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Collaborative Care: Multi-Agent Systems in Healthcare
David Power ID ∗,1

∗ASSERT Centre, College of Medicine and Health, University College Cork, Ireland.

ABSTRACT Everyday thousands of IoT devices are added to networks globally. Medical IoT (IoMT) is a
subdomain, which has had much success over recent years and is expanding rapidly. However, interoperability
is poor with IoMT devices, and even the sharing of basic patient data is generally poor between healthcare
systems. There is considerable waste and unnecessary duplication of data across devices, which grows
exponentially across healthcare systems. Multi-agent systems have the potential to reduce waste and
expenditure while improving efficiency and personalizing patient care and may offer the potential to realize
both organizational and patient care benefits.
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INTRODUCTION

The advent of the internet as we know it today began in 1991,
changing the world almost immeasurably. In 1991, there were 1
million worldwide users of the internet, and today in 2023, this
number has risen to over 5.16 billion users, with users steadily
increasing daily. This figure is representative of 64.4% of global
inhabitants who interact with the internet daily (Petrosyan 2023).
All these users are generating massive amounts of data through
their connected devices. By the year 2019, there were 8.6 billion
internet-of-things (IoT) devices connected to the internet. By the
end of this year, 2023, there is expected to be 15.14 billion, and by
the year 2030, it is forecast that almost 30 billion IoT devices will
be connected to the internet (Vailshery 2023). Every second, 127
new IoT devices are connected to the internet.

IoT devices are networked over the internet and allow moni-
toring and the exchange of data without human intervention. All
these devices are generating massive amounts of data. Collecting
and storing such volumes of heterogeneous data creates all kinds
of challenges. One subtype of IoT is in the healthcare domain,
often referred to as the Internet-of-Medical-Things (IoMT). IoMT
devices connect and communicate with healthcare IT systems over
the internet, or with other IoMT devices, either through IoT or
Machine-to-Machine (M2M) technologies. M2M technology de-
scribes when two or more machines are connected together to
capture and share data, with the ability to respond without human
intervention. M2M is usually for monitoring and control purposes.
IoT builds on and expands this idea, by connecting disparate wire-
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less technologies to create a more fully connected environment
that encompasses people, devices, and applications (Monteiro et al.
2023).

The IoMT is a massive growth market with a value of USD
41.17 billion in 2020, with a CAGR of 29.5%. Estimated growth
by 2028 is USD 187.60 billion. Similar forces that are driving IoT
are driving IoMT, such as lower costs of storage, memory, com-
puting power, and sensors, in addition to massive amounts of
data, hugely improved network speeds, and the availability of
cloud computing resources. Furthermore, IoMT has the potential
to drive down healthcare costs, improve patient monitoring, treat-
ment, and services. It is estimated that 40% of all IoT devices will
be health-related in the future (Sudarmani et al. 2022). However,
most IoMT devices currently work as standalone devices or as part
of a small network of connected similar devices. Interoperability
is poor with IoMT devices, and even the sharing of basic patient
data is generally poor between healthcare systems. Improving
interoperability of devices and the sharing of health data allows
for devices and health systems to improve patient monitoring and
the delivery of healthcare services (Aledhari et al. 2022).

BACKGROUND

It would seem that this environment would be ideal for the use
of multi-agent systems. An agent can be described as a computer
system capable of autonomous action to meet certain design ob-
jectives within its working environment (Wooldridge 2002). The
agent may be a physical or virtual entity. The agent’s environment
may be accessible, that is one which the agent can use its sensors
to detect the complete environment state. The environment may
be deterministic, which means that the next state within the en-
vironment is completely determined by the current state and the
agents current action. The environment may be episodic which is
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to say that the environment is non-sequential and independent of
other episodes. A dynamic environment describes one in which
it changes while the agent is receiving inputs and/or performing
actions (Fig. 1). A static environment does not change. A discrete
environment refers to one which an agent can perform a finite num-
ber of actions, otherwise it is a continuous environment (Gupta
et al. 2022).

The agent performs actions to solve goals, and these actions
can be either discrete or continuous. Discrete actions are a lim-
ited response and number of actions to sensed information, while
continuous refers to unconstrained actions. The purpose of the
agent is to solve a task within its environment, therefore it must
learn parameters and information about its environment. Using
this knowledge and past experiences from previous actions the
agent performance should improve at solving its task. Agents
operate have autonomy of control over their own internal states
and actions. Agents have the ability to sense changes and react to
changes within their environment (Wooldridge 2002; Gupta et al.
2022). Agents display pro-active goal-directed behaviour. Agents
have the ability to interact with other agents.

Agents may be simple reflex agents which make decisions based
only on the current precept and react only on to predefined rules,
or they may be model-based agents where actions are based on
both the current and historical precepts. Goal-based agents use
search and planning to achieve future goals and this directs its cur-
rents actions. Utility-based agents use performance metric such as
a utility function to optimise its actions, calculating different paths
and performance metrics to reach its goal. Learning agents can be
any of the above types of agent that interacts with its environment
and learns from its experience, adapts its behaviour and improves
its performance (Goonatilleke and Hettige 2022). Multi-agent sys-
tems can be referred to as multiple interacting intelligent agents
which can communicate with each other and their environment,
and work towards solving a common goal. These systems interact
by sharing data and information and must coordinate, collabo-
rate, cooperate, negotiate and conflict resolution between agents
to successfully meet their design objectives (Gupta et al. 2022).

