Carpenter et al.
2011; Evers et al. 2024). Using basic numerical tools (e.g., phase
portraits, Poincaré maps), I characterize the resulting regime spec-
trum. Furthermore, I search for hotspots, i.e., regions in phase
space exhibiting resilient species interactions, while the ecological
ecosystem is under extreme prey migration pressure. Indeed, I test
whether certain initial abundances of resident species can prevent
ecosystem collapse in such a case.

Simulations of scenarios in which a net cohort of migratory prey
switches to a sedentary behavior at each cycle are also performed.
Indeed, flexible strategies have been observed in a significant num-
ber of species, where individuals can adopt either migratory or
sedentary behavior (Brodersen et al. 2014). Thus, I explore the
dynamical regimes induced by such partial prey migration with
increasing cyclical trends, replenishing resident species. These
results will be contrasted to those obtained under a stationary mi-
gratory cycle, where immigrant and emigrated prey populations
are balanced, viewed through the lens of ecosystem resilience.

The paper is organized as follows. Section II introduces the
heuristic framework and the tractable system, with ecological and
mathematical grounds. Section III numerically explores partial
migration scenarios (stationary and ascending cycles) and their im-
plications for species interactions and ecosystem resilience. Section
IV presents concluding remarks.

THE HEURISTIC FRAMEWORK

Several theoretical frameworks can be applied to explore the inter-
play of partially migratory prey with already interacting resident
prey and predator species, depending on the type of inter- and
intra-specific functional responses and environmental complexities.
For the sake of simplicity, I selected the pioneering classical Lotka-
Volterra model for my study, forcing it via a non-autonomous
elementary harmonic oscillator, analogous to partial migration.

The Classical Lotka-Volterra Model: “stylized facts” of the Resi-
dent Predator-Prey Interactions

The classical Lotka-Volterra model (CLV) selected overly simplistic
functional responses and idealized assumptions, but it remains
relevant to illustrate the “stylized facts” of predator-prey inter-
actions. Hence, such “idealizations may be far from the truth,
without being epistemically inadequate” (Elgin 2004), and it is
therefore well-grounded that the CLV constitutes a building block
of a heuristic framework. It also specifically describes interac-
tions between resident species, although the terms “resident” and
“sedentary” are not used in CLV-related studies unless otherwise
stated. Indeed, Volterra had clearly expressed its intention: “let
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us suppose we have two species living in the same environment”
(Volterra 1931). Written as a pair of first-order ordinary differential
equations, the CLV incorporates parameters (Table 1) describing
the interactions between species as follows:

dx

at x(a — By) O
dy _
a5 = Yo —pux)

where x(t), and y(t) are the population of prey and predator,
respectively.

Table 1 The Parameters of the Classical Lotka-Volterra Model

Parameter Description

« Per capita birth rate of prey in the absence of preda-
tors

B Rate of fatal encounters between predator and prey

@ Intrinsic mortality rate of predators in the absence

of prey
Reproduction rate of predator per prey

Rate of converting ingested prey biomass into preda-
tor offspring

™=

The model has two solutions:

So(x,y) = (0,0) and

Si0y) = (2, ﬁ)
1(x,y) ( u' B

Linearization states that Sy is a saddle point and S; behaves
either as a center or as a spiral point. Excluding the trivial so-
lution Sy, and under usual initial conditions of strictly positive
populations, the prey and predator populations exhibit stable oscil-
lations without converging to S1, thus defining a limit-cycle in the
phase portrait. These interactions are inherently resilient, as they
do not lead to ecological collapse. For instance, with parameters
Py(a, B, ¢, 1) = (0.2,0.6,1,0.3), the solutions are the origin and

siow) = (33)

Figure 1 illustrates these fluctuations when the model is param-
eterized with Py and the initial condition ICy(xg,yo) = (0.7,0.3)
differs from the two solutions.

