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ABSTRACT Chaotic systems possess unique properties that can be leveraged for cybersecurity. These properties
stem from the complex and unpredictable nature of images, which makes it challenging for systems to interpret them.
When combined with CUDA, chaotic systems benefit from high-efficiency parallel processing capabilities, allowing for
the rapid and secure handling of large data sets. Therefore, chaotic systems can be effectively used to securely store
and conceal images. In this study, a CUDA-supported chaos-based parallel processing encryption mechanism for mobile
control centers is developed. Encryption processes leverage the powerful GPU of the control center. This allows for the
fast encryption and decryption of image data received from multiple devices connected to the control center via wired or
wireless connections. For encryption, the Logistic Map is used to generate random numbers. Using this map, image data
is subjected to XOR operations, encrypting the R, G, B, and Gray Scale channels of the images. Initially, an analysis of
the numbers generated from this map is conducted, followed by a detailed explanation of the encryption technique. The
technique is then applied to image data, and image analyses are performed. Finally, the performance of the encryption
technique is compared with other studies, and encryption speeds are examined. The results show that the new encryption
technique provides significantly fast encryption and security levels comparable to other studies. The key discovery of
this research is that the devised mechanism is well-suited for parallel processing, allowing for rapid image encryption
using the proposed method. For encrypting large IoT files, random number generation is initially performed, followed by
statistical tests. Subsequently, encryption is executed using the developed algorithm, and security analyses are conducted.
The performance of the proposed mechanism is compared with other studies in the literature, and the results from image
analysis and encryption performance demonstrate that the developed mechanism can be effectively used with high security
for IoT applications.
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INTRODUCTION

Chaos theory is a field of study that explains nonlinear phenom-
ena that appear disordered but have an underlying order. This
theory addresses two concepts: determinism and randomness.
Specifically, deterministic chaos theory explains that complex sys-
tems governed by deterministic rules exhibit behaviors that appear
random due to their sensitivity to initial conditions. Due to the
deterministic nature of this chaos, it is used in various fields such
as encryption (Clemente-Lopez et al. 2024), motor control (Mai
et al. 2015), image processing (Boyraz et al. 2022), random number
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generation (Tutueva et al. 2020), and the Internet of Things (Kumari
and Mondal 2023).

Chaos theory plays a significant role in cryptography by ex-
plaining the mathematical order behind seemingly random events,
thus ensuring data security (Naik and Singh 2024). This characteris-
tic has enabled the development of innovative encryption methods
in various fields. Furthermore, the inherent randomness of chaotic
systems has proven to be a valuable resource for generating strong
random numbers, which are a fundamental component of many
cryptographic algorithms (Man et al. 2021).

The arrival of the Fourth Industrial Revolution has brought
the Internet of Robotic Things to the forefront by combining the
capabilities of the Internet of Things with autonomous robots,
initiating a new era of interconnectedness (Romeo et al. 2020).
This transformative technology has revolutionized industries such
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as manufacturing (Singh et al. 2021), agriculture (Kashyap et al.
2021), healthcare (Rajendran and Doraipandian 2021), education
(Francisti et al. 2020), and surveillance (Ghosh et al. 2021), leading
to limitations in processing power and storage capacity commonly
encountered in robots that necessitate efficient methods to encrypt
large data sets. To overcome this challenge, a novel discrete-time
chaotic encryption mechanism is proposed to securely store and
conceal large data sets in robots (Kiran et al. 2023; Erkan et al. 2023).

Compute Unified Device Architecture (CUDA), the parallel
computing platform and application programming interface de-
veloped by NVIDIA, has emerged as a game changer in high-
performance computing. Its ability to leverage the general-purpose
processing power of Graphics Processing Units has led to signifi-
cant advancements in various fields, including cryptography (Jad-
hav et al. 2023). CUDA’s parallel processing capabilities have been
particularly useful for accelerating computationally intensive en-
cryption and decryption tasks, making it an attractive option for
real-time encryption and decryption applications.

