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ABSTRACT This paper is devoted to the numerical investigation of the collective dynamics of nonlocally
coupled Josephson junctions (JJ) spurred by Wien bridge oscillators (JJSWBOs). A single JJSWBO displays
monostable and bistable chaotic characteristics, bistable period-3-oscillations and coexistence between regular
and chaotic characteristics. In order to investigate the collective dynamics of the considered network, the local
dynamics is set in the bistable regime which includes periodic and chaotic dynamics. The initial conditions
for the network dynamics are specially prepared such that the networks units are randomly distributed on
these two types of dynamical behaviors. As the value of the coupling strength increases, the dynamics of the
network of JJSWBOs undergoes a transition from complete incoherence to coherent travelling waves via a
chimera state.
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INTRODUCTION

Many phenomena in nature result from the intricate interaction be-
tween the dynamical characteristics of tremendous elements. For
example, the cognitive function of the brain and certain brain disor-
ders such as epilepsy and Parkinson’s disease are the macroscopic
manifestation of the interaction between the neurons. The most in-
vestigated collective dynamical behavior of interacting elements is
synchronization, which can be simply defined as the entrainment
of rhythms of these interacting elements (Pikovsky et al. 2001).
The study of synchronization is of paramount importance since
it is ubiquitous in the functioning of natural and manufactured
systems.

Among the plethora of synchronization phenomena, the
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chimera state has attracted a lot of attention since its discovery in
the early 2000s (Kuramoto and Battogtokh 2002). The chimera state
is an intriguing partial synchronization state arising in networks of
symmetrically coupled identical systems and characterized by co-
existing domains of coherent and incoherent systems. The chimera
state was first discovered and mathematically studied in networks
of nonlocally coupled phase oscillators (Kuramoto and Battogtokh
2002; Abrams and Strogatz 2004). Since then, a plethora of related
patterns have been unveiled in diverse networks of diverse sys-
tems, including limit-cycle oscillators, chaotic oscillators, excitable
systems, and multistable systems (for a review, see (Zakharova
2020; Parastesh et al. 2021; Schöll 2016)). In addition, chimera states
were uncovered in experimental setups (Hagerstrom et al. 2012;
Tinsley et al. 2012).

The study of collective dynamics of coupled systems of Joseph-
son junctions is a subject that has been tackled in recent years.
Many works on synchronization in arrays of Josephson junctions
were carried out (Ngongiah et al. 2023; Ramakrishnan et al. 2021;
Filatrella et al. 1992). Very recently, a few works reported the ob-
servation of chimeralike states in networks of Josephson junctions
(Mishra et al. 2017a,b). Thus, the investigation of chimera states in
coupled systems of Josephson junctions remains an open problem.
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Besides, bi- or multi-stability has proved to be a key ingredient
for the formation of chimera states (Yeldesbay et al. 2014). Diverse
chimera and chimeralike states have been observed in diverse net-
works of multistable systems (Dudkowski et al. 2016; Mishra et al.
2015; Shepelev et al. 2017; Lei et al. 2022; Ramamoorthy et al. 2022;
Zhang et al. 2024; Nganso et al. 2023). In the present study, moti-
vated by the fact that for some parameter values, the JJSWBO is
multistable, the authors of this paper intend to investigate chimera
states in a network of many JJSWBOs.

DYNAMICAL CHARACTERISTICS OF JJSWBO AND NET-
WORK OF NONLOCALLY COUPLED JJSWBOS

The JJSWBO designed by coupling through, a gain a resistive-
capacitive shunted JJ is described by the given set of equations
(Sriram et al. 2023):

dV1
dt

= − k
2
[(|V1 + k| − |V1 − k|)− V2 − βRV1 − α sin(ϕ)] , (1a)

dV2
dt

= βc

[
k
2
(|V1 + k| − |V1 − k|)− V2

]
, (1b)

dϕ

dt
= γV1. (1c)

where v1 and v2 are the voltages, ϕ the phase difference of
the JJ, and k, α, βR, βc, and γ are the system parameters. The
dynamical characteristics of JJSWBO are illustrated by the phase
plane projections of Fig. 1.

Monostable, stable, and chaotic characteristics of different pre-
sentations are shown in Fig. 1(a-e), bistable period-3 oscillations
for specific control parameters and varying recipient states as de-
picted in Fig. 1(f), bistable chaotic attractors for chosen parameters
and different initial states as elaborated in Fig. 1(g), coexistence
between regular and chaotic characteristics for some fixed values
of control parameters and different starting conditions as captured
in Fig. 1(h1 and h2). The coexistence of periodic and chaotic char-
acteristics shown in Fig. 1(h1 and h2) is further illustrated by the
basin of attraction in Fig. 2. The attraction basin of Fig. 2 shows
the regions of chaotic characteristics painted in magenta and the
regions of periodic characteristics painted in green.

