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ABSTRACT This brief paper theoretically investigates the dynamical characteristics of ferroelectric materials,
specifically barium titanate (BaTiO3) crystal in alternative voltage resistor (R) and inductor (L) circuit. The
theory of Landau-Ginzburg-Devonshire and Kirchhoff’s law are used to derive the equation for the polarization
field in the BaTiOj3 crystal. The Averaging method is applied to obtain an approximate analytical solution, and
the numerical simulations of the system’s equations is used to confirm the analytical obtained solution. The
Melnikov method is used to investigate horseshoe chaos and the critical amplitude of excitation. The phase
portraits, Poincaré sections, local maxima and greatest Lyapunov exponent are drawn to confirm the results

obtained with Melnikov method.
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INTRODUCTION

Ferroelectric materials are materials that exhibit spontaneous and
reversible electrical polarization under the influence of an electric
field. BaTiOj3 is an example of a ferroelectric material that has been
extensively studied for its unique properties (Chen et al. 2018, 2024).
The BaTiO3 can be produced using various methods including
room temperature synthesis, hydrothermal processes, bioinspired
and biosynthetic approaches, sonochemical techniques, molten
salt reactions, and peptide or phage-templated strategies, each
enabling control over particle size, morphology, and phase with
potential for green, scalable, and low-cost production (Chen et al.
2018, 2024). Chen et al. (2018) demonstrated that BaTiO3 nanopar-
ticles could be synthesized at room temperature conditions under
ambient pressure. The hydrothermal synthesis of BaTiOj3 utiliz-
ing NaTizO(OH) — (H20), nanowires, conducted by controlling
temperature, alkalinity, and time was studied by (Chen et al. 2024).

Studies on the dielectric and ferroelectric properties of BaTiO3
single crystals using the Landau phenomenological thermody-
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namic potential have been extensively conducted. Wang et al.
suggested that when using the sixth-power free energy expansion
of the thermodynamic potential, remarkably different values of the
fourth-power coefficient are required to adequately reproduce the
nonlinear dielectric behavior of the paraelectric phase and the elec-
tric field-induced ferroelectric phase, respectively (Wang et al. 2007).
To develop the Landau-Devonshire potential of the perovskites
BaTiO3, the Gibbs free energy of BaTiO3 single crystal has been
expanded up to 10t"-order polynomial by (Ma et al. 2017). Large
studies have shown that barium titanate crystals can be integrated
into silicon and photonic platforms to enable high-performance,
low-voltage, and high-speed electro-optic modulators and tunable
dielectric devices for advanced integrated circuits and photonic
applications. Picavet et al. presented a low-cost, high-throughput,
and flexible method for integrating highly textured BaTiOj3 films
on photonic integrated circuits, enabling large-scale fabrication of
nanophotonic BaTiOj3 thin-film modulators (Picavet et al. 2024).

Xiong et al. (2014) showed how Ferroelectric BaTiO3 thin films
on silicon-on-insulator platforms has promising potential for
broadband applications, with modulation bandwidth in the gi-
gahertz regime. (Nayak et al. 2014) showed that BaTiO3 multipods
with high permittivity and low dielectric loss could be easily pre-
pared and used for charge storage devices and electronic applica-
tions. Nonlinear dissipative dynamics, which underlie most real
systems, have gained significant attention from theoretical and
experimental researchers over the past few decades. Examples
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of physical designs that are modeled by these dynamics include
Josephson junctions, lasers etc.. A common characteristic of all
these devices is that they can display surprisingly irregular behav-
iors when a control parameter is slightly modified. (Oikawa et al.
2024) analyzed chaotic behavior in Josephson junction for high-
quality random-number generation. (Shuai et al. 2025) conducted
research on chaos dynamic characteristics of multiple interactive
Josephson junction application. (Kang et al. 2024) revealed a new
scenario for the transition of solitons to chaos in a mode-locked
fiber laser: The modulated subharmonic route.