Today, there are many studies related to parallel encryption
using CUDA, especially in conjunction with chaos. The paper
presented by Bezerra et al. (2024) introduces a novel single-core
parallel image encryption scheme based on chaotic maps, and this
method, optimized for GPU architectures, provides significantly
higher efficiency than existing methods. The proposed scheme
offers a robust solution for real-time image encryption by demon-
strating strong resistance to various types of attacks. The paper
by Elrefaey et al. (2021) introduces a parallel implementation of a
chaotic map-based image encryption algorithm using the Baker
map and the Chen map. This parallel implementation, using GPUs,
significantly speeds up the encryption and decryption processes
for high-resolution images and long videos, making it suitable for
real-time applications. The work by You et al. (2020) introduces a
new algorithm based on hybrid chaotic maps for image encryp-
tion. By using a 1D logistic map and a 2D logistic chaotic dynamic
system, the algorithm provides high security by scrambling pixel
positions and values of images and accelerates the process using
OpenCL. Song et al. (2022) proposes a fast and secure algorithm
using intrinsic properties of chaotic systems, reversible steganog-
raphy, and parallel computing for batch image encryption. The
algorithm distributes batch images equally to each thread, applies
Cipher Block Chaining (CBC) mode among neighboring images,
and encrypts and embeds thread identifiers and CBC indexes into
the encrypted images. By using the logistic map and the Chen
system as chaotic systems in the encryption process, it enhances
resistance to chosen-plaintext attacks. The paper by Bharadwaj
et al. (2021) presents a GPU-accelerated implementation of an im-
age encryption algorithm optimized with genetic algorithms. The
algorithm provides high performance and security by using a mod-
ified XOR cipher to encrypt images and a genetic algorithm-based
pseudo-random number generator with CUDA programming.

The main contributions of this paper to the literature are listed
in order below:

• A new and simple encryption mechanism for three-
dimensional images using the Logistic Map has been pre-
sented.

• The mobile computer version of the flagship GPU with CUDA
support, which was released almost in the last year, has been
used for the first time in the control center role and its perfor-
mance has been tested.

• The importance of CUDA-supported encryption has been
once again highlighted and proven with tests in the paper.

• The developed encryption technique has been implemented

and the resulting outputs have been analyzed.

The remainder of this paper is organized as follows: Section
2 addresses the chaoticity analysis of the Logistic Map. Section 3
explains the generation of random numbers and randomness tests.
Subsequently, Section 4 introduces the chaos-based encryption
technique. Section 5 presents the analysis of images encrypted with
this technique. Section 6 compares the proposed technique with
other existing works. Finally, Section 7 discusses the conclusions
and future work.

CHAOTIC ANALYSIS OF THE LOGISTIC MAP

Discrete-Time Logistic Map Chaotic System
In the recommended light encryption mechanism, the discrete-
time chaotic system chosen for data encryption is the Logistic
Map. The Logistic Map is particularly used to generate random
numbers, which are crucial for encrypting image data through
XOR operations. This chaotic system is preferred due to its ability
to efficiently generate pseudo-random sequences necessary for the
encryption process. The equation for the Logistic Map is presented
in Equation 1. Here, Xn represents the current state, and r is the
control parameter that dictates the system’s behavior. By adjusting
the value of r, the Logistic Map can produce a range of behaviors
from steady-state to chaotic.

Xn+1 = rXn(1− Xn) (1)

The parameters necessary for the Logistic Map in this study
are provided in Table 1. According to the table, the initial value
X(0) is set to 0.61, and the control parameter r is set to 3.9. For the
random number generation process during encryption, 6,291,457
iterations were performed, and the least significant 4 bits of the
binary representation of the number obtained in each iteration
were used.

Time Series Analysis of the Values Generated by the Logistic Map
The time series analysis of the values generated by the Logistic Map
is shown in Figure 1. The graph represents the values obtained
from 250 iterations of the Logistic Map. The absence of periodicity
in the time series demonstrates the chaotic behavior of the Logistic
Map, which is essential for its effectiveness in encryption processes.
This chaotic nature ensures that the values are unpredictable, thus
enhancing the security of the encryption mechanism.

Figure 1 Time series of the values generated by the Logistic Map
over 250 iterations. The plot illustrates the absence of periodicity,
indicating the chaotic nature of the Logistic Map for r = 3.9.
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■ Table 1 Logistic Map Parameters

Chaotic Systems Logistic Map

X(0) 0.61

r value 3.9

Number of Iteration 6291457

Number of Binary 4

Initial Condition Sensitivity Analysis of the Logistic Map

The initial condition sensitivity analysis of the Logistic Map is
depicted in Figure 2. The graph presents the time series of val-
ues generated over 250 iterations for two slightly different initial
conditions: X(0) = 0.61 and X(0) = 0.61 + 10−10. This analysis
demonstrates that even a minute change in the initial condition
results in significantly different trajectories, which is a hallmark of
chaotic systems. The red and green lines represent the two initial
conditions, respectively, and their rapid divergence emphasizes
the sensitive dependence on initial conditions, underscoring the
importance of precision in chaotic system applications.

