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ABSTRACT In this work, the study of an innovative chaotic system made from two memristors with symmetric bifurcation and
multistability is presented. Within a four-dimensional chaotic framework, the system is architected with two flux-controlled memristors.
Computational simulations reveal intricate dynamical phenomena such as symmetric bifurcations, multistability, and very large sensitivity
to initial conditions. Using Lyapunov exponents, bifurcation diagrams, and phase portraits we investigate the system’s ability to produce
chaotic attractors of pronounced multistability. Pinched hysteresis loop and system offset investigation at different frequencies are
investigated for possible applications in neuromorphic computing, random number generation, and secure communication protocols. We
further advance our understanding of the complex dynamical properties of memristive chaotic systems. A representative analog circuit
corroborates their numerical findings.

KEYWORDS

Multistability
Analog circuit
Chaotic systems
Bifurcation

INTRODUCTION

The exploitation of chaotic systems has been a main field of aca-
demic inquiry due to the many applications in secure communica-
tion, stochastic number generation, image encryption (Umar et al.
2024), and neuromorphic computing (Masominia 2024). In partic-
ular, memristor-based chaotic circuits (Kumari and Yadav 2023)
stand out from the myriad approaches due to exceptional nonlin-
ear properties and memristor-based memory-dependent resistance
(Li et al. 2023). The memristor was shown to be a revolutionary
element designed for nonlinear systems (Penington 2022). It is
specifically well suited to chaos-oriented applications due to its
ability to replicate biological synapses and exhibit intricate dynam-
ics (Lin et al. 2023). Scholarly interest in memristor-based chaotic
systems has been piqued for their potential applications in secure
communication, random number generation, and adaptive circuits
(Wei et al. 2024). Despite that, the existing literature is mainly about
standalone memristor architectures and fails to explore the full
potential of the entire set of memristors. However, two memristor-
based systems remain poorly explored, in particular for their abil-
ity to increase chaos generation, symmetric bifurcation (Li et al.
2021), and multistability (Fang et al. 2022). Moreover, balanced
and predictable dynamics are facilitated by symmetric bifurcation,
whereas diverse and reconfigurable behaviors are supported by
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multistability.
The fundamental nonlinearity of the memristor brings forth

a prominent characteristic of its volt-ampere characteristic curve
for the memristor, which is represented by a narrowing hysteresis
loop (Luo et al. 2023). Memristor nonlinearity embedded in the
memristor fosters the development of chaotic systems exhibiting
rich dynamic behaviors, such as chaos, oscillations burst multi-
stability states, etc. (Yang et al. 2024). In this context, the explo-
ration of memristive chaotic systems warrants a closer look in the
field of nonlinear sciences because of the rich dynamic behaviors
induced by chaotic systems realized with memristors. A consid-
erable amount of academic research has been of interest in recent
years (Lai et al. 2023). The controller was incorporated into the
foundational memristor chaotic system to formulate a chaotic sys-
tem and assess its multistability. A memristive chaotic system with
remarkable multistability was introduced in the phenomenon and
comprehensive studies (Bao et al. 2022b).

A foundational chaotic oscillating circuit incorporating a mem-
ristor that is characterized by minimal nonlinearity and bifurcation
diagrams is used to explain the appearance of previously unan-
ticipated dynamical features in the circuit (Marszalek 2022). The
multiple attractors within a memristive diode bridge jerk circuit
were revealed and the trajectory toward a chaotic state was investi-
gated (Fossi et al. 2023). Additionally, a memristor is added to the
jerk circuit and found to exhibit various dynamic attributes includ-
ing multistability and monotonic behavior (Kamdem Tchiedjo et al.
2022).

However, a preponderance of modern academic inquiries con-
cerns individual memristor configurations, disregarding the poten-
tial of chaotic systems consisting of dual memristors (Wang et al.
2024; Bao et al. 2022a; Guo et al. 2021). These rationales lead to this
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investigation that seeks to address the gap by leveraging the inter-
actions between a pair of memristors to enhance chaos generation,
symmetric bifurcation (Guo et al. 2021), and multistability (Boya
et al. 2022). In addition, further characteristics are elucidated as
follows:

1. Investigate the profound multistability exhibited by a chaotic
system comprising two memristors, which is contingent upon
the initial conditions, through the application of a dimension-
ality reduction model. This methodology enables accurate
forecasting examination and regulation of multistability via
recognized quantitative methodologies.

2. Examine the essential dynamics, encompassing bifurcation
and chaotic phenomena through the manipulation of system
parameters and the subsequent observation of resultant be-
haviors.