Figure 1 Agent interacting with environment

Multi-agent systems differ significantly from non-agent systems
in their structure, behaviour, and capabilities. Multi-agent systems
operate in a decentralized environment where each agent indepen-
dently makes decisions based on its local knowledge and design
goals. This decentralized nature allows for greater flexibility and
adaptability as agents can respond dynamically to changes within
their environment. By contrast, non-agent systems rely on central-
ized decision-making and control, making them less responsive
to dynamic and unpredictable conditions. One of the defining
features of multi-agent systems is their emergent behaviour, which
arises from complex interactions between agents and their environ-
ment. Unlike non-agent systems, where behaviours are explicitly
programmed, multi-agent systems exhibit behaviours that are not

directly coded but emerge as a result of these interactions. While
this emergent behaviour can lead to unpredictability and chal-
lenges in system control and verification, it also opens opportuni-
ties for novel and unexpected outcomes that can prove beneficial.
For instance, emergent behaviours enable multi-agent systems
to discover innovative solutions to problems, enhancing system
efficiency and adaptability in dynamic and uncertain scenarios.

Figure 2 Multi-agent system interacting with environment

Agents within multi-agent systems demonstrate adaptability by
learning from their experiences and evolving with changing condi-
tions, leading to improved individual and collective performance
over time. This capacity for adaptation distinguishes multi-agent
systems from non-agent systems, which can only react within the
constraints of their pre-programmed rules. Furthermore, multi-
agent systems tend to be more robust and fault tolerant. In the
event of an agent’s failure, the system can continue to function
as the overall behaviour emerges from the interactions of other
agents rather than depending on a single component. In contrast,
non-agent systems are more vulnerable to single points of failure,
where the breakdown of a device or module may result in system-
wide collapse. Scalability is another advantage of multi-agent
systems.

Adding more agents allows the system to scale and handle
larger, more complex tasks without requiring significant archi-
tectural changes. Non-agent systems, on the other hand, often
require extensive redesign to accommodate greater complexity
or workload. These advantages make multi-agent systems par-
ticularly well-suited for dynamic and decentralized applications
such as swarm robotics, traffic management, and disaster response,
and indeed the complex, dynamic and distributed environment of
healthcare. However, fully realizing the potential of multi-agent
systems requires addressing the inherent challenges of emergent
behaviour, including unpredictability, coordination bottlenecks,
and the computational complexity of validation and control. On-
going research into advanced tools for modelling and controlling
emergent behaviour, as well as interdisciplinary approaches, will
be of the utmost importance for the continued development of
multi-agent systems, especially in safety critical domains such as
healthcare (Wooldridge 2002; Gupta et al. 2022; Goonatilleke and
Hettige 2022).
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DISCUSSION

Potentially multi-agent systems can solve more complex problems
because multiple agents can divide the workload and work to-
gether to break the problem down and then solve different parts of
the problem (Table 1). Multi-agent systems may be more flexible,
adaptable, and resilient than non-agent systems, but they may also
be more complex and difficult to design and manage. There is also
a significant communication overhead and complexity to consider
as each agent must interact and communicate with each other and
the environment, which may affect the performance of the overall
system. There is also the potential for conflicts to arise between
agents if interpretations of a problem vary or there is conflicting
goals, leading to system problems (Wooldridge 2002; Gupta et al.
2022; Goonatilleke and Hettige 2022).

Healthcare may benefit from a multi-agent system approach to
the distribution of complex learning and decision-making prob-
lems. Within this system each agent contributes with its own
knowledge and capabilities, sharing information, contributing to
the decision-making process and coordinating behaviour with
other agents towards an overall goal, within the multi-agent sys-
tem. These agents may consist of a combination of software agents
and hardware agents from patient monitoring devices, electronic
patient records, and therapy devices working together for shared
goals. A multi-agent approach to remote monitoring and interven-
tion of the elderly is proposed by researchers utilising 5G technol-
ogy and collaborative approaches. The system measured several
vital signs and diabetic markers and alerted both patients and
healthcare providers with alarms and when to take necessary inter-
ventions, with initial results outperforming existing mHealth tech-
nology (Humayun et al. 2022). Such multi-agent systems have been
demonstrated to be highly accurate such as the activity-aware vital
signs patient monitoring system proposed by researchers which
demonstrated adaptability across various monitoring signals via
disparate sensors in response to adapting physical activities ensur-
ing accurate health assessments and timely alerts to patients and
healthcare providers (Ivascu and Negru 2021). This distributed ap-
proach can improve the overall performance, especially when used
in conjunction with machine learning approaches to enable the
agents to learn from experiences and adapt to their environments
more efficiently. Reinforcement learning can provide the agents
with feedback based on the outcomes of their actions, therefore
leading to improved performance and decision-making over time
(Lim et al. 2022; Hassanien et al. 2021).

Multi-agent systems have demonstrated effectiveness manag-
ing complex manufacturing tasks in industrial applications with
enhanced flexibility, robustness and reconfigurability in manufac-
turing processes (Pereira et al. 2012). In supply chain management
multi-agent systems have been used to improve decision-making
and coordination of complex logistics and supply chains (Lee and
Kim 2007). Multi-agent systems are employed successfully to co-
ordinate multiple robots for tasks such as assembly and material
handling (Luo and Xue 2010).

