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ABSTRACT This paper presents the resistive-capacitive shunted Josephson junction (RCSJJ) with a topologically nontrivial barrier
(TNB) coupled to a linear RLC resonator. The rate equations describing RCSJJ with TNB coupled to the linear RLC resonator are
established via Kirchhoff’s current and voltage laws. The model exhibits four, two, or no equilibrium points depending on the external
direct current (DC) source and the fractional parameter. The stability analysis of the equilibrium points with credit to the Routh-Hurwitz
stability criterion reveals that the stability of equilibrium points depends on the DC source and the fractional parameter. Current-voltage
characteristic reveals the presence of a birhythmicity zone which is sensitive to the fractional parameter m. As the fractional parameter
increases, the coexistence of the resonant state is destroyed, which is followed simultaneously by the appearance of a new resonance
state. Depending on initial conditions, birhythmic behaviour is characterized by the existence of a limit cycle. The projection of the phase
space in the specific plane and the time evolution of charge is predicted in which the amplitude of attractors reported is sensitive to the
parameter m. Lastly, with a defined fractional parameter, the amplitude of the branch locked to the resonator is greater than the unlocked
branch.
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INTRODUCTION

In 1962, Brian David Josephson analysed the happenings at the
junction between two closely spaced superconductors, separated
by an insulating barrier. If the insulating barrier is thick, the elec-
tron pairs cannot get through, but if the layer is thin enough (ap-
proximately 10 nm) there is a probability for electron pairs to the
tunnel (Fujii et al. 2009). This effect later became known as “Joseph-
son tunnelling”. Whatever the nature of the junction, its thickness
has to be comparable to or smaller than the coherence length of
the two superconductors (Owen and Scalapino 1997). Otherwise,
the dynamics of the respective Cooper pairs are uncorrelated.
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The current that crosses the barrier is the Josephson current.
The Josephson effect is based on the behaviour of a quantum pa-
rameter called phase. As a result of the fact that the barrier is thin
enough, the phase of the electron wave function in one supercon-
ductor maintains a fixed relationship with the phase of the wave
function in the other superconductor (Eck et al. 1965). This linking
up of phases is called phase coherence which is the essence of
the Josephson effects. Recently, the interest in Josephson physics
has shifted towards junctions whose elements include topological
materials Bao et al. (2015) which enable the specific design of the
hybrid junction (Mourik et al. 2012).

In the literature, JJs with a TNB is a model that can display
excitable mode, bistable, periodic and chaotic behaviours (Kingni
et al. 2020). In essence, there is an interesting aspect of topological
nontrivial barriers known as fractality that plays an important role
in several physical phenomena such as the nuclear fusion that
occurs in main progression stars like the sun and this is known as
quantum tunnelling (Bee et al. 2008). Quantum tunnelling in JJ has
been the subject of great interest because of its possible technolog-
ical applications in phase qubit Nori (2008); Clarke and Wilhelm
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(2008), superconducting electronic devices, ultrahigh sensitive de-
tectors, parametric amplifiers, voltage standards and supercon-
ducting quantum interference devices for the detection of very
weak magnetic fields (Kleiner et al. 2004; McDermott et al. 2004;
Oladapo et al. 2018). In the literature, JJs based on low-critical
temperature superconductors have a harmonic current phase rela-
tion (Belli et al. 2012). While JJs based on high critical-temperature
superconductors Campi et al. (2021) have an unharmonic current-
phase relation due to the anisotropic and multiband effects in
superconductors.

The analytical and numerical analysis of JJs with unharmonic
current-phase relation has been reported in the literature over the
past year (Canturk and Askerzade 2013; Kingni et al. 2019). In the
case of JJs based on topologically nontrivial barriers Veldhorst et al.
(2012), the current-phase relation includes an additional fractional
term related to the Majorana particles (Dominguez et al. 2012; Fu
and Kane 2009). Majorana particles are particles identical to their
antiparticles which are described by real value wave functions
and attract considerable interest in quantum computations (Lima
et al. 2021; Wendin 2017). Furthermore, topological supercurrents
interaction and fluctuations in the multiterminal Josephson effect
emerge from the quantum coherence of electron trajectories and
are sensitive to changes in the external magnetic field or gate
voltage (Xie and Levchenko 2019; Ramakrishnan et al. 2022). When
superconductivity is induced at the boundary of the mesoscopic
sample via the proximity effect, the universality of conductance
fluctuations remains intact (Bao et al. 2015; Aleiner and Blanter
2002). The phenomenon of conductance fluctuations is an aspect of
fractality which is based on the fractional quantum Hall effect and
appears in electron systems in two-dimensional (2D) for a strong
magnetic field (Wen 2006).