Figure 1 The Classical Lotka-Volterra prey-predator model. Pa-
rameters Py(a, B, ¢, 1) = (0.2,0.6,1,0.3) and initial condition
ICo(x0,y0) = (0.7,0.3). (a) Time series of resident populations
of prey x (blue line) and predator y (red line) up to t = 200, and (b)
their limit-cycle in the phase portrait.
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By considering these interactions as those of resident prey and
predator species in an open ecosystem, I introduce the partial
migration cycle of prey as an oscillatory mechanism.

A Non-autonomous Harmonic Oscillator as an Analogue of Partial
Prey Migration

Inspired by empirical ecological studies, I propose a simplified
non-autonomous harmonic oscillator that describes partial prey
migration, where x,, (t) represents the accumulation of migrants
in the habitat area and M(¢) its velocity at time ¢:

dx

4xm _— /\

dt M (2)
dd—j\f = Acos(Qt)

Table 2 The forcing parameters (all positive)

Parameter Description

A Control parameter of the migration coupling
A Amplitude of migration velocity
Q Forcing frequency

Technically, the velocity M is the derivative of the correspond-
ing innate momentum, i.e. the increment/reduction of partial
migrants within the ecosystem. Additionally, the cosine function
governs the Hamiltonian flow, shaping the partial migration cycle
of prey. Although it is easy to avoid such a non-autonomous
velocity vector by introducing a third dependent variable, I keep
time t as an explicit variable, with mathematical parsimony
guiding this study. Thus, the Hamiltonian of this purely linear
oscillator has the formulation:

H(xm, M, t) = 3 M2(t) — Acos(Qt)xp

H(x, M, t) represents the total energy of the oscillator, which is
the sum of its kinetic energy and potential energy, respectively.

For M = 0, the Hamiltonian is not conserved due to time-
dependent forcing, but conservative, which gives periodic orbits in
the phase space (x,;, M). For values of M, it is also not conserved,
but non-conservative with energy growth, exhibiting spirals with
drift.

It follows that, in general cases, the exact solutions of (2) are:

X () = AMo(t) + A &5 (1 — cos(Qt))M(t) = My + £ sin(Qt)

By setting A = Q = 1, and the initial condition
(xm,Mog) = (0,0), ie., zero population of migrants, and a
null increment at fy, x,, () varies sensitively with A:

Xm(t) = A(1 — cos(t)), M(t) = sin(t)

The series of regular migratory waves encapsulates the transient
occupancy of the habitat area according to the stable period of these
oscillations, regardless of the parameter A. More precisely, the
increment M varying in the interval [-1, 1] drives both facets of the
cycle, i.e. immigration and emigration, by its positive and negative
ranges respectively. First, strictly positive M values govern the
entry of partial migrants in the habitat area in two steps. As
M increases from 0 to 1, the number of immigrants rises at an
increasing pace. Conversely, as M decreases from 1 to 0, it also
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rises, but at a decreasing pace, reaching zero. The immigrant
population has thus reached its maximum level, marking the end
of migratory entry into the ecosystem and thus the first facet of
the cycle. Second, strictly negative M values govern the exit of
partial migrants from the habitat area, also in two steps. When M
varies from 0 to -1, and given its absolute value, the number of
emigrants rises at an increasing velocity. On the other hand, when
M varies from -1 to 0, and also given its absolute value, it rises but
at a decreasing velocity until reaching zero. Thus, the withdrawal
process is fully realized, signaling that all emigrants have left the
ecosystem. With this second facet, the entire migratory cycle is

completed (Figure 2).
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Figure 2 The M-velocity waveform shapes both facets of the migra-
tion cycle. lllustration with the initial condition (x,,(0), My) = (0,0)
for the cycle n°1. a) Positive values of M drive the migrant popu-
lation x,, (t) into the ecosystem at an increasing (box 1) and then
decreasing (box 2) pace. Conversely, negative values withdraw mi-
grants xm(t) from the ecosystem at an increasing (box 3) and then
decreasing (box 4) velocities given their absolute values. (b) Bell-
curve of partial migrants x,, () in the habitat area. After reaching its
maximum number, the migration process reverses and all have left
the ecosystem at the end of the cycle.