The industrial application of multi-agent systems to manage
complex, dynamic and distributed systems, makes for a com-
pelling case for their adoption in healthcare to improve patient
monitoring, resource management, and decision support systems.
Multi-agent systems are well-known for their use in improving
in information retrieval systems (Luo and Xue 2010). Their use
in improving search results for medical purposes and improving
security is a recent application of multi-agent systems in health-
care (Evtimova-Gardair 2019). Multi-agent systems have also been
applied to improving the performance of medical chat-bots and

medical decision support tools (Kumar 2022; Frikha et al. 2023).
The idea is that machines can either make better decisions in

some situations than humans or can assist humans in making better
decisions (Luo and Xue 2010). Multi-agent systems have also been
proposed for use in healthcare wireless sensor networks. Wireless
sensor networks are a large collection of homogenous nodes which
work together within a cooperative network. Each node can sense,
process and communicate data (Sreedevi et al. 2022). Another area
of proposed use of multi-agent systems within healthcare is with
body area sensor networks, which are IoT devices which collect,
process and analyse data on or, from within the human body. These
agents are typically heterogeneous. Typically, these IoT devices do
not share information or interact in a cooperative manner (Gupta
et al. 2022; Humayun et al. 2022; Lim et al. 2022).

A key driver to the huge investment in IoMT is concerns regard-
ing a worldwide aging population. Chronic diseases will inflate
healthcare expenses as those over 65 will number 1.5 billion by the
year 2050 (Lim et al. 2022). Furthermore, there is significant shift
in focus from treating disease to prevention-orientated healthcare,
where health-surveillance via IoMT can play a key role (Shakahuki
and Reid 2015). There have been some notable successes in IoMT
with monitoring electrocardiogram (ECG), where the ECG is mon-
itored, stored and notifications sent to healthcare workers using
sensors and fog computing (Ivascu and Negru 2021). Alzheimer’s
disease is a chronic disease that deteriorates memory and judge-
ment, sensors have been successfully embedded in clothing to
track and monitor patient’s behaviour and movements. Fall de-
tection using a camera, fall sensor and Amazon Echo device has
been successfully reported for aged adults (Ivascu and Negru 2021;
Shakahuki and Reid 2015).

Medication monitoring can track the distribution and dosing
of medication, and medicine boxes linked by IoMT will be able to
monitor specific patient patterns and compliance. There is even
research ongoing into using IoMT sensors for biomedical tracing
of secretions from potential cancers given a patient’s risk factors.
There has been the development of a washable T-shirt with multi-
ple IoMT sensors, such as ECG, temperature, respiratory rate and
patient activity classification and monitoring (Gupta et al. 2022;
Goonatilleke and Hettige 2022; Ivascu and Negru 2021; Shakahuki
and Reid 2015; Humayun et al. 2022). Other successful applications
have been described measuring glucose levels, oxygen saturation,
blood pressure (Aledhari et al. 2022). During the Covid-19 pan-
demic IoMT came to the fore, with connected diagnostics such as
blood gas analyzers and biological services, imaging such as CT,
MRI and X-ray, smart instruments, smart patient beds and smart
facilities (Somani et al. 2022).

Multi-agent systems are a group of autonomous agents that
cooperate with each other, share information, reason together and
coordinate their activities, collectively solving problems that would
be impossible to solve alone (Aledhari et al. 2022). The environment
of monitoring patients remotely would seem to benefit greatly from
a multi-agent system approach, which differs from the current
situation where devices collect and send information, but rarely
work collectively or take action. Sharing information and working
towards common goals while using historic data to gather patient
patterns and real-time data between intelligent nodes could reduce
healthcare workload by monitoring patients closely and increase
patient safety by sending alerts in emergencies (Alshamrani 2022).
Likewise, using a multi-agent systems approach to in-patients has
several benefits also, and builds on the idea of the smart hospital.
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■ Table 1 Comparison of multi-agent systems and centralized control systems

Aspect Multi-Agent Systems Centralized Control Systems

Flexibility High flexibility due to decentralized decision-
making and adaptability.

Low flexibility as decisions are made centrally
and require reprogramming.

Scalability Easily scalable by adding more agents. Difficult to scale as system architecture needs
significant redesign.

Fault Tolerance High fault tolerance; failure of one agent
doesn’t affect the entire system.

Low fault tolerance; single point of failure can
disrupt the entire system.

Emergent Behaviour Exhibits emergent, unpredictable behaviour,
which can lead to novel solutions.

No emergent behaviour; all outcomes are pre-
defined and deterministic.

Complexity of Control Complex to predict and control due to decen-
tralized interactions.

Easier to control and predict due to central-
ized decision-making.

Resource Utilization Efficient utilization by distributing tasks among
agents.

Less efficient resource utilization as tasks are
centrally allocated.

Communication Overhead High communication overhead for coordina-
tion between agents.

Minimal communication overhead due to cen-
tralized control.

Adaptability Learns and adapts to changing environments
dynamically.

Limited adaptability; only reacts to predefined
conditions.

Development Complexity More complex to design, implement, and de-
bug.

Easier to design, implement, and debug due
to simpler architecture.

Cost Potentially higher initial development and de-
ployment costs.

Lower initial cost but higher cost to scale and
adapt.

The concept of the smart hospital can find its origins from
Korea in the early 2000’s with the notion of the digital hospital.
At the time Korea pioneered digitalisation of hospital workflow
with the concept of the 4-lesses, which is filmless, chartless, slip-
less and paperless operations with the introduction of complete
electronic medical record system. By the end of that decade ra-
diofrequency identification systems were widespread throughout
the USA, Korea and Japan, allowing the real-time tracking and
tracing of patients, medicines, equipment and other assets around
the health system. More recently the introduction of 5G and Wi-Fi
6, have overcome network bottlenecks, and introduction of IoMT
devices to the network working with AI and intelligent building
technologies have the potential to drive efficiencies up and cost
down in the era of the smart hospital (Kwon et al. 2022).