The main reason justifying such interest lies in the fact that
BaTiOj3 crystal is a good candidate for designing integrated circuits.
The aim of this paper involves the determination of horseshoe
chaos in the barium titanate crystal in alternative voltage RL circuit.
Following this introduction, the paper is organized as follows: in
section 2, we derive the governing equation of the circuit, the
averaging method is applied to obtain an approximate analytical
solution, and the numerical simulation of the system’s equations
is used to confirm the analytical results. The Melnikov method
is used to investigate the Hamilton chaos, The phase portraits,
Poincare sections, local maxima, and greatest Lyapunov exponent
are drawn. Finally, section 3 is devoted to summarising the most
important conclusions.

ANALYSIS OF BaTiO3; CRYSTAL IN ALTERNATIVE VOLT-
AGE RL CIRCUIT

The BaTiOs crystal connected to alternative voltage RL circuit is
considered in this paper (Figure 1). A simple case at temperatures
in the vicinity of only the cubic-tetragonal phase transition where
nonlinear behavior becomes stronger due to the strong nonlinear-
ity of the restoring force and other effects and phase transitions
(orthorhombic, rhombohedral) are negligible (Wang et al. 2007;
Ma et al. 2017). We thus restrict the analysis in this paper to the
case where the electromechanical coupling coefficient is very weak
so that the dynamics of the electrical component is sufficient to
capture all the properties of the system. The Landau model, com-
pleted by Devonshire (Coelho 1979; Waser and Lohse 1998; Starkov
et al. 2022) thermodynamically describes the phase transitions by
postulating that the free energy associated with the displacement
of the dipoles in a crystal is a Taylor series development as a func-
tion of the the spontaneous polarization P. If we consider that
it is subjected to an electric field, an additional energy term is
added. Using Gibbs free energy of the (BaTiO3) crystal and Ap-
plying Kirchhoff’s law, the equation for the polarization field in
the crystal can be derived as

|-> l:'.

Vo coswt

Figure 1 BaTiOj3 crystal connected to alternative voltage RL circuit.

Ug + Ur + uCrystal = VycoswT, (1)
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with Ug = RI (t) = R4T = 1400 — L9070 —
[ (T) P — BP® + P51, where I (t) and ¢ (7) are electric current
and charges. P is spontaneous polarization, R, L, I, A are respec-
tively RL constants, width and surface of crystal. Vj is amplitude
of sinusoidal excitation with frequency w, «,  and < are constant
coefficients except « which depends on the temperature. The co-
efficient ( —f ) instead of B is used in the equation to take into
account its negative sign found in the literature (Wang et al. 2007;

Ma et al. 2017). Equation (1) can be rewritten in the following form

d*P  RdP I 5 a3, .55 _ Yo
gt 1g (D) P—BP 4P } = Jcoswr, (2)
To put the equation (2) into a dimensionless form, let us use the
rescaling :

2] —

aJO:AL,’[),;ﬁ,f:(UOT,P:P %, :Llwo’ (3)

_ 1 _ _ WV 2
ar = g0 (T), Q= G,V = g5/ -

By substituting Eq. (3) in Eq. (2), it becomes :
A?pP  dp P
—— — P-2P°+P° =V Ot 4
dt2+ydt +ar + cos () 4)
The potential energy associated with the system of Eq. (4) is
S S S
u(p) = 2thP 2P + 6P +C, )

where C is a constant depending of characteristic potential. The
shape of the potential given by Eq. (5) is shown in Figure 2 for
different values of ay.
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Figure 2 Shape of the potential for given value of a7: (a7 =0.5
(blue), ar =0.7 (red), aT =0.9 (green)).

Figure 2 has three wells and two humps. By decreasing the
value of at, the depth of three increase.