With momentum kept unchanged, with My = 0 and A = Q)
= 1 the partial migrant population increases significantly with
magnitude A. Indeed, for several values of A € € {0.1, 0.2, 0.5,
0.7, 1}, the migratory cycle exhibits higher amplitudes (Figure
3a). Therefore, the phase portrait of the accumulation of partial
migrants x,, as a function of the velocity M, with the corresponding
A value, exhibits periodic orbits. Figure 3b illustrates, for the
selected set of A, these cycles in phase space, where the (M, x;;)
plot moves in counterclockwise orbits from the origin.

X7 g
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Figure 3 Partial prey migration cycles with A = () = 1, and the initial
condition (My, x,4(0)) = (0,0) up to t = 50. (a) Accumulation of
partial migrants x;; vs. time for selected values of the magnitude A
€ {0.1,0.2, 0.5, 0.7, 1}. (b) Their phase portraits where (M, x,, ) plot
rotates 27t counterclockwise from the origin to complete a partial
migration cycle.
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The Unified Model

Consider the non-autonomous 3D system where x(t) and y(t) are
the abundances of prey and predators respectively, and M(t) the
velocity /displacement of migratory prey within the ecosystem. It
is formulated as follows:

2= x(a—By) +AM

@ =-v(p—px) ®)
‘;—Af = Acos(Ot)

where «, B, ¢ and y, parameters identical to those of the CLV
(see Table 1), and A, A, and (), parameters of the forcing oscillator.
(see Table 2). When A = 0, the system is reduced to the unforced
CLYV, exhibiting neutral oscillations around an equilibrium. For
A > 0, prey migration driven by oscillatory forcing is enabled
in the first equation by the term AM, where A adapts its impact.
From then on, the system becomes non-autonomous via cos(Q)
according to the mechanism introduced in the previous sub-section.
For small A, the system can be approximated using perturbation
methods. I obtain:

dx A .
i x(a — By) + )\6 sin( Q)

, where
A
M(t) = My + a sin(Qf)

As formulated in the first equation, the migrants avoid lethal en-
counters with predators upon entering the ecosystem and are
therefore not affected by the parameter 8. They are expected to be
moving targets, more vigilant in their new environment, and it will
inevitably be difficult for a predator to surprise them. Although
studies have reported greater predation avoidance in partial mi-
grants than in residents (Skov et al. 2013; Zaiiga et al. 2017; Berg
et al. 2023), in the presented system, this immediate survival of
migrants within the ecosystem is lost at the next step, i.e., the itera-
tion at t+1. This cohort is then faced with a lethal encounter rate
B and a predator conversion rate y identical to those of resident
prey, as indicated in the second equation. Regarding the third
equation, technically, the forcing injects/removes prey periodi-
cally into the CLV without a feedback loop from its state variables.
Therefore, the system no longer distinguishes between migratory
prey and residents that interact together with the resident preda-
tor. In the following, I numerically simulate the non-autonomous
three-dimensional ODE system in order to evaluate its resilience
with the 4th-order Runge-Kutta method.

NUMERICAL RESULTS

To scrutinize the dynamical regimes of the system, predator-prey
interactions are considered resilient if they persist until at least
t = 10°. Otherwise, they are not resilient if they collapse before
t = 10*, and resilience is precarious for t € [10%,10°]. In the first
analysis, the magnitude A serves as the control parameter for the
stationary partial migration cycle. Specifically, A is categorized
as follows: low migration intensity for 0 < A < 0.5, moderate
intensity for 0.5 < A < 2, and massive intensity for A > 2. The
second analysis examines partial prey migration cycles with a
positive trend. All simulations use fixed parameters A = ) = 1.

Stationary Cycles of Partial Prey Migration Imply Elusive Ecosys-
tem Resilience

By setting My = 0, the partial prey migration adheres to a station-
ary cycle fully anchored in recurring dates, exhibiting identical
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waveform movements. Hence, the number of immigrants and
emigrants must be roughly balanced. This constraint implies that
losses of partial migrants due to predation within the ecosystem
are compensated either by reproduction or by recruitment of a
cohort of residents.