The contemporary presence of two frequencies for the same
set of parameters, or birhythmicity, is encountered in some bio-
chemical systems Decroly and Goldbeter (1982); Morita et al. (1989);
Haberichter et al. (2001); Sosnovtseva et al. (2002); Abou-Jaoudé
et al. (2011a), nonlinear electronic circuits Kadji et al. (2007); Za-
kharova et al. (2010); Yamapi et al. (2010); Ghosh et al. (2011); Yamapi
et al. (2012); Yue et al. (2012), and extended distributed systems
(Stich et al. 2002; Casagrande and Mikhailov 2005). The experimen-
tal observation of birhythmic systems, however, is less frequent
(Hounsgaard et al. 1988; Geva-zatorsky et al. 2006; Ventura et al.
2007; González et al. 2008).

In this context, the superconducting circuit consisting of JJs cou-
pled to a cavity Hadley et al. (1988); Filatrella et al. (1992); Ozyuzer
et al. (2007), represents a preeminent example of a birhythmic sys-
tem that is also interesting for applications. The coupling among
the junctions is supposed to be provided by a resonant cavity Gross
et al. (2013); Grib et al. (2006), thus when all the junctions are en-
trained it is essential to have a large current in the cavity such that
the junctions can be entrained through the current in the resonator.
The state with a large current coexists with a state at lower power,
such that the two states are characterized by two different frequen-
cies. This is the essential feature of birhythmicity, the coexistence
of two attractors characterized by two different amplitudes and
frequencies.

Birhythmicity is therefore a nonlocal phenomenon that cannot
be investigated by linear analysis. The global stability of the two
states at different frequencies of the current-voltage (IV) charac-
teristic ascertained the birhythmic properties induced by the RLC
circuit. There is evidence from simulation that at the same bias
point, two frequencies appear, depending on the initial conditions.
The first frequency is reached by increasing the bias current from

zero on the Josephson supercurrent, while the second is obtained
by decreasing the current from high values on the resistive Mc-
Cumber branch, such that the selection of the frequency displayed
is thus determined by the initial conditions (Yamapi and Filatrella
2014). The features of the IV depend upon other factors such as the
number of JJs and the features of the resonator (Grib et al. 2006).
Also, heating effects are believed to be relevant for coherent radia-
tion Wang et al. (2010), as well as coupling through charge transfer
through the Josephson channel (Ovchinnikov and Kresin 2013).

The JJ can be considered a birhythmic system because it can
produce oscillations at two distinct periods (Barone and Paternó
1982). Birhythmicity is encountered in some biochemical Abou-
Jaoudé et al. (2011b) and non-linear electronic systems (Yamapi
et al. 2010; Ghosh et al. 2011; Yamapi et al. 2012; Yue et al. 2012). In
JJ physics, it is encountered in arrays coupled through an external
circuit that possesses resonances (Likharev 1986). In the literature,
it is well known that the junctions are hysteretic, and hence can be
considered birhythmic, which is capable of oscillating at different
frequencies for the same set of parameters. In this regard, Poun-
tougnigni et al. (2019) presented the effects of uncorrelated white
noise, in a series of JJs coupled to a linear RLC resonator.