CONCLUSION

As mentioned earlier in most instances IoMT devices have poor
interoperability, this would lead to unnecessary duplication of
data, and significant waste in processing, transfer and storage of
data. Also, a significant concern with IoMT devices is minimising
power consumption (Sharma and Tripathi 2022). By introducing
a multi-agent systems approach to the smart hospital concept
may help alleviate some of these issues as each IoMT device will

work as a node within the larger multi-agent system, sharing data,
responding to changing stimuli in the environment, updating and
sharing this information with other nodes, reasoning together
and making decisions together to reduce duplicate data, improve
efficiencies and performance of the overall system. Most likely,
for a system like this to preform efficiently it will have to learn
through reinforcement learning (Ivascu and Negru 2021).

Reinforcement learning is where agents learn through trial and
error and receive feedback in the form of rewards or punishments.
Reinforcement learning has been successfully used to personalise
patient treatment plans, optimise healthcare facility operations and
allocate healthcare resources. However, reinforcement learning is
not without challenges especially in the healthcare setting where
there are more stringent ethical and regulatory concerns to protect
patients from harm. These models can be complex and difficult to
interpret. Therefore, significant simulations would first have to be
developed before such systems could ever be used in real-world
(Gupta et al. 2022; Goonatilleke and Hettige 2022; Ivascu and Ne-
gru 2021). The future is likely to be one where the smart hospital
is common-place, multi-agent systems and reinforcement learning
have the potential if used appropriately and safely to bring in-
creased efficiencies to healthcare systems, and reduce expenditure
while optimising patient care and personalising healthcare.
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ABSTRACT The number of clinical studies using natural language processing is quite large. Therefore, it is
important to examine in depth the development of clinical studies using Natural Language Processing over the
years. However, there are a limited number of studies in the literature examining the research status of this
field. The article presents a bibliometric analysis of studies on the keywords "clinical AND studies AND natural
AND language AND processing" indexed in Scopus between 2000 and 2023. This study aims to evaluate
academic outputs in the relevant field quantitatively, make sense of the data, reveal the state of scientific
knowledge in the field, and give scientists a general perspective on the subject. Bibliometrix and Microsoft
Excel programs were used for bibliometric analysis. Nineteen thousand two hundred seventy-three different
authors identified a total of 4535 studies. 77.5% of these studies were research articles (3516), 14.8% were
conference papers (669), 6.8% were reviews (307), and 0.9% were book chapters (43). Journal of Biomedical
Informatics was the journal in which the most studies were published, with 226 articles. Only the United States
(2637) contributed 58.1% to the studies. Liu, H. was the most prolific author, with 85 articles. Harvard Medical
School was the most productive institution, with 304 studies. The most cited article was Discontinuation of
Statins in Routine Care Settings, A cohort study.

KEYWORDS

Clinical studies
Natural language
processing
Bibliometric anal-
ysis
Citation analysis
Network analysis

INTRODUCTION

Natural Language Processing (NLP) is a branch of artificial in-
telligence and linguistics that enables computers to understand
expressions or words written in human languages (Khurana et al.
2023). In the 1950s, NLP initially focused on rule-based methods
to enable computers to understand natural language. However,
these insufficient methods have transformed over time with the
developments in machine learning methods (Nadkarni et al. 2011).
NLP studies have recently been included in various fields, such as
machine translation, e-mail spam detection, information extraction,
summarization, and medical question-answering (Khurana et al.
2023).
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Most clinical information sources contain significant amounts
of information. But most of this information comes in unstructured
form (Meystre and Haug 2005). NLP is extremely important in
transforming unstructured information into structured informa-
tion, improving healthcare, and advancing medicine (Wang et al.
2017). NLP has applications in medical information processing
and rich research achievements (Chen et al. 2018). NLP medical
applications include numerous research topics, such as its use for
mental health (Le Glaz et al. 2021; Corcoran and Cecchi 2020), ex-
traction of structured information from radiology reports (Casey
et al. 2021), coding clinical notes (Tavabi et al. 2022), and monitoring
Alzheimer’s disease (Garcia et al. 2020).

NLP has significant potential in clinical trials. This technol-
ogy is expected to help increase the efficiency and effectiveness
of medical research. NLP-supported medical research is rapidly
increasing and becoming more attractive. However, there are a
limited number of studies examining the research status of clinical
studies on NLP. Therefore, it is essential to conduct an in-depth
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analysis to understand the latest developments in this field. This
study aims to examine the academic output of NLP in clinical
studies.

Bibliometric analysis is a field of research that deals with nu-
merical analysis of scientific literature, used to search and analyze
comprehensive scientific data. This analysis may include research
publication frequency, citations, authors, and topics. The state of
the art in a field of current scientific knowledge can be mapped us-
ing bibliometrics. Bibliometrics is an important tool for analyzing
the output of scientists, collaborations between universities, the ef-
fects of science funding on research and development performance,
and educational productivity. Therefore, theoretical and practi-
cal tools are needed to measure experimental data. Bibliometric
analysis has increased in popularity in recent years as the avail-
ability and accessibility of software such as Gephi, Leximancer,
VOSviewer, and Bibliometrix and scientific databases such as Sco-
pus and Web of Science have increased. Bibliometric analysis can
measure research outputs, identify trends, and evaluate research
performance (Akmese 2022; Falagas et al. 2006; Moral-Muñoz et al.
2020; Sengupta 1992; Donthu et al. 2021).