Figure 4 provides a direct comparison of partial migrating prey
Xm(A) for selected A magnitudes and resident prey abundance
when the CLV and the partial prey migration oscillator are not
yet connected. I find that a single cycle of resident prey-predator
interactions encompasses three migration pulses, allowing us to
explore the resilience limits of the system. Further studies should
consider A and () as control parameters.

Figure 4 Accumulations of partially migratory prey X, (A) for
the magnitudes A € {0.5,1,2,3} and of resident prey X, be-
fore forcing the CLV by the oscillator upto t = 50. CLV pa-
rameters Py(a, B, ¢, 1) = (0.2,0.6,1,0.3), and initial condition
ICy(x0,50) = (0.7,0.3). Initial condition of the partial migration
oscillator (Mg, X;,(0)) = (0,0).

Dependence on the magnitude parameter A

In the first set of simulations, the weak coupling of the oscillator
leads to immediate non-periodic fluctuations in species popula-
tions. As shown in Figure 5, for A = 0.1 and 0.2, the time series
of x(t) and y(t), and in particular the phase portraits of the state
variables (x, ) suggest asymptotically unstable oscillations under
parameters Py(«, B, ¢, 1) = (0.2,0.6,1,0.3) and the initial condition
ICO(Xo, Yo, Mo) = (0.7, 0.3, 0).

Furthermore, the Poincaré sections, plotted when M = 0 (i.e,,
at the precise moments of the beginning and end of the partial
migration cycles, as well as at the moments separating immigra-
tion and emigration), illustrate the complex trajectory of species
populations.

These fluctuations persist resiliently for A in the interval
10, 0.22[. However, a slight increase in coupling, i.e., a partial
migration magnitude varying only by AA = 0.01, results in an
almost immediate vanishing of predator-prey interactions, signal-
ing a critical transition. Since the catastrophic event results from
the continuous change in A, the system has crossed a bifurcation-
induced tipping point (or B-tipping).

Starting with the sudden and drastic change at the critical
value A, = 0.23 and for slightly higher values, interactions exhibit
volatile dynamics and therefore do not even reach the threshold
of precarious resilience. For example, at A = 0.5, species become
extinct around t ~ 170 as shown in Figure 6. The upward align-
ment of the last four prey population peaks may suggest an early
warning signal of impending ecosystem collapse.
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Figure 5 Numerical simulations with parameters Py(a, B, A, ¢, i) =
(0.2,0.6,A,1,0.3) and initial condition ICy(x, yo, Mp) = (0.7,0.3,0).
(a) Time series of x and y (prey and predator abundances respec-
tively) first t = 200 (b) Phase portrait of state variables x and y (c)
Poincaré maps (M = 0) Panel A: A = 0.1. Panel B: A = 0.2.

J\U i “{\/

Figure 6 Time series of prey and predator accumulations, x and
y respectively, for magnitude A = 0.5 of partial prey migration.
The collapse occurs at t ~ 170. Parameters Py(«, B, A, ¢, 1) =
(0.2,0.6,0.5,1,0.3), and the initial condition I1Cy(xq, yo, My) =
(0.7,0.3,0).

3.8

Surprisingly, resilient interactions are restored within very
narrow windows of A. These hotspots are scattered and de-
tected in small numbers under the aforementioned parame-
ters Py(a, B, ¢, ) = (0.2,0.6,1,0.3), and the initial condition
ICo(x0,y0, Mp) = (0.7,0.3,0). Figure 7 presents time series of prey
and predator accumulations, x and y respectively, phase portraits
and Poincaré maps (M = 0) for some of the identified magni-
tudes, e.g., A € {0.7,1,1.5}, which exhibit rare resilient interac-
tions. Indeed, to avoid prey extinction and therefore predator
starvation, a key condition to ensure ecosystem resilience must be
met: AM(#) > x(a — By).