Kingni et al. (2020) analysed the aspect of JJ with TNB. Nana
et al. (2018) investigated the dynamics of an RLC series circuit
with a hysteretic iron-core inductor, and not limited to Yamapi and
Filatrella (2014) who investigated the effect of noise on a JJ that is
coupled to a linear RLC resonator. Based on this literature and to
the best of our knowledge, there is no work in the literature on the
analytical and numerical analysis of an RCSJJ with TNB coupled
to a linear RLC resonator. This paper is aimed at investigating the
analytical and numerical analyses of an RCSJJ with TNB coupled
to a linear RLC resonator. This leads to the following specific
objectives: To model and analyse an RCSJJ with TNB coupled to a
linear RLC resonator and to characterise the dynamical behaviours
exhibited by an RCSJJ with TNB coupled to a linear RLC resonator.
This paper is divided into three sections. Section 1 deals with the
introduction of the paper. Section 2 presents the rate equations
and theoretical analyses of the RCSJJ with TNB coupled to a linear
RLC resonator. Finally, Section 3 presents the conclusion.

THEORETICAL ANALYSIS OF THE RCSJJ WITH A TNB
COUPLED TO A LINEAR RLC RESONATOR

The RCSJJ with TNB coupled to a linear RLC resonator is an elec-
trical circuit depicted in Fig. 1.

Figure 1 Equivalent electric circuit of the RCSJJ with TNB coupled
to a linear RLC resonator.
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Applying Kirchhoff’s current and voltage laws to the schematic
of Fig. 1, one has the following set of equations:

IG = IRJ + IJ + IC + I,

VJ = VR + VL + VC,

VJ =
h̄
2e

dϕ

dt

(1)

where IRJ , IJ = IJC sin ϕ+ IUCPR sin
(

ϕ
2

)
and IC are the currents

through the resistor across the junction, the JJ, and the capacitor
across the junction respectively. IJC is the critical current of the
junction, and ϕ = ϕ2 − ϕ1 is the gauge-invariant phase difference
across the two superconductors. Also, VR, VL, VC, and I are the
voltages across the resistor, inductor, capacitor, and the current
on the RLC loop respectively and by substituting the various ex-
pressions of the currents and the expression of the voltages in the
system (1), the following system (2) is obtained:

IG =
h̄CJ

2e
d2ϕ

dt2 +
h̄

2eRJ

dϕ

dt
+ IJC sin ϕ + IUCPR sin

(
ϕ

2

)
+

dq̃
dt

, (2)

d2q̃
dt2 +

R
L

dq̃
dt

− h̄
2eL

dϕ

dt
+

1
CL

q̃ = 0. (3)

Introducing the following dimensionless parameters,

ωo =

√
2eIJC

h̄CJ
, τ = ωot, q = ωo q̃/IJC,

α =
1

RJ

√
h̄

2eIJCCJ
, βL =

2eIJC L
h̄

, Ω =
1

ωo
√

LC
, σ =

R
Lωo

,

m =
IUCPR

IJC
, γG =

IG
IJC

,

the normalized form of the system (2) is as follows:
d2ϕ

dτ2 + α
dϕ

dτ
+ sin ϕ + m sin

(
ϕ

2

)
+

dq
dτ

= γG,

d2q
dτ2 + σ

dq
dτ

− 1
βL

dϕ

dτ
+ Ω2q = 0

(4)

It is interesting to note that the parameters; γG is the applied cur-
rent, Ω is the resonant frequency, and βL is the perturbed frequency
of the junction, and the fractional parameter m(m ≥ 0) represents
the contribution of 2π–periodic Josephson current for m = 0 or
2π–periodic Josephson current and 4π–periodic Josephson current
for 0 < m ≤ 1. The current phase relation of the Josephson current
cannot take into account only periodic the 4π–Josephson current.
Therefore, it is a particular case of the current-phase relation used
in [56]. Letting v =

dϕ
dτ and i = dq

dτ system (3) is transformed into a
system of first-order ordinary differential equations given by:

dv
dτ

= γG − αv − i − sin ϕ − m sin
(

ϕ

2

)
, (5)

di
dτ

=
1

βL
v − σi − Ω2q, (6)

dϕ

dτ
= v, (7)

dq
dτ

= i. (8)

System (4) is the mathematical transformation of the schematic
of Fig. 1 representing the RCSJJ with TNB coupled to a linear RLC
resonator.