3. Devise and execute an analog circuit to substantiate the theo-
retical conclusions, guaranteeing that the computational sim-
ulations are consistent with the empirical data.

By using the dynamics of the dimensionality reduction model
to recreate the initial parameters-dependent extreme multistability
in the two-memristor chaotic system, one may precisely forecast,
analyze, and control extreme multistability using traditional quan-
titative methods.

In this article, we lay out the methodical organization of the
manuscript. We focus on the evaluation of equilibrium points,
Lyapunov exponents, and Kaplan-Yorke dimensions in Section 2,
which describes the internal dynamics of the suggested chaotic
system with two memristors. Section 3 offers an extensive expo-
sition of the essential dynamics, encompassing chaotic attractors,
bifurcation diagrams, and frequency-domain responses. Section 4
investigates the adjustable chaotic dynamics manifested by the sys-
tem. Within Section 5, the occurrence of multiple attractors is scru-
tinized, with a specific focus on the principles of multistability and
symmetric bifurcations as modulated by varied initial conditions.
Section 6 articulates the conceptualization and implementation
of a demonstrative analog circuit employing components such as
operational amplifiers and capacitors, intended to corroborate the
theoretical insights through empirical validation. The concluding
section integrates the exhaustive findings and implications of the
research endeavor.

MODEL AND ITS FUNDAMENTAL DYNAMICS

Chaotic Analysis of a Novel System

In this segment, we presented a novel four-dimensional framework
characterized by:

ẋ = −x(0.2y2 − 0.5)− z|aw| − b

ẏ = x − 2y + 2x2y

ż = x

ẇ = w − w|w| − z

(1)

The variables x, y, z, and w are considered independent, while
the parameters a and b are positive real numbers. Altering the
parameters, a and b can induce system (1) to demonstrate chaotic,
periodic, or quasi-periodic behavior.

Evaluation of Equilibria
The equilibria represented by equation 1 can be determined
through: 

−x(0.2y2 − 0.5)− z|aw| − b = 0

x − 2y + 2x2y = 0

x = 0

w − w|w| − z = 0

(2)

Equation 2 can be analyzed through analytical techniques, con-
sidering its unique equilibrium point, which is represented as
S0 (0, 0,−0.3854, 1.2971). The Jacobian matrix can be formulated
by linearizing Equation 1 around the zero-equilibrium point S0:

J =



0.5 0 −2.5942 0.7708

1 −2 0 0

0 0 0 0

0 0 −1 −1.5942


(3)

We get the characteristic equation at S0:

det(λI − J) = (a4λ4 + a3λ3 + a2λ2 + a1λ1) = 0 (4)

Given the presence of positive Lyapunov exponents (λ3 and λ4),
it can be inferred that the system may exhibit chaotic dynamics or
unstable trajectories along certain axes. Conversely, the negative
exponent (λ1 and λ2) implies the existence of stability along a
specific direction. The system cannot be characterized as exhibiting
solely stable behavior due to the presence of a positive exponent.
By setting the parameters to a = 2 and b = 1, the eigenvalues
relevant to the state S0 are determined as:

λ1 = 0.3103 + 1.6628i,

λ2 = 0.3103 − 1.6628i,

λ3 = −1.7148,

λ4 = −2.

(5)

Dimension of Kaplan-Yorke and Lyapunov Exponents
Equation 1 can be resolved utilizing the ode45 algorithm within
the MATLAB computational environment, with parameters a = 2
and b = 1 being held constant. The discretization step size is estab-
lished at 0.005, which is derived from a comprehensive analysis
involving one million computations. Later, with the original setup
[0.1, 0, 0, 0], the evaluated Lyapunov exponents were λ1 = 0.3103,
λ2 = 0.3103, λ3 = −1.7148, λ4 = −2. The Kaplan-Yorke dimen-
sion of system (1) is assessed as:

DKY = 3 +
∑3

i=1 λi
|λ4|

(6)

DKY = 3 +
0.3103 + 0.3103 − 1.7148

−2
= 3.5471 (7)

The presence of an anomalous attractor is assured by the frac-
tional quantity referred to as the Kaplan-Yorke dimension (Silva-
Juárez et al. 2021). In Figure 1, the chaotic attractors are illustrated,
while in Figure 2 it depicts the chaotic waveform, and Figure 3 rep-
resents the frequency of the chaotic signals. The signal w exhibits
a reduced frequency relative to the chaotic signals.
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ANALYSIS OF CHAOTIC ATTRACTORS

The chaotic attractors depicted in Figure 1 exemplify the dynamic
behavior exhibited by the chaotic system based on two memris-
tors, when the parameters a = 2 and b = 1, alongside the initial
conditions [0.1, 0, 0, 0]. The attractors reveal intricate, non-periodic
trajectories across various planes, thereby validating the chaotic
characteristics of the system. Noteworthy attributes include sym-
metric, layered loops situated in the y-z plane, elongated and
overlapping loops found in the x-z plane, and stretched inter-
secting loops present in the x-w plane, highlighting substantial
nonlinear interactions and symmetrical bifurcation. The findings
illustrate the system’s ability to generate a spectrum of tunable
chaotic behaviors, signifying its prospective applications in secure
communication and adaptive circuitry.