Dependence on initial conditions of the species populations and
parameter a

The proposed system also exhibits extreme sensitivity to the initial
sizes of resident species, as interactions can abruptly disappear
even after small changes. Indeed, the resilient regimes shown in
Figure 7 rapidly collapse when ICy(xg, Yo, Mp) = (0.7,0.3,0) is
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Figure 7 Hotspots of resilient quasi-periodic or chaotic dynamics in
a very narrow window of magnitude A. Numerical simulations with
parameters Py(«, B, ¢, ) = (0.2,0.6,1,0.3) and initial condition
ICo(x0,y0, Mp) = (0.7,0.3,0). (a) Time series of x and y, the
abundances of prey and predators, respectively, for the first 200
iterations. (b) Phase portrait of x and y. (c) Their Poincaré map

(M = 0). Panel A: A = 0.7, Panel B: A =1, Panel C: A = 1.5

adjusted to ICq(xg,y0, Mo) = (0.6,0.2,0), while the parameters
remain unchanged. Conversely, the volatile dynamics illustrated
in Figure 6 for A = 0.5 becomes resilient when the initial con-
ditions are slightly shifted from ICy(xo, yo, Mo) = (0.7,0.3,0) to
ICy(x0,y0, Mp) = (0.9,0.3,0), as illustrated in Figure 8, panel A.
It is also worth mentioning the significant dependence on prey
birth rate, the parameter a. For example, the collapsed regime
mentioned in Figure 6 becomes resilient when only the parameter
« varies from 0.2 to 0.5 (Figure 8, Panel B).

A threefold complexity of chaos

To characterize the chaotic nature of the system, the largest Lya-
punov exponent (LLE) is computed. Thus, the detection of a sin-
gle positive exponent among the three for a three-dimensional
system confirms the signature of chaos. As shown in Figure
9, the LLE spectra computed for A € [0,1.7] and the same D
parameters, but under two distinct initial conditions, namely
ICO(Xo, Yo, Mo) = (0.7, 0.3, 0) and IC1 (XO, Yo, Mo) = (0.9, 0.3, 0),
state the hallmark of chaos.

Alongside this, the dissimilarity of LLE spectra provides com-
pelling evidence of sensitive dependence on initial conditions.
Furthermore, sawtooth-shaped spectra with steep peaks and dips
are likely indicators of tipping points and thus express regime
shifts (Nazarimehr et al. 2017), either in response to the varia-
tion of the parameter A or to the initial conditions. The three
dependencies of the system under A, the initial conditions, and the
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Figure 8 Sensitive dependencies on the initial sizes of species and
the parameter «. (a) Time series of state variables x and y, the prey
and predator populations, respectively; first t = 200, (b) the corre-
sponding phase portrait, and (c) Poincaré map after transients died
down. Panel A: Parameters Py(«a, B, A, ¢, 1) = (0.2,0.6,0.5,1,0.3)
and ICy(xo, o, Mp) = (0.9,0.3,0). Compare with collapsed regime
in Figure 6 with ICy(xo, yo, Mo) = (0.7,0.3,0). Panel B: Parame-
ters Py(a, B, A, ¢, u) = (0.5,0.6,0.5,1,0.3) and ICy(xg, yo, My) =
(0.7,0.3,0). Compare with the same collapsed regime in Figure 6
where ¢ = 0.2.

functional response parameters « might be expected to entail an
intertwined and highly entangled basin of attraction, delimited by
fractal boundaries.

TLargest Lyapunov Exponent Largest Lyapunov Exponent

e

oo
IC(o: Yo. Mo) = (0.9. 0.3, 0)

IC (Xo. Yo. Mo) = (0.7, 03, 0)
0.002-

§ o % [ s 5 o [ [ T A

Figure 9 Largest Lyapunov exponent (LLE) spectra computed for
migration magnitude A varying in the range [0,1.7]. Py(«, B, ¢, 1) =
(0.2,0.6,1,0.3), and two distinct initial conditions. (a) LLE spectrum
with ICy(xg, yo, Mp) = (0.7,0.3,0). (b) LLE spectrum recomputed
with ICq (xq, Yo, Mo) = (0.9, 0.3,0).