Stability analysis of the RCSJJ with TNB couple to a linear RLC
resonator
The stability of the system is done by characterising the equilibrium
points of the system. This is done by solving the system (4) for;
dϕ
dτ = 0, dv

dτ = 0, dq
dτ = 0, and di

dτ = 0. By this resolution of the
equilibrium points Ei(v∗, i∗, ϕ∗, q∗) system (4) is characterised by
different values of the fractional parameters m which elaborate on
the various states in which the system exists. When the fractional
parameter m = 0, system (4) reduces to:

v∗ = 0; i∗ = 0; q∗ = 0, (9)

γG − sin ϕ∗ = 0, (10)

as shown in [57], with two solutions E1(0, 0, arcsin(i), 0) and
E2(0, 0, π − arcsin(i), 0) for γG ≤ 1, and no solution for γG > 1.
The associated characteristic equation is given by:

λ4 + b3λ3 + b2λ2 + b1λ + b0 = 0, (11)

where

b3 = σ + α; b2 =
Ω2βL + αβL + βL cos(ϕ∗) + 1

βL
;

b1 = αΩ2 + σ cos(ϕ∗); b0 = Ω2 cos(ϕ∗).
For a system to be stable, it is necessary and sufficient that each

turn of the first column of the Routh array must be positive. If
this condition is not met, the system is unstable and the numbers
of sign changes in the first column correspond to the number of
roots of the characteristic equation in the right half of the S-plane.
The first column of the Routh array for system (6) is given by
the coefficients of the di given by d1 = b3; d2 = b3b2−b1

b3
; d3 =

b1 +
b0b3
d2

; d4 = b0. After analysis, it is found that the equilibrium
point E1 is unconditionally stable while the equilibrium point E2
is unstable.

When the fractional parameter is 0 < m ≤ 1, the resolution of
the system (4) is given by:

v∗ = 0; i∗ = 0; q∗ = 0, (12)

γG − sin ϕ∗ − m sin
(

ϕ∗

2

)
= 0. (13)

System (7) is a nonlinear system in ϕ∗, which the solution can
only be approximated via a numerical method say the Newton-
Raphson method. By this, the system depicts no roots, two or
four roots as a function of the value of parameters (γG = idc, m) as
shown in Fig. 2.

The characteristic equation of system (4) evaluated at the equi-
librium points Ei(0, 0, ϕ∗, 0) is given by Eqn. (6) with the following:

b3 = σ + α;

b2 =
1
2

mβL cos
(

ϕ∗

2

)
+ 2Ω2βL + 2σαβL + 2βL cos(ϕ∗) + 2

βL

 ;

b1 = αΩ2 + σ cos(ϕ∗) +
1
2

σm cos
(

ϕ∗

2

)
;

b0 =
1
2

Ω2
(

m cos
(

ϕ∗

2

)
+ 2 cos(ϕ∗)

)
.
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Figure 2 Repartition of equilibrium points of system (4) in the param-
eter space spanned by m and γG = idc.

Given credit to the Routh-Hurwitz stability criterion, the real
parts of all the roots λ of Eqn. (6) are negative if and only if:
d1 = b3; d2 = b3b2−b1

b3
; d3 = b1 +

b0b3
d2

; d4 = b0 are all greater than
zero, or else the system is unstable.

Numerical analysis of the RCSJJ with TNB couple to a linear RLC
resonator
The influence of the nontrivial barrier will be investigated in this
section numerically. Figure 3 presents the voltage-intensity curves
for different values of the parameter m.

Figure 3 Voltage-intensity curves for different values of m: m1, m2,
m3, m4. The red solid line represents the increasing current bias
and the black solid line represents the decreasing current bias. The
inset shows the birhythmicity zone for the RCSJJ with the TNB (m5).
The parameters of simulations are: α, β, γ, δ.