(a) (b)

(c) (d)

Figure 1 Chaotic attractors in different planes of equation 1 with
a = 2 and b = 1 under the initial conditions [0.1, 0, 0, 0]: (a) x-y,
(b) x-z, (c) y-z, (d) x-w.

Figure 2 delineates the erratic waveforms exhibited by the two-
memristor-based chaotic system when parameters a = 2 and b = 1
are applied, under the initial conditions of [0.1, 0, 0, 0]. The variable
outputs x(t), y(t), z(t), and w(t) exhibit irregular oscillatory pat-
terns, which validates the chaotic features embedded within the
system. Every variable displays particular amplitudes and frequen-
cies: x(t) and w(t) vary within the confines of [−2, 2], y(t) extends
from [−6, 2], and z(t) is bounded to [−2, 1]. These findings un-
derscore the system’s capacity to generate intricate, non-periodic
signals that are suitable for chaos-based applications.

BIFURCATION DIAGRAMS AND LYAPUNOV EXPONENT
SPECTRA

Figure 4a and 4b serve to elucidate the dynamical characteris-
tics of the system by employing Lyapunov exponents (LEs) and
bifurcation diagrams corresponding to parameter variations in a
and b, respectively, under the initial conditions [0.1, 0, 0, 0]. When
a = 2, the Lyapunov exponents reveal zones of chaotic dynamics,
as evidenced by the positive values of the primary exponent (LE1),
thereby affirming the system’s pronounced sensitivity to initial

(a) (b)

(c) (d)

Figure 2 Chaotic Waveform of equation 1 with a = 2 and b = 1
under the initial condition [0.1, 0, 0, 0]: (a) waveform x(t), (b)
waveform y(t), (c) waveform z(t), (d) waveform w(t).

(a) (b)

(c) (d)

Figure 3 Frequency spectra of equation 1 with a = 2 and b = 1
under the initial conditions [0.1, 0, 0, 0].

conditions. The bifurcation diagram delineates the emergence
of both periodic and chaotic attractors as the parameter varies,
exhibiting intricate branching patterns that encapsulate the sys-
tem’s dynamics. For parameter a set to 2, the Lyapunov exponents
corresponding to the system (1) are represented in Fig. 4(a) as
(0.0037,−0.0469,−0.0526). The bifurcation diagrams of the system
(1) across maximum value [1, 2] at each iteration are presented in
Figure 4b.

In a similar vein, when b = 1, the Lyapunov exponents and
bifurcation diagrams unveil a comparable dynamic interplay be-
tween periodic and chaotic regimes. The positive Lyapunov expo-
nents (LE1) corroborate the existence of chaotic domains, while the
bifurcation diagram graphically represents the presence of mul-
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tiple coexisting attractors and transitions between periodic and
chaotic dynamics. The findings underscore the intricate dynamical
behavior of the system and its adaptable characteristics through
parameter variations, rendering it suitable for applications that
require controllable chaos (Chaintron and Diez 2021). For a value
of parameter b = 1, the Lyapunov exponents associated with the
system (1) are (0.0956, 0,−0.3507), represented in Fig. 6(a). The bi-
furcation diagrams of the system (1) across maximum value [−5, 5]
at each iteration are presented in Fig. 6b.

The preceding analysis leads to the understanding that the
recommended nonlinear model can yield multiple kinds of oscil-
lations within the nonlinear context like behaviors such as quasi-
periodic, chaotic or periodic (Kuznetsov et al. 2023a). This signifi-
cantly augmented the complexity associated with equation 1.

(a)

(b)

Figure 4 Dynamical behavior of equation 1 with b = 1 under initial
conditions [0.1, 0, 0, 0]: (a) Lyapunov exponents, (b) bifurcation dia-
gram.