Bibliometric methods are now considered scientific expertise
and have become integral to research evaluation methodology,
especially in scientific and applied fields (Ellegaard and Wallin
2015). Bibliometric methods are often used to process data (Wallin
2005). These methods have greatly benefited from computerized
data processing. Accordingly, there has been a great increase in the
number of publications in this field in recent years. Increasing data
volume and more widespread use of computers were effective in
this increase (Ellegaard and Wallin 2015).

This study covers top journals, institutions, keyword features in
the field, citation network analysis, and review of top articles, and
offers the potential to illustrate historical and geographic trends.
This study aims to make sense of the large number of data ob-
tained, to quantitatively evaluate the academic outputs of relevant
research, to provide scientists in this field with a general perspec-
tive on the subject, and to reveal the state of scientific knowledge.

This study can make various contributions to the field of re-
search in question. It can provide domain experts with a compre-
hensive overview of the research topic. It can help better under-
stand research outcomes. In addition, it can provide researchers
with the most important information about potential authors, insti-
tutions, journals, and countries. It can help identify research trends
or track the popularity and importance of topics. Moreover, it can
increase researchers’ awareness when deciding on topic selection.
It can also help improve the quality and efficiency of research.
Finally, it can explain how the topic has developed over time.

MATERIAL AND METHODS

The Scopus database was preferred to collect bibliometric informa-
tion. All journals in the Scopus database are reviewed annually
to maintain high-quality standards (Kokol et al. 2021). It has been
determined that Scopus offers its users a more comprehensive jour-
nal profile than other databases and provides faster results from
more articles in citation analysis.

All publications indexed in Scopus (access date: 18.12.2023)
between 2000 and 2023 regarding clinical studies using natural
language processing were analyzed using bibliometric methods.
"clinical AND studies AND natural AND language AND process-
ing" were used as search keywords. Documents were searched
by article title, abstract, and keywords. Scopus codes used in the
search are as follows: TITLE-ABS-KEY ( clinical AND studies AND
natural AND language AND processing ) AND PUBYEAR > 1999

AND PUBYEAR < 2024 AND ( LIMIT-TO ( DOCTYPE , "ar" ) OR
LIMIT-TO ( DOCTYPE , "cp" ) OR LIMIT-TO ( DOCTYPE , "re" )
OR LIMIT-TO ( DOCTYPE , "ch" ) )

This search method found all articles published between 2000
and 2023 in the studies’ title, abstract, and keywords in the Sco-
pus database. The number of studies may increase when 2023 is
completed. Microsoft Excel and Bibliometrix (Aria and Cuccurullo
2017) were used for bibliometric network visualizations.

ANALYSIS

Literature Distribution
Four thousand five hundred thirty-five publications of different
genres from 2000 to 2023 were evaluated. These publication types
are articles (3516, 77.5%), conference proceedings (669, 14.8%),
reviews (307, 6.8%), and book chapters (43, 0.9%).

As seen in Figure 1, clinical studies using Natural Language Pro-
cessing, "Medicine" (3534, 45%), "Computer Science" (1113, 14%),
"Health Professions" (584, 7%), "Engineering" (536, 7%), "Biochem-
istry, Genetics and Molecular Biology" (435, 6%), "Neuroscience"
(275, 3%) and "Others" (1430, 18%). The total number of studies is
more than 4535 because a study can be matched in more than one
category.

Figure 1 The distribution of subject areas

Development of Publications
The annual production graph of scientific studies of 4535 studies
is shown in Figure 2. Despite some fluctuations, there has been an
increase in the number of scientific studies in general. It is seen
that the number of studies decreased in 2016. In the following
years, the number of publications tends to increase continuously.

Figure 2 Document by year
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Active Authors
Nineteen thousand two hundred seventy-three authors produced
a total of 4535 works. The top five producing authors are Liu
H. (85, 1.9%), Xu H. (74, 1.6%), Denny J.C. (47, 1%), Stewart R.
(44, 1%), and Wu Y. (41, 0.9%). These authors were important
research pioneers in their respective fields. Figure 3 shows the top
15 authors with the highest number of studies.

Figure 3 Top 15 authors with the highest number of studies

The collaboration network of the top 50 authors is shown in
Figure 4. The size of the circles is directly proportional to the
number of studies and collaboration between authors. Colors
represent different clusters. The thickness of the lines expresses
the strength of the collaboration between writers.

Figure 4 Authors Collaboration Network

Active Affiliation
The top 5 institutions that contributed the most to the literature
were Harvard Medical School (304, 6.7%), Brigham and Women’s
Hospital (196, 4.3%), Massachusetts General Hospital (173, 3.8%),
Mayo Clinic (169, 3.7%) and The University of Utah (137, 3%).
Figure 5 shows the top 15 institutions that contributed the most
according to the number of studies published by the institutions
in the 2000-2023 period.

The collaboration network of the top 50 institutions is seen in
Figure 6. The size of the circles is directly proportional to the
number of studies and cooperation between institutions. Different
colors represent clusters. The thickness of the lines expresses the
strength of cooperation between institutions.