Averaging method

The averaging Method is used in this paper since the BaTiO3
crystal in Fig.1 is subjected to a weakly periodic forcing like an
AC electric field, resulting in both rapid oscillations and slower
changes due to the medium’s nonlinear response. It effectively
reduces the original system, which may be analytically intractable
due to its nonlinearity and time dependence, into an averaged
system that describes the slow evolution of amplitude and phase
(Sanders et al. 2007). The averaging method is used in Eq. (4)
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to obtain approximate solutions and confirm these mathematical
results through numerical simulations of the system’s equations.
Figure 3 illustrates the curve of the amplitude of P versus frequency
for both the analytical and numerical solutions. The solution can
be written as

P(t) =a(t)cos (6 (t),0(t) =
a2 = —a(t) yarsin (0 (1)),

where a and 6 represent the amplitude and the phase which are
slow-varying functions of t. Substituting Eq. (6) into Eq. (4) and
average over the period T = 27t//aT, we obtain

VIR

da _ _ M
e 7)
dp _ 342 5a*

i~ “dgar T Teyar’
By integrating each component of Eq. (7), it is obtained
a(t) =agexp (%)
3a2 —ut
00 ==z (1o (F)) ©

o (1-ee ().

Now to confirm this mathematical result we apply numerical
integration of Eq. (4) using robust four order Runge-Kutta and
depict both numerical and analytical solutions.

Amplitude

frequency

Figure 3 Amplitude versus frequency (analytical : Blue and numeri-
cal : Red).

Figure 3 shows in blue line, the variation of the amplitude of
the solution (6) where ag, ¢y are constants. The curve in red is
the same amplitude obtained from the numerical simulation of Eq.
(4). One finds a good agreement between the mathematical and
numerical results.

Melnikov method

To establish the conditions for the emergence of chaos in Eq. (4),
the Melnikov method is applied (Melnikov 1963; Wiggins 1990).
Consider the dynamical equation of a given system written in

vector form
. dpP
i =go(u)+egpy(ut),u= (P’E>’ )
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dp
go(u) = at ’
—\/arP +2P3 — P°
“ (10)
0
gp (u,t) = ,

—y‘%} + V cos ()

where u is the state vector, gg is the vector field chosen with
the non-perturbed Hamiltonian and gy, is a periodic perturbation
function. Let’s consider a Hamiltonian system that has saddle
points connected by a separatrix or heteroclinic orbit, or possibly
just a single hyperbolic saddle point with a homoclinic orbit. When
a perturbation gy is introduced, the orbits of the system become
altered. If the perturbed and unperturbed manifolds intersect
transversally, the geometry of the basin of attraction may turn
fractal. This fractal structure indicates a high sensitivity to initial
conditions, which is a proof of chaotic behavior. The Melnikov’s
theorem which gives the condition for the fractal basin boundary
can be given as follows [9,10].

fgo DA gp (u(t), t+t),
1)
The Hamiltonian of Eq. (3) is defined by
dpP dP\? ar , 1., 1
Ho(P, ) = 3 (E) + o PRSP P (12)

Given the shape of the potential U, one can make the assump-
tion that the system possesses homoclinic orbits connecting saddle
points and heteroclinic orbits connecting hyperbolic saddle points.
The mathematical derivation of this Melnikov function can be
found in (Tchoukuegno et al. 2002; Lenci et al. 1999) and Apply-
ing this Melnikov condition gives the following conditions for the
appearance of chaos:

viet > {7(1(?;;3/2 (sin"!(x) + F) +2+ x} :

uP,Y . 20
807 (x+1) sinh 57,

vHo > { ( fif;j)ll),z (sin"'(x) - F) + 2+ x)} . @
HPY 1

32Q7(x+1) sinh(32)’

YIP&(Z(P2—1))1/21X §p2311,0 Ps/Py.

where VH° and V)t are critical values of voltage respectively
for homoclinic and heteroclinic orbits, Ps and Pu stand for stable
and unstable equilibrium points. These conditions establish the
threshold amplitudes of the supply voltage above which horse-
shoe chaos occurs. Figures 4 and 5 illustrate the conditions for
homoclinic and heteroclinic orbits in the ((} , V) plane for different
values of at . The area above the line represents values of () and
V that lead to unpredictable or chaotic behavior, while the area
below the line corresponds to regular behavior.