Searching for the chimera states, a lot of coupling functions is
tested and it is found that chimera states emerge in networks of
nonlocally coupled JJSWBOs with direct and cross terms in the
coupling function which is applied on the v1-variable differen-
tial equation. A large network of nonlocally coupled JJSWBOs is
considered, where each network unit is coupled to its 2P nearest
neighbors, with P neighbors at either direction around the consid-
ered unit. Thus, the dynamics of a given node j of the considered
network is described by the following set of differential equations

dv1
j

dt
=− k

2

(∣∣∣v1
j + k

∣∣∣− ∣∣∣v1
j − k

∣∣∣)− v2
j − βRv1

j

− α sin(ϕj) + σ
j+P

∑
i=j−P

[
a(v1

i − v1
j ) + b(ϕi − ϕj)

]
(2a)

dv2
j

dt
= βc

[
k
2
(
∣∣∣v1

j + k
∣∣∣− ∣∣∣v1

j − k
∣∣∣)− v2

j

]
, (2b)

dϕj

dt
= γv1

j , (2c)

where j = 1, 2, . . . , N, N is the size of the network, σ1 = aσ
and σ2 = bσ are real numbers that denote the coupling strengths.

In addition, periodic boundary conditions are assumed. For the
formation of chimera states in the network, α must be positive and
β negative. The combination of direct and cross couplings proved
to induce the occurrence of chimeralike states and other symmetry-
breaking states, namely, oscillation death states in a network of
globally coupled JJs (Mishra et al. 2017b). It was shown in (Nganso
et al. 2023) that such a competitive coupling is also responsible for
the formation of chimera and solitary states in networks of van der
Pol oscillators.

In order to obtain chimera states, initial conditions very often
play a pivotal role Zakharova (2020); Parastesh et al. (2021); Schöll
(2016). The historically first observed chimera state was obtained
with specially prepared initial conditions (Kuramoto and Battog-
tokh 2002). In the present paper, if the dynamics of all network
nodes are launched from the basin of attraction of the periodic
attractor (green strips in Fig. 2), they converge to the same dynam-
ical state, and even a phase lag between the periodic oscillations
of the different nodes is not observed. Thus, in the perspective of
investigating symmetry-breaking states, we managed to get ini-
tial conditions disseminated randomly in the basins of attraction
of the periodic and chaotic attractors. To do so, we considered
ϕj(0) = 8 for all nodes (in accordance with the result displayed in
Fig. 2), v1

j (0) and v2
j (0) are randomly distributed in [−0.25, 0.25]

and [−6,−5], respectively.
The set of equations describing the considered network [i.e.,

Eq. (2)] is solved numerically with the above initial conditions, the
parameters used in Fig. 2 for the local dynamics, and a = 0.08, b =
−0.8, and P = 20 for the coupling term. The coupling parameter
σ is considered as a control parameter for the investigation of
the collective dynamics of the coupled oscillators. The results
of the numerical simulation of Eq. (2) are shown in Fig. 3 for
an increasing value of the coupling parameter σ. Apart from
spatiotemporal plots of the different collective dynamical states
obtained when varying σ, the corresponding mean phase velocity
profiles {ωj}, j = 1, 2, . . . , N are also displayed. The mean phase
velocity ωj of a given network node j is evaluated numerically
from the time series of v1

j as follows:

ωj =
2πMj

∆t
, (3)

where Mj is the number of oscillations performed by v1
j during the

time interval ∆t Omelchenko et al. (2013).
The mean phase velocity is a quantitative measure widely used

for the characterization of certain chimera states and solitary states.
Indeed, in case of phase chimera, the mean phase velocity pro-
file presents flat pieces which correspond to coherent parts of the
chimera pattern and arc-shaped pieces which correspond to inco-
herent parts (Kuramoto and Battogtokh 2002; Abrams and Strogatz
2004). For a solitary state, the mean phase velocity profile is overall
flat and it involves some singularities which break away from the
flat background—the flat background corresponds to the common
frequency of synchronous nodes and the singularities correspond
to solitary nodes (Rybalova et al. 2019).

Fig. 3(a) confirms that the isolated nodes (σ = 0, i.e., the net-
work nodes are uncoupled) are randomly distributed on two types
of dynamical behaviors: the periodic and chaotic dynamics. All
the oscillators exhibiting the periodic behavior have the same fre-
quency and the oscillators exhibiting chaotic dynamics have dis-
parate frequencies [see {ωj, j = 1, 2, . . . , N} in Fig. 3(a)]. As the
value of the coupling parameter σ increases, the dynamics of the
network switches from complete incoherence [Fig. 3(b)] to coherent
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Figure 1 Evolution of JJSWBO described by system (1) in the plane (v1, ϕ) for varying α, βR, and γ: (a) α = 0.2, βR = 0.1, γ = 0.9, (b)
α = 0.9, βR = 0.1, γ = 0.9, (c) α = 0.45, βR = 0.468, γ = 0.9, (d) α = 0.45, βR = 0.535, γ = 0.9, (e) α = 0.45, βR = 0.8, γ = 4.05, (f)
α = 0.45, βR = 0.258, γ = 0.9, and (h1, h2) α = 0.45, βR = 0.8, γ = 5.037. The remaining system parameters are limited to k = 3.2 and
βc = 2.5. The recipient conditions include: (v1(0), v2(0), ϕ(0)) = (0, 0, 1) for black lines, (v1(0), v2(0), ϕ(0)) = (0, 8, 0) for red lines, and
(v1(0), v2(0), ϕ(0)) = (1, 1, 1) for cyan lines.