In Figure 3 (a) for m = m1, the resonant step locked to the
cavity is more detailed in the range 1.05 < γG < 1.40 where the
system stays on one or the other frequency, depending on the initial
conditions (that are controlled by the bias sweep) [58]. The relevant
feature is that the system remains birhythmic for any value of m as
shown in Fig. 3 (b) to (d). Another feature inferred by the fractional
parameter is the coexistence of two resonant state intervals for m
bounded between m2 and m3. Therefore one realizes that the first

resonant state interval γG = γG1 is still on the diagram and is
slightly destroyed as m increases (see Fig. 3 (b)). The destruction
of the former is followed simultaneously by the appearance of
the new resonant state interval. The total disappearance of the
first resonant state interval is evident when m is set beyond the
value m4 (see Fig. 3 (c) and Fig. 3 (d)). The latter is enlarged
with the increase of m. The hysteresis on the new resonant state
interval confers to the system the birhythmic properties. Figure 4
shows the projection of phase space in the (x, y) plane and the time
evolution of the charge resonator for different values of parameter
m. The birhythmic behaviour is characterized by the existence of
two limit cycles depending on initial conditions. Each attractor
can be identified by its amplitude and frequency.

Figure 4 (a) and (b) Projection of phase space in q − dq
dτ plane and

time evolution respectively for m = 0.6 and γG = 2.15; (c) and
(d) projection of phase space in q − dq

dτ plane and time evolution
respectively for m = 0.9 and γG = 2.25. The parameters of the
simulation are α = 0.1, βL = 0.01, Ω = 2.0, Q = 200.0.

Figure 4 is associated with the attractor with large excursion in
charge oscillations with frequency Ω1 and to the other attractor
the frequency Ω3 which is stable. One can estimate the existence
of an unstable orbit with the frequency Ω2 between the two which
is indicated on the diagram by the guessed position qs of the sepa-
ratrix. Regarding the curves on the diagram, the role that can be
assigned to the parameter m is described as follows: the orbit with
the frequency Ω1 sees its amplitude increasing with the increase of
the parameter m while the amplitude of the orbit with frequency
Ω2 tends to smaller values. Another way of analyzing is to set
the variation of the amplitude of voltage and the amplitude of
charge when the bias is swept. We define the amplitude as the
large excursion of the phase derivative dϕ

dτ (which is proportional
to the JJ voltage) and the charge q (which is proportional to the
capacitor voltage). Therefore, we set:

A = max
τ

dϕ

dτ
− min

τ

dϕ

dτ
, (14)

B = max
τ

q − min
τ

q. (15)
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The amplitude diagram versus the bias current γG for many
values of the parameter m is shown in Figs. 5 and 6.

Figure 5 Amplitude A as a function of the bias current γG for
many values of the parameter m: (a) m = 0, (b) m = 0.3, (c)
m = 0.6, (d) m = 0.9. Squares refer to increasing the bias current
and the triangles to decreasing the bias current which is equiv-
alent to the voltage oscillations across the JJ. The parameters of
simulations are the same as in Fig. 2.

Figure 6 Amplitude B as a function of the bias current γG for
many values of the parameter m: (a) m = 0, (b) m = 0.3, (c) m =
0.6, (d) m = 0.9. Squares refer to increasing the bias current and
triangles refer to decreasing the bias current which is equivalent
to the voltage of the capacitor. The parameters of simulations are
the same as in Fig. 2.

CONCLUSION

This paper was devoted to the analytical and numerical analyses
of an RCSJJ with a TNB coupled to a linear RLC resonator. The
modelling and numerical investigation of the RCSJJ with TNB cou-
pled to a linear RLC resonator were studied. The rate equations
describing RCSJJ with TNB coupled to the RLC resonator are estab-
lished by using Kirchhoff’s current and voltage laws. The system
was characterized by four, two, or no equilibrium points depend-
ing on the external direct current (DC) source and the fractional
parameter.

The stability analysis of the equilibrium points with credit to
the Routh-Hurwitz stability criterion reveals that the stability of
equilibrium points depends on the system’s parameters. Current-
voltage characteristic reveals the presence of the birhythmicity
zone which is sensitive to the fractional parameter m. As the frac-
tional parameter increases, the coexistence of the resonant state is
destroyed, which is followed simultaneously by the appearance of
a new resonance state. Depending on initial conditions, birhythmic
behaviour is characterized by the existence of period-1-attractors.
The projection of the phase space in the specific plane and the
time evolution of charge is predicted in which the amplitude of
attractors reported are sensitive to the fractional parameter.
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