Active Journals
Table 1 shows the top 25 journals with the highest h_index. A
total of 4535 studies were published in 1335 sources. 18.9% of the

Figure 5 The top 15 organizations that contribute the most, accord-
ing to the number of studies

Figure 6 Institutions collaboration network

studies consist of the first five sources, and 38.5% comprise the 25
sources in Table 1.

Figure 7 shows the increase in the number of publications of
the top five journals according to their number of publications
between 2000 and 2023. According to the chart, the Journal of
Biomedical Informatics, Journal of the American Medical Infor-
matics Association, Studies In Health Technology and Informatics,
Journal of Medical Internet Research, and Jmir Medical Informatics
sources are the most productive.

Figure 7 Top 5 journals with the highest number of articles

8 | Akmeşe and Bağcı Computers and Electronics in Medicine



■ Table 1 Top 25 journals with h-index

No Journal h-index g-index m-index TC NP PY_start

1 JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCI-
ATION

53 90 2.208 9816 214 2000

2 JOURNAL OF BIOMEDICAL INFORMATICS 50 80 2.381 8374 226 2003

3 INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOL-
OGY PHYSICS

34 56 2.125 3228 65 2008

4 INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS 27 44 1.286 2279 97 2003

5 BMC MEDICAL INFORMATICS AND DECISION MAKING 26 43 1.3 2241 94 2004

6 AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS / AMIA SYMPO-
SIUM

26 39 1.368 1889 90 2005

7 PLOS ONE 25 37 1.786 1668 94 2010

8 JOURNAL OF MEDICAL INTERNET RESEARCH 23 38 1.769 1785 111 2011

9 JMIR MEDICAL INFORMATICS 19 33 2.111 1383 109 2015

10 STUDIES IN HEALTH TECHNOLOGY AND INFORMATICS 16 29 0.727 1353 196 2002

11 RADIOLOGY 15 16 0.682 1656 16 2002

12 BMJ OPEN 13 32 1.444 1053 49 2015

13 AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPO-
SIUM

13 24 0.929 644 45 2010

14 ARTIFICIAL INTELLIGENCE IN MEDICINE 13 22 0.619 511 41 2003

15 JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY 13 20 0.813 438 28 2008

16 JCO CLINICAL CANCER INFORMATICS 12 18 1.714 386 41 2017

17 METHODS OF INFORMATION IN MEDICINE 12 17 0.667 326 31 2006

18 COMPUTERS IN BIOLOGY AND MEDICINE 12 24 0.632 628 30 2005

19 COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 11 14 0.733 221 18 2009

20 BMC BIOINFORMATICS 11 17 0.647 490 17 2007

21 JAMA NETWORK OPEN 10 18 1.667 371 32 2018

22 NPJ DIGITAL MEDICINE 10 19 1.667 454 19 2018

23 JAMIA OPEN 9 14 1.5 253 34 2018

24 APPLIED CLINICAL INFORMATICS 9 14 0.643 241 26 2010

25 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 9 18 1 324 21 2015

TC: Total Citation, NP: Number of Publication, PY_start: Start of
Publication Year

Active Countries

Analysis showed that the articles covered 95 countries or territories.
The publication numbers of the first 15 countries are shown in
Figure 8. The United States ranked first with 2637 (58.4%) studies,
considering the number of publications. China ranked second with
374 (8.3%) studies. The United Kingdom ranked third with 366
(8.1%) studies. Germany ranked 4th with 194 (4.3%), and Canada
ranked 5th with 191 (4.2%).

The network visualization map for countries’ international co-
operation can be seen in Figure 9. The size of the circles is directly
proportional to the number of studies and cooperation between
countries. Colors represent different clusters. The thickness of the
lines expresses the strength of cooperation between countries.

The geographical distribution of country collaboration for the
overall study period is shown in Figure 10.

Figure 8 Bar chart showing the 15 most productive countries in the
world

Computers and Electronics in Medicine 9



Figure 9 Network visualization map of countries’ international cooperation

Figure 10 Country collaboration map

Citations

Citation status by publications is shown in Table 2. Figure 11
shows the co-citation network of the top 50 authors. As the size of
the circle increases, the number of citations also increases. Colors
represent different clusters. The thickness of the lines expresses
the strength of the citation collaboration between authors.

Keyword Analysis

The 50 most used keywords in 4535 articles were visualized. The
network visualization map of trend keywords obtained according
to the topicality of publications is shown in Figure 12. As the size
of the circle increases, the number of keyword uses also increases.
The thickness of the lines expresses the strength of the connection
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■ Table 2 Top 25 Papers by Total Citations (TC)
No Paper DOI Total Citations TC per Year Normalized TC
1 ZHANG H, 2013, ANN