Figure ?? illustrates the intricate dynamics of a nonlinear sys-
tem as it responds to fluctuations in parameter values, specifically
with b held constant at 1, while employing the initial condition of
[0.1, 0, 0, 0]. The phase portraits delineate various modes of motion,
which evolve as the parameter a is incremented. At lower values,
specifically a = 0.1, the system demonstrates periodic behavior,
typified by stable and recurrent orbits. As parameter a is increased
to values such as a = 0.8 or a = 2.4, the system transitions into a
regime of quasi-periodic motion, wherein the trajectories remain
confined yet do not exhibit repetition. At an intermediate value
of a, specifically a = 1.6, the system reveals chaotic dynamics,
characterized by trajectories that possess multiple positive Lya-
punov exponents, indicating a heightened level of complexity. For
elevated values of a such as a = 5.8, the system manifests chaotic
behavior, exhibiting sensitive dependence on initial conditions and
a complex structural configuration. The parameter a governs the

system’s rich and multifaceted dynamics which are highlighted
by these transitions among periodic, quasi-periodic, and chaotic
regimes.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5 Typical phase portraits of equation 1 with fixed b = 1
under the initial condition [0.1, 0, 0, 0]: (a) a = 0.1, (b) a = 0.8, (c)
a = 1.6, (d) a = 2.1, (e) a = 2.4, (f) a = 3, (g) a = 4, (h) a = 5.5, (i)
a = 5.8.

Figure 7 delineates the dynamic characteristics of the nonlinear
system under the constraint of a fixed parameter a = 2 while sys-
tematically varying the parameter b, commencing from the initial
condition [0.1, 0, 0, 0]. When b = 1, the system manifests chaotic
behavior, exhibiting trajectories of considerable complexity. As b
is incremented to b = 0.8, the system transitions to quasi-periodic
motion, where the trajectories remain confined yet do not exhibit
repetition. At b = 1.6, chaotic dynamics are discerned, revealing a
pronounced sensitivity to initial conditions. Ultimately, for b = 2.1,
the system evolves into a periodic state, characterized by stable
and repetitive orbits. This illustrates the system’s capacity to tran-
sition among various dynamical states in response to alterations in
the parameter b.

With beginning circumstances set to initial condition IC1 =
[0.1, 0, 0, 0] and IC2 = [−0.1, 0, 0, 0], our system is shown in Figure 8
operating under the control of parameters a = 2 and b = 1. One
can see the x−w phase plane in Figure 8a, highlighting two unique
attractors (represented in blue and red) that reflect the occurrence
of periodic or quasi-periodic activity. Figure 8b outlines the tem-
poral waveform w(t), which elucidates two separate oscillatory
patterns corresponding to the recognized attractors. The system
exhibits intricate oscillatory behavior marked by variances in both
amplitude and frequency.

MULTISTABILITY ANALYSIS

Multistability denotes the simultaneous existence of multiple trajec-
tories under identical system parameters, characterized by distinct
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(a)

(b)

Figure 6 Dynamical behavior of equation 1 with a = 2 under initial
conditions [0.1, 0, 0, 0]: (a) Lyapunov exponents of parameter b, (b)
bifurcation diagram of variable x.

(a) (b)

(c) (d)

Figure 7 Typical phase portraits of equation 1 with fixed a = 2
under the initial condition [0.1, 0, 0, 0]: (a) b = 1.5, (b) b = 3.6, (c)
b = 4.1, (d) b = 6.

initial conditions. Systems exhibiting multistability characteris-
tics within chaotic dynamics are particularly advantageous for a
plethora of applications in the engineering domain. This section
employs Lyapunov exponents and symmetric attractors to exam-
ine the multistability intrinsic to the system under investigation.
Figure 9 delineates the dynamic properties of the system for pa-

(a)

(b)

Figure 8 Coexisting symmetric chaotic attractors of equation with
a = 2 under the initial condition IC1 = [0.1, 0, 0, 0] (blue), IC2 =
[−0.1, 0, 0, 0] (red): (a) x − w plane, (b) waveform w(t).

rameter values a = 2 and b = 1, in conjunction with varying initial
conditions. In Figure 9a, the observation reveals that the mean
values of the system variables (x, y, z, and w) stay unchanged
as x(0) transitions from −5 to 5, demonstrating the equilibrium
state of the system throughout this period. Figure 9b presents the
Lyapunov exponents (LEs), where one exponent is marginally pos-
itive, thereby affirming the existence of chaotic dynamics, while
the other exponents are negative, indicating bounded and stable
trajectories within the chaotic framework.

(a) (b)

Figure 9 Dynamical behaviors of equation 1 with a = 2, b = 1
and initial conditions [0.1, 0, 0, 0]: (a) average values of all vari-
ables, (b) Lyapunov exponents.