Figure 2 Time series of the Logistic Map values over 250 iterations
for two slightly different initial conditions: X(0) = 0.61 and X(0) =
0.61 + 10−10. The plot demonstrates the significant divergence in
values due to the small change in the initial condition, illustrating the
sensitive dependence on initial conditions characteristic of chaotic
systems.

Logistic Map Chaotic System Function

The analysis utilizes a single map function due to the one-
dimensional nature of the two nonlinear systems under considera-
tion. The map functions are represented with Xn on the x-axis and
Xn+1 on the y-axis. Figure 3 illustrates the map function derived
from data over 100,000 iterations. In this figure, there is a specific
relationship between the values of Xn and Xn+1. These nonlinear
systems demonstrate chaotic behavior as the values at each step
differ from one another.

The graph in Figure 3 illustrates the relationship between Xn
and Xn+1 for the Logistic Map with r = 3.9. The plot shows how
the population ratio changes iteratively, reflecting the quadratic
nature of the Logistic Map. As the iterations proceed, the values
generated by the map function demonstrate chaotic behavior, as

evidenced by the lack of a repeating pattern and the sensitivity
to initial conditions. This characteristic is essential for encryption
processes, where unpredictability and complexity of the sequence
are crucial for security.

Figure 3 The map function of the Logistic Map for r = 3.9 over
100,000 steps. The x-axis represents Xn and the y-axis represents
Xn+1.

Bifurcation Diagram of the Logistic Map
Bifurcation diagrams are a crucial tool for understanding the
chaotic properties of a system. These diagrams illustrate the dy-
namic changes that occur as system parameters vary, allowing for
an in-depth analysis of the system’s chaotic behavior. Addition-
ally, they help identify the parameter values at which the system
exhibits chaotic or regular behavior.

For the Logistic Map system, the parameter r can range from 2
to 4, and the bifurcation diagram for this interval is presented in
Figure 4. As depicted in the diagram, the system shows chaotic
behavior within the range of 3.5 to 4.

RANDOM NUMBER GENERATION AND RANDOMNESS
TESTS GENERATED BY THE LOGISTIC MAP

The Process of Generating Random Numbers
In this section, the process of generating random numbers used
in the study is discussed. The Logistic Map chaotic system, intro-
duced and analyzed for chaotic behavior in the previous section,
will be utilized here.

The random number generator based on the Logistic Map is
presented in Algorithm 1. Additionally, the parameters used in the
algorithm are presented in Table 1. The algorithm starts with the
parameter r and the initial condition x0. In the first step, the initial
condition is used to calculate the first value with the Logistic Map
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Figure 4 Bifurcation diagram of the Logistic Map for r values ranging
from 2 to 4. The population ratio x is plotted against the growth rate
r.

equation and assigned to data[0]. Then, for the specified number
of steps, a loop is run where the Logistic Map equation is used in
each step to calculate new values and add them to the list. The
initial value is deleted from the list since it is used as the starting
condition.

Subsequently, the number of binary digits to be obtained from
each floating point number is specified, and these binary digits are
added to the list called binary_data_array. This process contin-
ues by obtaining and adding the j-th lowest binary value of each
floating point number to the list.

The obtained binary data list is divided into the specified num-
ber of parts (num_parts), and the size of each part (part_size) is
calculated. Here, the number of parts is set to 8. These parts are
assigned to the parts list, and each part is then added to the newly
created binary_data_array_new list.

As a result, the random numbers generated using the Logistic
Map are converted into binary values, which are then organized
for later use. This algorithm creates an effective random number
generator by leveraging the randomness characteristic of the Logis-
tic Map chaotic system, thereby ensuring reliable random number
generation.

Randomness Analysis of the Generated Random Numbers
In this subsection, the randomness analysis of the random numbers
generated by the algorithm introduced in the previous subsection
is conducted. The randomness analysis was performed using the
NIST-800-22 and ENT (Beirami et al. 2012) tests.