INTERN MED
10.7326/0003-4819-158-7-201304020-00004 461 41.91 14.99

2 WANG Y, 2018,
J BIOMED
INFORMATICS-a

10.1016/j.jbi.2017.11.011 405 67.50 13.03

3 GOULD MK, 2015, AM
J RESPIR CRIT CARE
MED

10.1164/rccm.201505-0990OC 382 42.44 11.08

4 MILLER DD, 2018, AM J
MED

10.1016/j.amjmed.2017.10.035 382 63.67 12.29

5 BEDI G, 2015, NPJ
SCHIZOPHR

10.1038/npjschz.2015.30 380 42.22 11.02

6 LIANG H, 2019, NAT
MED

10.1038/s41591-018-0335-9 349 69.80 13.51

7 MURFF HJ, 2011, J AM
MED ASSOC

10.1001/jama.2011.1204 349 26.85 7.02

8 FRIEDMAN C, 2004, J
AM MED INFORMATICS
ASSOC

10.1197/jamia.M1552 343 17.15 7.25

9 BATES DW, 2003, J AM
MED INFORMATICS AS-
SOC

10.1197/jamia.M1074 338 16.10 3.77

10 PONS E, 2016, RADIOL-
OGY

10.1148/radiol.16142770 337 42.13 9.61

11 PERERA G, 2016, BMJ
OPEN

10.1136/bmjopen-2015-008721 323 40.38 9.21

12 SHIVADE C, 2014, J AM
MED INFORMATICS AS-
SOC

10.1136/amiajnl-2013-001935 304 30.40 9.67

13 MEHTA N, 2018, INT J
MED INFORMATICS

10.1016/j.ijmedinf.2018.03.013 284 47.33 9.13

14 HANAUER DA, 2015, J
BIOMED INFORMATICS

10.1016/j.jbi.2015.05.003 282 31.33 8.18

15 CALVERT GA, 2003, J
COGN NEUROSCI

10.1162/089892903321107828 280 13.33 3.12

16 SARKER A, 2015, J
BIOMED INFORMATICS

10.1016/j.jbi.2014.11.002 273 30.33 7.92

17 TING DSW, 2019, PROG
RETINAL EYE RES

10.1016/j.preteyeres.2019.04.003 273 54.60 10.57

18 TANG C, 2014, INT J
RADIAT ONCOL BIOL
PHYS

10.1016/j.ijrobp.2014.04.025 270 27.00 8.59

19 TITANO JJ, 2018, NAT
MED

10.1038/s41591-018-0147-y 268 44.67 8.62

20 BOSSELER A, 2003, J
AUTISM DEV DISORD

10.1023/B:JADD.0000006002.82367.4f 263 12.52 2.93

21 KISSLER J, 2006, PROG
BRAIN RES

10.1016/S0079-6123(06)56008-X 260 14.44 4.62

22 NEAMATULLAH I, 2008,
BMC MED INFORMAT-
ICS DECIS MAK

10.1186/1472-6947-8-32 258 16.13 7.23

23 RITCHIE MD, 2010, AM
J HUM GENET

10.1016/j.ajhg.2010.03.003 250 17.86 5.02

24 HARKEMA H, 2009, J
BIOMED INFORMATICS

10.1016/j.jbi.2009.05.002 247 16.47 5.34

25 KHO AN, 2011, SCI
TRANSL MED

10.1126/scitranslmed.3001807 242 18.62 4.87
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Figure 11 Author co-citation network

between keywords. Natural Language Processing, Human, Article,
Humans, and Female were the articles’ top 5 most frequently used
keywords.

Figure 12 Keyword Analysis

Figure 13 shows the treemap of the most frequently repeated
keywords and the number and percentage of repetitions of the 15
most used keywords.

Figure 13 Treemap of most frequently repeated keywords

Thematic Evolution

The analysis of the evolution of keywords in the research is shown
in Figure 14, showing the most frequently used keywords and their
transformation over the years. The cut-off year was determined as
2017.

Figure 14 Thematic evolution by keywords

DISCUSSION

Although there was a general increase in the number of publica-
tions from 2000 to 2023, it is seen that the number of publications
decreased significantly in 2016, and the increase continued in the
following years. The first five subject areas of the studies are respec-
tively Medicine (3534, 45%), Computer Science (1113, 14%), Health
Professions (584, 7%), Engineering (536, 7%), Biochemistry Genetics
and Molecular Biology (435, 6%) and Neuroscience (275, 3%).

The authors with the most publications on the subject are Liu
H. (85, 1.9%), Xu H. (74, 1.6%), Denny J.C. (47, 1%), Stewart R. (44,
1%), and Wu Y. (41, 0.9%). The journals where the most published
articles are the Journal of Biomedical Informatics, the Journal of the
American Medical Informatics Association, Studies in Health Technology
and Informatics, the Journal of Medical Internet Research, and JMIR
Medical Informatics. 18.9% of the studies consist of the first five
sources. The institutions that most contributed to the literature
were Harvard Medical School, Brigham and Women’s Hospital, Mas-
sachusetts General Hospital, Mayo Clinic, and The University of Utah.
21.6% of the studies consist of the top 5 organizations.

It is generally assumed that regional geographical location im-
pacts collaboration when evaluating international collaborations.
This assumption is that more cooperation can occur, especially
between economically and scientifically developed countries. This
assumption also appears valid for clinical studies using natural
language processing. When the number of publications in a par-
ticular country is evaluated, it is seen that the countries with high
economic power or large populations, such as the USA, China,
the United Kingdom, Germany, and Canada, publish most studies
on clinical studies using NLP. This situation aligns with the liter-
ature showing that academic productivity has a significant rela-
tionship with economic power (Demir 2019; Yıldırım and Demir
2019; Doğan and Kayır 2020). According to this literature, more
academic studies are produced in these countries since more re-
searchers and research resources exist in developed countries. Of
course, it should be noted that regional geographical location is not
the only factor that affects international cooperation. In addition,
there may be factors such as cultural similarities, political relations,
and shared interests.