Figure 2 Overview of the basin of attraction of system (1) in the
coordinate space for (−3 ≤ V1(0) ≤ 3,−6 ≤ V2(0) ≤ 6) with
parameter values ϕ(0) = 8, α = 0.45, βR = 0.8, γ = 5.037, k = 3.2
and βc = 2.5.

traveling waves [Fig. 3(d)] via a chimera state [Fig. 3(c)]. The mean
phase velocity profile in Fig. 3(b) is completely erratic (complete
incoherence), while it is flat in Fig. 3(d) as a proof of complete co-
herence. Fig. 3(c) shows a peculiar form of coherence-incoherence
pattern where we can clearly distinguish between small incoherent
parts and coherent parts in which a larger number of nodes are
self-organized in the form of traveling waves. The phase chimera
nature of this coherence-incoherence state is demonstrated by the

mean phase velocity profile in Fig. 3(c), where the nodes in the
coherent clusters are characterized by the same mean phase veloc-
ity, and the incoherent nodes have disparate phase velocities that
break away from the common phase velocity of the coherent nodes.
Furthermore, the network nodes belonging to the incoherent parts
of the chimera state exemplifies in Fig. 3(c) exhibit irregular oscil-
lations while the nodes of the coherent parts evolve on periodic
oscillations [see Fig. 4(a)]. Fig. 4(b) shows that the oscillations of
the nodes of the traveling waves pattern illustrated in Fig. 3(d) are
periodic.

For an overall view of the dynamical behavior of the considered
network of JJSWBOs for the parameter values mentioned above
and the control parameter σ, we resort to the strength of incoher-
ence, a global order parameter that helps to characterize diverse
collective states in the coupled system, depending on their degree
of incoherence. The strength of incoherence is given as follows
Gopal et al. (2018):

S = 1 − 1
M

M

∑
m=1

H(δ − sm), (4)

where H(·) stands for the Heaviside function, δ is a small threshold,
and

sm = ⟨

√√√√ 1
n

mn

∑
i=(m−1)n+1

[Zi − ⟨Z⟩m]
2⟩t (5)

where n = N/M, M is the number of bins of nodes of equal size n,
m = 1, 2, . . . , M,

zi = v1
i − v1

i+1, ⟨z⟩m =
1
n

mn

∑
i=(m−1)n+1

zi, and ⟨·⟩t
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Figure 3 Prominent collective states exhibited by the network of nonlocally coupled JJSWBOs [Eq. (2)] for N = 300, a = 0.08, b = −0.8,
P = 20, and different values of σ (a) σ = 0.00; (b) σ = 0.06; (c) σ = 0.20; (d) σ = 0.60. Other parameters are given in Fig. 2. In each subfigure,
the top panel shows the spatiotemporal plot of the variable v1(t) for the observed pattern and the bottom panel shows the corresponding phase
velocity profile {ωj, j = 1, 2, . . . , N}.

Figure 4 Phase portraits of two selected nodes (j = 130 and j =
200) of the chimera pattern and traveling waves pattern shown in
Fig. 3: (a) parameters of Fig. 3(c); and (b) parameters of Fig. 3(d).
The phase portrait of node 130 (respectively, 200) is displayed in
blue (respectively red) line. Note that in (a) node 130 belongs to an
incoherent part of the chimera state and node 200 to a coherent
part. In (b) the two phase portraits are merged with one another.

stands for the time average. The value of δ is chosen such that, if
the bin m is coherent, then sm < δ. Overall, S → 1 for completely
incoherent states, S → 0 for complete coherent states, and 0 < S <

1 for coherence-incoherence states, including chimera states. Fig.
5 shows the variation of the strength of incoherence S in the case
of the network under study in this paper, when the value of the
coupling parameter σ is varying. Fig. 5 confirms the transition
from complete incoherence (S → 1) to complete coherence (S = 0)
via chimera states (0 < S < 1) when the value of σ is increasing.

Figure 5 Strength of incoherence S versus coupling parameter σ.
The parameters are given in Figs. 2 and 3.
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CONCLUSION

This paper dealt with the dynamical exploration of a network of
nonlocally coupled Josephson junctions spurred by Wien bridge
oscillators. First, the dynamics of an isolated network unit (i.e.,
a Josephson junction spurred by a Wien bridge oscillator) was
investigated numerically, which revealed that the local dynamics
is rich, including multistability. For the investigation of the collec-
tive dynamics of the considered network, the local dynamics was
set to be bistable, involving periodic and chaotic behaviors. The
initial conditions were specially prepared such that the network
nodes were randomly distributed on these two types of dynamical
behaviors. Varying the coupling strength, the nonlocally coupled
Josephson junctions spurred by Wien bridge oscillators was found
to exhibit complete incoherence, coherent travelling waves and
chimera behaviors.
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