The NIST-800-22 test, which is widely used worldwide, consists
of 15 different statistical tests (Koyuncu 2014). For the test to be
considered successful, all these statistical tests must pass. This
provides evidence that the generated numbers are random. The
NIST-800-22 test produces results based on the P-value, and for
the results to be considered successful, the P-value must be greater
than the threshold value of 0.001. In this study, the first 3,000,000
binary values generated by the Logistic Map were used. The results
obtained are presented in Table 2. As seen in the table, all tests are
considered successful as they meet the required conditions.

Another significant test for assessing the randomness in this
study is the ENT test. Developed by John Walker, this test includes
five different statistical evaluations. The entropy test measures the
information density of the sequence, expressed as the number of
bits per byte, with an ideal entropy level of 8. Entropy indicates
the amount of information contained in the generated sequence.
The chi-square test assesses the randomness of the sequence and

Algorithm 1 Pseudorandom number generation pseudo code

1: Result: Random Binary Numbers
2: Start
3: Enter parameter r=3.9
4: Enter initial condition x0← 0.1
5: Number of steps number_of_steps
6: data[0]← equation(x0)

7: for i← 1 to number_of_steps do
8: data[i]← equation(data[i-1])

9: delete(data[0])
10: binary_data_array← []
11: Binary number to get from float number_of_binary
12: for i← 0 to number_of_steps-1 do
13: for j← 1 to number_of_binary do
14: Get j-th lowest value binary of data[i]→ binary_data

15: Append binary_data to binary_data_array

16: Number of parts to divide the list into
17: num_parts← 8
18: part_size← len(binary_data_array) // num_parts

19: parts← [binary_data_array[i*part_size:(i+1)*part_size]
for i in range(num_parts)]

20: Initialize the new list binary_data_array_new← []
21: for i← 0 to part_size-1 do
22: for part in parts do
23: Append part[i] to binary_data_array_new

24: End

is highly sensitive to errors in the PRNG. The arithmetic mean is
computed by dividing the sum of all bytes in the generated file by
the file length, with a value close to 127 indicating randomness.
The Monte Carlo test demonstrates that the sequence converges to
π with a minimal error of 0.01 percent, suggesting the sequence’s
proximity to randomness. The serial correlation coefficient test
ensures that there is no correlation between each byte and the pre-
vious byte in the sequence. All generated binary random numbers
were subjected to this test, and the results are presented in Table 3.
As shown in the table, the results are close to the optimal values
that define randomness. Therefore, the outcomes from both tests
confirm that the numbers can be used reliably.

OVERVIEW OF THE NEW CHAOS-BASED ENCRYPTION
TECHNIQUE

In this section, the encryption technique will be introduced. This
technique will be used in the control center that controls the de-
vices. The communication structure of the control center with
other devices is shown in Figure 5. When the mobile control cen-
ter communicates with other devices, the data is encrypted and
decrypted with the support of the GPU. Thus, although the mo-
bile control center has a weaker processing capacity compared to
other advanced control centers, the delay in data encryption and
decryption is minimized thanks to the CUDA support of the GPU.

In the study, encryption initially starts with the generation of
random numbers as described in the previous section. The gen-
erated random numbers are then applied to RGB or Gray-Scale
images to encrypt these images. The encryption of each channel is
done separately as shown in Figure 6. The process of encrypting
the random numbers for each of the RGB channels is presented
in Algorithm 2. The first phase of the algorithm involves loading
the data into the GPU and performing the XOR operation. Ini-
tially, the generated random numbers are split into three lists using
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■ Table 2 Logistic Map P-Values and Test Results