Chaos and Fractals
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Figure 4 Critical value of voltage Vchff for given value of at : (ar
=0.3 (green), a =0.15 (red) and a7 =0.1 (blue)).

Figure 5 Critical value of voltage Vchr" for given value of at : (ar
=0.3 (green), a =0.15 (red) and a7 =0.1 (blue)).

In Figures 4 and 5, a variation of the critical value of voltage
as a function of () are depicted. This is illustrated for different
values of the parameter a7. It is clear that the the critical value
of ac- voltage in relation to (), which signifies the threshold for
the onset of chaos, is significantly affected by the parameter a7.
As shown in Figure 4, a decrease in the parameter at results in a
reduction of the chaotic domain for heteroclinic orbits. Figure 5
illustrates that a lower value of a7 enhances stability and narrows
the chaotic region. To test the validity of these results, Fig. 6 is
depicted, to confirm the analytical predictions of chaotic illustrated
in Figs. 4 and 5. The phase portraits, Poincaré sections are depicted
in Fig. 6, with parameters set toar = 0.04, y = 1.1,V = Q = 3.5,
V = Q) = 2.5 with initial condition (P(0) = 0.5,dP(0)/dt = 0.0).
Figure 6 supports the validity of the analytical study presented in
section 2.2 and visually represented in Figs. 4 and 5, demonstrating
the presence of zones exhibiting chaotic and regular dynamics.

Figure 7 presents the local maxima of P and its corresponding
greatest Lyapunov exponent (GLE) versus the parameter V.

Figure 7 (a) presents bistable limit cycle, period doubling route
to chaotic region with windows of periodic characteristics, coex-
istence between limit cycle and chaotic characteristics and limit
cycle, respectively. GLE of Figure 7 ( b) confirms the dynamical
characteristics found in Fig. 7 (a). The dynamical characteristics
found in Fig. 7 are depicted in Fig. 8.

Bistable limit cycle is shown in Fig. 8 (a). Figures 8 (b) and (c)
present two different shapes of chaotic characteristics. The coexis-
tence between limit cycle and chaotic characteristics is illustrated
in Fig. 8 (d).

Chaos and Fractals
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Figure 6 Phase portraits and Poincare sections

(ar =004, u=11):(ab)V = Q = 35, (cd)V = Q =
2.5. The curves are obtained by using the initial conditions
(P(0),dP (0) /dt) = (0.5,00).
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Figure 7 Local Maxima of P and its corresponding GLE versus the
parameter V forar = 0.04, p = 1.1 and QO = 2.5. Black dots
(curves) are obtained by increasing the parameter V' while red dots
(curves) are obtained by decreasing the parameter V.
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Figure 8 Phase portraits for given values of V (a7 = 0.04, » = 1.1):
@V=0=02,b)V=0=25()V =Q = 6and(d)

V = () = 6.48. The black curves are obtained by using the initial
conditions (P(0) = 0.01,dP(0)/dt = 0.01) while the red curves
are obtained by using the initial conditions (P(0) = 5.0,dP(0)/dt =
0.01).

41



CONCLUSION

This paper investigated dynamical characteristics in barium ti-
tanate crystal in alternative voltage RL circuit using the averaging
method, Melnikov method and numerical simulations. The averag-
ing method was applied to obtain an approximate analytical solu-
tion and the numerical simulations of the system’s equations was
used to confirm the analytical results. Good agreement between
the analytical and numerical results was found. The Melnikov was
demonstrated that the critical values of alternative voltage which
delimits the boundary between chaotic and non-chaotic regimes
is dependent to the structural parameter of the crystal. Numeri-
cal verifications using phase plots, Poincaré maps, local maxima
and the greatest Lyapunov exponent supported the analytical pre-
diction of chaotic behavior. This study yielded practical design
information for chaos-resistant integrated circuits. Generalization
of this study to also include the thermal-dependent part of circuit
is needed for the further development of chaos control in complex
circuits.
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