The symmetric attractors showcased in Figure 10 correspond
to the parameter value a = 2, with two mirrored initial conditions
utilized, IC1 = [0.1, 0, 0, 0] shown in green and IC2 = [−0.1, 0, 0, 0]
illustrated in red while varying the parameter b. At b = 3.5, sym-
metric chaotic attractors are evident in the system, as seen in Fig-
ure 10a. As the parameter b increases to 4.3, the attractors exhibit a
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(a) (b)

(c) (d)

Figure 10 Coexisting symmetric attractors when a = 2 with ini-
tial condition IC1 = [0.1, 0, 0, 0] (red), IC2 = [−0.1, 0, 0, 0] (green):
(a) b = 3.5, (b) b = 4.3, (c) b = 6, (d) b = 6.7.

more defined organizational structure, yet they continue to retain
their chaotic characteristics as portrayed in Figure 10b. At b = 6,
a significant transition in the system occurs, leading to periodic
dynamics which is marked by the appearance of recurrent trajecto-
ries as illustrated in Figure 10c. Finally, at b = 6.7, the attractors
attain further stabilization into symmetric periodic orbits as exhib-
ited in Figure 10d. This figure adeptly highlights the evolution
from chaotic behavior to periodic motion, concurrently sustaining
symmetry as the parameter b is incrementally increased.

CIRCUIT IMPLEMENTATION

The purpose of this section is to conduct experiments in the ac-
tual world to verify theoretical results. The LM741CN operational
amplifier, AD633JN multiplier, and monolithic ceramic capacitor
have been employed to construct the chaotic system to validate
the dynamical features of the chaotic oscillator. To facilitate mean-
ingful comparisons, the values of the elements employed in the
numerical analysis were preserved. Figure 11 illustrates the analog
circuit corresponding to equation 1. The corresponding circuit
state equations are articulated using Kirchhoff’s law as follows:

ẋ = R36
R1C1

(
−x·y·y

R33
+ x

R34
+ −z·|w|

100·R36
+ V

R37

)
ẏ = R31

R4C4

(
−x
R34

+
−y
R23

+
x·x·y

100·R30

)
ż = 1

R7C2
x

ẇ = R21
R10C3

(
w

R18
+ −w·|w|

R19
+ z

R20

)
(8)

The circuit operates on a ±15V power supply. System (1) uses
four state variables x, y, z, and w to describe the capacitors’ state
voltages across eight channels. Taking the 10kΩ resistor as a
standard and setting the parameters a = 2 and b = 1, compute
the appropriate parameters of the circuit elements. The param-
eter values are given as follows: C1 = C2 = C3 = C4 = 1 nF,
R6 = R7 = R9 = R10 = R11 = R12 = R13 = R14 = R15 = R17 =
R18 = R19 = R20 = R21 = R22 = R31 = R32 = R37 = 10 kΩ,
R23 = 5 kΩ, R30 = 50 Ω, R34 = 20 kΩ, and R33 = R35 = 500 kΩ.
Multisim 14.2 software was used to simulate the circuit, and Fig-
ure 12 shows the simulation outcomes. The odd attractors found

Figure 11 The chaotic oscillators modeling circuit.

in the analog circuit (Petrzela 2024) and the outcomes of the com-
puter numerical simulation are essentially consistent (Kuznetsov
et al. 2023b). There is some inaccuracy between the theoretical and
actual findings due to the external environment and interruptions
in precision.

(a) (b)

(c) (d)

Figure 12 Circuit simulation of typical phase trajectories of equa-
tion 8 with a = 2, b = 1 under initial condition [0.1, 0, 1, 0]: (a) x-y
plane, (b) x-z plane, (c) y-z plane, (d) x-w plane.

CONCLUSION

The investigation of the two-memristor chaotic system reveals the
system’s capability to generate complicated nonlinear dynamics
such as symmetric bifurcation and multistability. This demon-
strates that the system can be applied to secure communications,
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adaptive control frameworks, and reconfigurable circuitry due to
its system’s intricate chaotic dynamics demonstrated by attractors,
Lyapunov exponents, and bifurcation analysis. This work helps
explain symmetric bifurcation and multistability by investigating
the interplay of two memristors revealing how multiple attractors
may exist and how chaotic behavior can be modulated. Although
possessing numerous tantalizing properties, practical challenges,
including experimental validation and noise robustness, as well as
reconciling theoretical models with actual implementations need
to be overcome to reach its full potential. This work sets the stage
for further research into the design and realization of complex
chaotic systems with improved functionality and robustness.
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