Test P-Value (Logistic Map) Result

Frequency Monobit 0.60712 Passed

Frequency Test (M = 128) 0.03616 Passed

Run Test 0.72421 Passed

Test for The Longest 0.44117 Passed

Binary Matrix Rank 0.62683 Passed

Discreet Fourier Transform 0.84356 Passed

Non-overlapping (Single, B = 111 111 111) 0.00069 Passed

Overlapping Temp (B = 111 111 111) 0.07939 Passed

Maurier’s Universal 0.20237 Passed

Linear Complexity (M = 500) 0.15630 Passed

Serial Test-1 (m = 16) 0.08933 Passed

Serial Test-2 (m = 16) 0.19621 Passed

Approximate Entropy (m = 10) 0.74849 Passed

Cumulative Sums Test (Forward) 0.57423 Passed

Random Excursion Test (x = -1) 0.62257 Passed

Random Excursion Variant Test (x = -6) 0.65029 Passed

■ Table 3 ENT Test Results

Test Name Average Ideal Results Result

Arithmetic Mean 127.45217 127.5 Success

Entropy 7.99993 8 Success

Correlation 0.00032 0 Success

Chi Square 278.19856 10% and 90% between Success

Monte Carlo 3.13186 3.1415 Success

the split_list_into_three function. Then, the CUDA kernel is
defined, and the necessary kernel code for the XOR operation is
created. This kernel code is a simple CUDA function that performs
the XOR operation between two lists at each index. After the ker-
nel code is compiled, preparations are made to run the function in
the CUDA context. In this phase, the lists are converted to numpy
arrays, and empty arrays are created to store the results. Subse-
quently, these numpy arrays are copied to the GPU memory. The
block and grid sizes are defined, and the XOR operation is exe-
cuted on the GPU. Finally, the calculated results are copied from
the GPU memory to the CPU memory, completing the process.

Thus, the encryption data for each channel is obtained.

The process of applying the encryption data generated for each
channel to each channel is shown in Algorithm 3. The algorithm
involves applying the encryption data to the RGB or Gray-Scale
image channels. First, a new CUDA kernel code is defined, and
each channel of the images is flattened. Then, these channels are
divided into 64 parts, and each part is assigned as a new channel
list. After creating empty arrays to store the results, the data is
copied to the GPU memory. The block and grid sizes are defined,
and the XOR operation is performed on the GPU. Once the pro-
cess is complete, the calculated results are copied from the GPU
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Figure 5 The wired or wireless connection structure of the mobile
control center with other devices.

Figure 6 Encryption of each channel in RGB images or Gray-Scale
image.

memory to the CPU memory. Finally, the results obtained for each
channel are combined to produce the final encrypted image.

TESTS OF IMAGES ENCRYPTED WITH THE NEW TECH-
NIQUE

Image Analysis between Encrypted Image and Original Image

This section examines the differences between the original image
and the encrypted image using the Lena image, a standard in
image processing. Histogram, correlation, and entropy analyses
were conducted on both the original and encrypted images, and
differential attack analyses (NPCR and UACI) were performed on
the encrypted image. NPCR evaluates the percentage of differing
pixels between two encrypted images generated by altering a sin-
gle pixel in the plaintext image, while UACI measures the average
of the absolute differences between corresponding pixels in two
encrypted images created by altering a single pixel in the plaintext
image. In the NPCR test, two nearly identical plaintext images,
differing by only one pixel, are encrypted, with a high NPCR value
indicating strong resistance to differential attacks. Similarly, in
the UACI test, two nearly identical plaintext images, differing by
only one pixel, are encrypted, with a low UACI value indicating
strong resistance to differential attacks. For the encryption method
to be considered resistant to differential attacks, the NPCR value
should be at least 99.9% and the UACI value should be less than
0.01. Additionally, to assess the performance of the new encryption
method, histogram, correlation, and entropy analyses were carried

Algorithm 2 Encryption data for R (or gray-scale), G, B channels

1: Result: Encryption data for R (or gray-scale), G, B channels
2: Start
3: part1, part2, part3 ← split_list_into_three(

binary_data_array_new)

4: Define CUDA kernel code for XOR operation:
5: kernel_code← "

6: __global__ void xor_lists(int *list1, int *list2,

int *result, int size) {

7: int idx = threadIdx.x + blockIdx.x * blockDim.x;

8: if (idx < size) {

9: result[idx] = list1[idx] � list2[idx]; } }"

10: mod← SourceModule(kernel_code)

11: xor_lists← mod.get_function("xor_lists")

12: Convert lists to numpy arrays
13: part1_np← part1, part2_np← part2, part3_np← part3

14: Allocate space for results
15: zeros_like(r_kanal_list←part1_np,

g_kanal_list←part2_np, b_kanal_list←part3_np)