Upward Cycles of Partial Prey Migration Preserve Ecosystem
Resilience

In scenarios where M has strictly positive values,and A = A =
Q) = 1, partial prey migrations exhibit upward cycles. Thus, a
number of partially migratory prey are recruited by its resident
species in the habitat area during each cycle (Figure 10).

The velocity M(t), or augmentation/reduction of migrants,
varies in the range [—1 + My, 1 + M), as shown for example in
Figure 11a for several values of My € {0,0.5,1,2}. Furthermore,
Figure 11b illustrates the cycles of partial migrants X,,(My) for
the selected values of My compared to the abundance of resident
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Figure 10 A net cohort of migrants settles in the ecosystem each
cycle. Time series of partial prey migration upto t ~22. A =1 and
initial condition Xm(t, Mp) = (0,0.1).

prey X;, already interacting with the predator, before coupling. In
the following, still with A = 1 and considering My as a control pa-
rameter, I examine how ascending cycles of partial prey migration
shape overall ecosystem dynamics and thus its resilience. Here,
the recruitment is considered low for 0 < My < 0.2, moderate for
0.2 < Mp <1, and massive for higher values.
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Figure 11 Upward cycles for several My values and corresponding
abundances of partial migratory prey. The migratory prey population
is governed by a stationary cycle when M, = 0, and by upward cy-
cles when M > 0. Parameters: A = A = Q) = 1, and initial condi-
tion (Xm, My) = (0, Mp), till £ = 50. (a) M(¢t) for My € {0,0.5,1,2},
and (b) time series of X,,(My) for the selected M compared with
the resident prey population X, already interacting with predators,
before coupling. Parameters Py(«, 8, ¢, #) = (0.2,0.6,1,0.3), and
the initial condition ICy(xo, o) = (0.7,0.3).
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Double-peaked fluctuations and phase-locking

Numerical computations reveal pronounced periodic double-
peaked fluctuations in the prey population for My € {0.1,0.2},
resulting in characteristic orbits in the phase portraits (Figure 12).
This pattern is derived from the asynchrony between the waxing
and waning of resident and partially migratory prey populations,
associated to the recruitment of a cohort of migrants by the resident
population each cycle. As My increases from 0.1 to 0.2, both prey
and predator populations show slow but steady growth, observed
across the entire range of M € [0,0.2].

In the next, broader range of My € [0.2,1], and after transients
died down, the populations of both species increase and maintain
stable fluctuations, adopting regular wave patterns. These partial
migration cycles with moderate recruitment introduce a significant
stabilizing effect on intrinsic species interactions. Indeed, for My
equal to 0.5 and 1, phase portraits exhibit periodic orbits, confirm-
ing that newly settled migrants do not jeopardize the ecosystem
resilience (Figure 13). More specifically, the time series reveal a
characteristic phase locking, with the predator population peak
lagging at approximately a quarter cycle (90°) compared to that of
the prey. This type of asynchronous fluctuations is consistent with
the literature on in-phase, anti-phase, and phase-locking synchro-
nizations in coupled-species oscillators (Winfree 1967; Vandermeer
2006; Vasseur and Fox 2009; Smirnov and Pikovsky 2024).

. I/
N —

Figure 12 Double-peaked prey and predator populations with low
recruitment. Dynamical regimes with weak ascending cycles of the
partial migration. Py(a, B, A, ¢, ) = (0.2,0.6,1,1,0.3) and initial
condition (xg, yo, Mg) = (0.7,0.3, Mp). (a) Time series of the prey
and predator populations up to t = 200, and (b) their phase portraits
after transients died down. Panel A: My = 0.1. Panel B: My = 0.2.

“Catching up” and overtaking game for massive recruitment

The partial migration of prey exhibiting extreme upward cycles
stabilizes, as in the previous cases, the species populations and
induces limit cycles (Figure 14). It is noteworthy that a “catching
up” process between the prey and predator populations occurs,
balancing them at My = 6.05.