16: Copy lists to GPU memory
17: cuda.mem_alloc(part1_gpu←part1_np,

part2_gpu←part2_np, part3_gpu←part3_np,

r_kanal_gpu←r_kanal_list, g_kanal_gpu←g_kanal_list,

b_kanal_gpu←b_kanal_list)

18: cuda.memcpy_htod(part1_gpu←part1_np,

part2_gpu←part2_np, part3_gpu←part3_np)

19: Define block and grid sizes
20: block_size← 256
21: grid_size← ceil(len(part1_np) / block_size)

22: Perform XOR operation on GPU
23: xor_lists(part1_gpu, part2_gpu, r_kanal_gpu,

len(part1_np), block=(block_size, 1, 1),

grid=(grid_size, 1))

24: xor_lists(part1_gpu, part3_gpu, g_kanal_gpu,

len(part1_np), block=(block_size, 1, 1),

grid=(grid_size, 1))

25: xor_lists(part2_gpu, part3_gpu, b_kanal_gpu,

len(part2_np), block=(block_size, 1, 1),

grid=(grid_size, 1))

26: Copy results back to CPU
27: cuda.memcpy_dtoh(r_kanal_list←r_kanal_gpu,

g_kanal_list←g_kanal_gpu, b_kanal_list←b_kanal_gpu)

28: End

out on both the original and encrypted images. The histogram dis-
plays the distribution of pixel intensities in an image. The formula
for calculating the histogram of an image is:

H(i) =
L−1

∑
j=0

δ(i− f (j)) (2)

Correlation measures the linear relationship between two vari-
ables. The formula for calculating correlation is:

C =
∑N−1

i=0 ∑N−1
j=0 [( f (i, j)− f )(g(i, j)− g)]√

∑N−1
i=0 ∑N−1

j=0 ( f (i, j)− f )2 ∑N−1
i=0 ∑N−1

j=0 (g(i, j)− g)2
(3)

Entropy measures the amount of information in an image and
expresses the degree of randomness or uncertainty in the data
input. High entropy indicates that the data is more unpredictable
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Algorithm 3 CUDA based XOR Operation for Any Channel

1: Result: Encrypted Image Channel
2: Start
3: Define new CUDA kernel code for image XOR operation (The

definition is the same as in the Algorithm 2.)
4: Load channel images and flatten them
5: load_image_as_array(any_channel ←

any_channel_file)

6: Split the list into 64 parts
7: num_parts← 64
8: part_size← len(any_kanal_list) // num_parts

9: Assign the first part as new channel lists
10: any_kanal_new_list← any_kanal_list[:part_size]

11: Allocate space for results
12: zeros_like(any_result ← any_kanal_new_list)

13: Copy data to the GPU
14: cuda.mem_alloc(any_channel_gpu ← any_channel)

15: cuda.mem_alloc(any_list_gpu ←
any_kanal_new_list.nbytes, any_result_gpu ←
any_result)

16: cuda.memcpy_htod(any_channel_gpu ← any_channel,

any_list_gpu ← any_kanal_new_list)

17: Define grid and block sizes
18: block_size← 256
19: grid_size← ceil(any_channel.size / block_size)

20: Perform XOR operation on GPU
21: xor_lists(any_channel_gpu, any_list_gpu,

any_result_gpu, any_channel.size, block=(block_size,

1, 1), grid=(grid_size, 1))

22: Copy results back to CPU
23: cuda.memcpy_dtoh(any_result ← any_result_gpu)

24: Combine channels back into images
25: image_shape← (image_size_1, image_size_2)

26: Process Any channel result
27: any_result_image← any_result.reshape(image_shape)

28: End

and thus harder to compress or encrypt. In encryption, high en-
tropy means more randomness in the input, which makes it harder
for an attacker to detect patterns or weaknesses in the encryption
algorithm. Low entropy indicates that there may be too many
patterns or repetitions in the data, which can make it easier for
an attacker to decrypt the message. Therefore, to ensure strong
encryption, a balance between entropy and predictability must be
established. The formula for calculating entropy is:

S = −
N

∑
i=1

pi log2(pi) (4)

Figure 7 displays the histogram analyses of the original image
(shown on the left) in Figure 6, as well as its encrypted versions in
the order of R, G, B, and grayscale channels. In Figure 7, the R, G, B,
and grayscale channels are presented separately as histogram plots.
Examining the histogram plots of the different channels of the
original image, it is observable that each channel contains distinct
information. However, when analyzing the histogram plots of
images encrypted using new random numbers generated by the
Logistic Map, these plots can be considered as purely noise data.
This indicates that no meaningful information can be extracted
from the histogram of the image.

Figure 8 presents the cross-correlation plots for the R, G, B, and
gray-scale channels of the same image. As can be seen, while infor-

mation can be extracted from the channels of the original image,
the situation in the encrypted image channels appears spread out
and homogeneous. This indicates that the image channels have
been well encrypted.

Tables 4 and 5 provide the Horizontal and Vertical Correlation
Coefficient values for the original image and its encrypted versions.
Calculations have been performed separately for each channel (R,
G, B, grayscale). As seen in the tables, for the original image in
different dimensions, both horizontal and vertical correlation val-
ues for each channel range from 0.7 to 1.0, indicating the presence
of information within the image. However, after encrypting the
image channels using random numbers generated from the Logis-
tic Map in different dimensions, these values have approached 0.
This demonstrates that the encryption is robust.

Table 6 presents the NPCR, UACI, and Entropy values obtained
from different sizes and channels of the Lena image after encryp-
tion (including the entropy values of the original images). Here,
the NPCR value shows the normalized form of the changing values
for 8-bit pixels between 0 and 1, while the UACI values indicate
the normalized form of the intensity of changing pixels, also be-
tween 0 and 1. Considering all these values, it is evident that the
discrete-time chaotic encryption technique is successful.

Processing Time of the Encryption Technique in Mobile Control
Center for Video-Based Applications
In this sub-section, the encryption speeds of video frames from
devices connected to the Mobile Control Center will be analyzed.
Images with sizes of 128, 256, 512, and 1024 were used for encryp-
tion. In the simulation environment, the number of connected
devices was set to 1, 5, 10, 20, 50, and 100. Additionally, the lap-
top version of the NVIDIA GeForce RTX 4090 model was used
for encryption. The average number of frames encrypted by the
control center from the image data received from each device was
calculated. The results obtained are presented in Table 7. The table
shows the number of frames processed according to image sizes
and the number of devices.

When examining the obtained results, it is observed that the
significant drop in fps occurs with the increase in image sizes.
Although the increase in the number of devices for each size de-
creases the fps value, this decrease is not significant. Particularly,
the GPU used for encryption has not been heavily burdened dur-
ing these processes. There has only been a busy state in CPU-GPU
read/write operations. However, this busy state is not at a level
that would affect other tasks. This indicates that the proposed
technique is efficient.

COMPARISON OF THE PROPOSED TECHNIQUE WITH EX-
ISTING WORKS

In this section, the performance of the Lena image encrypted with
the proposed encryption technique is compared with that of the
Lena image encrypted by other studies. Generally, recent and sig-
nificant studies have been used for this comparison. The grayscale
version of the Lena image was used, focusing on correlation co-
efficients, entropy, and NPCR values. The obtained test results
are presented in Table 8. In the table, while the proposed study
achieved very good results compared to some other studies, it ob-
tained values very close to those of the studies with the best results.
This demonstrates the effectiveness of the encryption technique.
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(a) Histogram of The Original and Encrypted R Channel

(b) Histogram of The Original and Encrypted G Channel

(c) Histogram of The Original and Encrypted B Channel

(d) Histogram of The Original and Encrypted Gray Channel

Figure 7 Comparative Histogram Analysis of Original and Encrypted Image Channels
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(a) Diagonal Correlation of The Original and Encrypted R Channel

(b) Diagonal Correlation of The Original and Encrypted G Channel

(c) Diagonal Correlation of The Original and Encrypted B Channel

(d) Diagonal Correlation of The Original and Encrypted Gray Channel

Figure 8 Comparative Diagonal Correlation Analysis of Original and Encrypted Image Channels
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■ Table 4 Logistic Map Horizontal Correlation

Size Channel Horizontal Corr. (Original) Horizontal Corr. (Encrypted)

128x128 Red 0.9539 0.0053

128x128 Green 0.9581 0.0074

128x128 Blue 0.9191 -0.0046

128x128 Gray-Scale 0.9442 0.0040

256x256 Red 0.9742 -0.0001

256x256 Green 0.9768 0.0072

256x256 Blue 0.9515 -0.0045

256x256 Gray-Scale 0.9684 0.0002

512x512 Red 0.9888 -0.0005

512x512 Green 0.9899 -0.0014

512x512 Blue 0.9783 -0.0001

512x512 Gray-Scale 0.9864 -0.0011

■ Table 5 Logistic Map Vertical Correlation

Size Channel Vertical Corr. (Original) Vertical Corr. (Encrypted)