The predator species experiences a phenomenal increase in
abundance due to the recurrent and strong recruitment of immi-
grant prey, via the conversion rate of ingested prey into predatory
offspring. This process, observed for example at the invasive level
of My = 80, leads to a predator population exceeding tenfold that
of the prey. Although this ratio may suggest that the resident prey
is an endangered species, the settlement of partially migratory
prey replenishes the residents each cycle and thus prevents their
extinction.
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Figure 13 Phase locking of predator and prey populations by ap-
prox. one-quarter cycle (90°) for moderate recruitment. Parame-
ters Py(a, B, A, ¢, u) = (0.2,0.6,1,1,0.3) and the initial condition
(x0,y0, Mp) = (0.7,0.3, Mp). (a) Time series of prey and predator
populations up to t = 200, and (b) their limit cycle in phase space.
Panel A: My = 0.5. Panel B: My = 1.

This result is consistent with the seminal contribution of Levins
(1969), and the source-sink habitats of the metapopulation ap-
proach (Holt 1985; Hanski 1999; Taylor and Hall 2012). Indeed, Pul-
liam (1988) notes that in sink areas: “the population may persist in
such habitats, being locally maintained by continued immigration
from more productive ‘source” areas nearby.” Here, no discontinu-
ity in ecosystem resilience is detected for My > 0 of partial prey
migration cycles since the domain of attraction envelops the entire
phase space.
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Figure 14 The predator population approaches, catches up

with, and then overtakes the prey population. Parameters

Po(a, B, A, @) = (02,06,1,1,0.3) and initial condition

(x0,v0, Mo) = (0.7,0.3, Myp). (a) Time series of prey and preda-
tor populations up to t = 200, and (b) associated limit cycle in the
phase space after transients died down. Panel A: My = 2. Panel B:
My = 6.05. Panel C: My = 10. Panel D: My = 80.
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CONCLUSION

In this study, I focused on the magnitude and trend of the cycle,
two key dimensions of partial prey migration, conceptualized as
an oscillatory mechanism. Thus, the proposed system uncovered a
striking dichotomy: partial migration acts as a dual driver of chaos
and order in open ecological ecosystems. Hence, even a low mag-
nitude of stationary migratory cycles inject critical instability into
predator-prey interactions, fostering resilient chaos that persists un-
til the migration magnitude crosses a bifurcation-induced thresh-
old. Beyond this B-tipping, collapse ensues, yet chaos resurges
in localized hotspots, suggesting fractal basin boundaries and a
non-monotonic dependence on magnitude, initial conditions and
a parameter.

Such behavior mirrors the sensitive dependence of driven oscil-
lators, where minute parameter shifts precipitate phase transitions.
Conversely, upward-trending cycles suppress the risk of ecosystem
collapse, stabilizing interactions in predictable limit cycles even
leading to phase synchronizations. This chaos-to-order transition
challenges conventional views on the destabilizing role of immi-
gration, positioning flexible migratory behavior as a key ecological
parameter. Indeed, the route from chaotic regimes, ecosystem
extinction, and elusive resilience to the realm of order is simply
unlocked when the trend in partial prey migration cycles becomes
strictly positive, even slightly. This dichotomy echoes a critical
phenomenon in oscillatory systems, where the sign of the trend
(positive or neutral) determines whether dynamics converge to-
ward equilibrium or diverge into turbulence.

Mainly, I acknowledge deliberate simplifications of the intro-
duced heuristic framework, such as multiple waves of partial
migration for a single predator-prey interaction cycle. It neverthe-
less provides a preliminary and tractable prototype for a valuable
approximation of how exogenous pulses trigger bifurcation-like
behaviors (e.g., climate-induced phenological changes). Framing
migration as a forced oscillator underscores its capacity to recon-
figure entire food webs, including protected habitats. The tractable
system is also fully valid for being forced via its second equation
by the oscillator of a partially migratory predator with a similar or
delayed cycle. In further studies, incorporating a latency period
to account for resident species interactions outside of partial mi-
gration cycles may prove more realistic. Therefore, future works
could potentially unveil new complex regimes.
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