128x128 Red 0.8654 0.0005

128x128 Green 0.8463 0.0136

128x128 Blue 0.7802 -0.0145

128x128 Gray-Scale 0.8280 0.0064

256x256 Red 0.9255 -0.0043

256x256 Green 0.9144 0.0016

256x256 Blue 0.8736 0.0017

256x256 Gray-Scale 0.9035 0.0003

512x512 Red 0.9676 -0.0005

512x512 Green 0.9630 -0.0011

512x512 Blue 0.9448 -0.0010

512x512 Gray-Scale 0.9580 -0.0011
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■ Table 6 Logistic Map NPCR, UACI, Entropy

Size Channel NPCR UACI Entropy (Original) Entropy (Encrypted)

128x128 Red 0.9960 0.3246 7.2996 7.9875

128x128 Green 0.9959 0.3031 7.5558 7.9861

128x128 Blue 0.9961 0.2786 7.1104 7.9854

128x128 Gray-Scale 0.9967 0.2753 7.3255 7.9892

256x256 Red 0.9962 0.3296 7.2835 7.9961

256x256 Green 0.9958 0.3036 7.5801 7.9963

256x256 Blue 0.9962 0.2765 7.0603 7.9957

256x256 Gray-Scale 0.9958 0.2787 7.3176 7.9961

512x512 Red 0.9962 0.3309 7.2709 7.9981

512x512 Green 0.9961 0.3050 7.5860 7.9981

512x512 Blue 0.9958 0.2761 7.0022 7.9979

512x512 Gray-Scale 0.9960 0.2796 7.3015 7.9981

■ Table 7 FPS Test Results

Size Devices fps Size Devices fps

128x128 1 3456 512x512 1 376

128x128 5 3280 512x512 5 360

128x128 10 2900 512x512 10 316

128x128 20 2404 512x512 20 284

128x128 50 1960 512x512 50 232

128x128 100 1284 512x512 100 168

256x256 1 1484 1024x1024 1 148

256x256 5 1424 1024x1024 5 144

256x256 10 1240 1024x1024 10 132

256x256 20 924 1024x1024 20 116

256x256 50 644 1024x1024 50 104

256x256 100 264 1024x1024 100 76
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■ Table 8 Comparison of Studies

Studies Correlation Coefficient Entropy NPCR (%)

256 512 512 512

Horizontal Vertical Horizontal Vertical

Shakir (2019) N/A N/A 0.1394 0.0339 7.7362 N/A

Kiran et al. (2023) 0.0022 0.0027 -0.0016 -0.0025 7.9981 99.606

You et al. (2020) N/A N/A 0.0149 0.0151 7.9457 99.65

Clemente-López et al. (2024) N/A N/A 0.0049 0.0038 7.9992 99.61

Our Study 0.0002 0.0003 -0.0011 -0.0011 7.9981 99.60

CONCLUSION

This study presents a novel chaos-based encryption technique
leveraging the parallel processing capabilities of CUDA for mo-
bile control centers with powerful GPUs. The proposed method
utilizes the Logistic Map for random number generation, which
is then applied to the RGB and grayscale channels of image data
through XOR operations. The results of our experiments demon-
strate that the technique provides fast encryption speeds and high
security levels, making it suitable for real-time applications in IoT
environments. The statistical analyses, including histogram, corre-
lation, and entropy tests, confirm the robustness and effectiveness
of the encryption mechanism against various types of attacks.

Future work will focus on several enhancements and extensions
of the current study. One area of improvement involves optimiz-
ing the algorithm for different hardware configurations, including
low-power devices, to ensure broader applicability. Additionally,
integrating more sophisticated chaotic maps and exploring hybrid
encryption techniques could further enhance security and perfor-
mance. We also plan to conduct extensive testing in real-world
IoT scenarios to validate the practicality and reliability of the pro-
posed method. Furthermore, expanding the scope of the study to
include other types of data, such as video and sensor data, will
help in assessing the versatility and scalability of the encryption
technique.
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