According to the Scopus database, the first five most cited ar-
ticles were (Zhang et al. 2013), Annals of Internal Medicine journal
"Discontinuation of statins in routine care settings: A cohort study";
(Wang et al. 2018), Journal of Biomedical Informatics journal "Clinical
information extraction applications: A literature review"; (Miller and
Brown 2018), American Journal of Medicine journal "Artificial Intelli-
gence in Medical Practice: The Question to the Answer?"; (Gould et al.
2015), American Journal of Respiratory and Critical Care Medicine jour-
nal "Recent trends in the identification of incidental pulmonary nodules";

12 | Akmeşe and Bağcı Computers and Electronics in Medicine



and (Bedi et al. 2015), npj Schizophrenia journal "Automated analysis
of free speech predicts psychosis onset in high-risk youths", respectively.

The articles’ first five most frequently used keywords were
Natural Language Processing, Human, Article, Humans, and Female.
Limitations of the study: Although the Scopus database is advan-
tageous compared to other databases regarding the number of
publications, not all could be included. Additionally, since 2023
has not been completed, there may be a slight deficiency in the
number of publications.

CONCLUSION

This study provides a holistic review of studies on clinical trials
using Natural Language Processing between 2000-2023. According
to the findings, it was observed that there was a decrease in the
annual number of studies produced in 2016 and an increase in the
following years. It was seen that the author with the most publica-
tions on the subject was Liu H., most articles were published in the
JOURNAL OF BIOMEDICAL INFORMATICS, and the institution
that contributed the most to the literature was Harvard Medical
School. The most cited article (Zhang et al. 2013) was published in
the Annals of Internal Medicine titled "Discontinuation of statins
in routine care settings: a cohort study". The most productive
countries in terms of the number of publications are developed
or overpopulated countries. Participation of researchers in devel-
oping or underdeveloped countries in multinational studies may
allow them to conduct further research on this subject.
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ABSTRACT Titanium alloys are widely preferred in the healthcare sector as biocompatible materials due to their superior properties
such as low density and exceptional mechanical strength. Their low density provides lightweight solutions, and their density is closer to
that of human bone compared to other metallic alloys with similar strength. This similarity facilitates a balanced load distribution between
the bone and the implant, enhancing biomechanical compatibility. This study investigates the effects of alloying elements on the density of
titanium-based biomedical materials using a computational materials science approach. A total of 72 different compositions of Ti-Al-V
alloys were modeled using JMatPro software, and their densities were simulated at room temperature (25°C). The simulation produced a
comprehensive dataset, which was utilized to train an explainable artificial intelligence (XAI) model. Advanced interpretability techniques,
including SHAP (SHapley Additive exPlanations), LIME (Local Interpretable Model-agnostic Explanations), and Partial Dependence
Plots (PDP), were employed to elucidate the influence of each alloying element on the density. The dataset was analyzed using an
XAI-based regression model implemented with the Artificial Neural Network (ANN) algorithm. The interpretability graphs provided insights
into the individual contributions of the alloying elements, revealing their positive or negative effects on the density. The findings offer a
deeper understanding of the role of alloying elements in optimizing the performance of titanium-based biomedical materials, particularly in
achieving lightweight designs. This study highlights the potential of integrating computational material modeling with explainable AI to
advance the design and development of high-performance lightweight materials for biomedical applications.
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Explainable artifi-
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Computational
materials science
Biomedical mate-
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INTRODUCTION

Titanium and its alloys are widely recognized for their superior
properties, such as low density, excellent mechanical strength,
high corrosion resistance, and outstanding biocompatibility, which
make them ideal candidates for biomedical applications. Among
metallic materials, titanium’s similarity in density to human bone
allows for better load distribution, significantly enhancing its
biomechanical compatibility as an implant material (Niinomi 2008).
Over the years, extensive research has been conducted to improve
the performance of titanium alloys by modifying their chemical
compositions with alloying elements, focusing on achieving opti-
mized mechanical properties and enhanced biological compatibil-
ity (Madalina Simona et al. 2019; Ikedaa et al. 2020).

Alloying elements such as niobium (Nb), tantalum (Ta), and zir-
conium (Zr) have been shown to positively influence the properties
of titanium alloys. These elements not only reduce the elastic mod-
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ulus, which minimizes the stress shielding effect, but also improve
the alloys’ strength, wear resistance, and corrosion resistance. This
is particularly important in biomedical contexts where the implant
material must integrate effectively with surrounding tissues while
maintaining structural integrity under physiological loads (Zhou
et al. 2007; Hayyawi et al. 2022). For instance, beta-titanium alloys
incorporating Nb and Ta exhibit low Young’s modulus and excel-
lent biocompatibility, making them ideal for orthopedic and dental
applications (Phume et al. 2012; Ivanov et al. 2018).

The development of titanium-based biomedical materials also
addresses concerns regarding the cytotoxicity of conventional al-
loys such as Ti-6Al-4V, where the presence of vanadium and alu-
minum may pose health risks. Research has shifted towards creat-
ing non-toxic titanium alloys by incorporating elements such as
niobium and zirconium, which maintain high mechanical perfor-
mance while eliminating adverse biological effects (Manojlović and
Marković 2023; Li et al. 2011). Furthermore, advanced manufactur-
ing techniques like additive manufacturing enable the production
of patient-specific implants, providing opportunities to tailor the
properties of titanium alloys to meet specific clinical needs (Alqat-
tan et al. 2020; Niinomi et al. 2016).
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Recently, computational materials science and machine learn-
ing approaches have emerged as powerful tools for exploring the
effects of alloying elements on the performance of titanium alloys.
Explainable Artificial Intelligence (XAI) methods, such as SHAP
and LIME, provide valuable insights into how each alloying ele-
ment contributes to key properties, guiding the development of
lightweight and biocompatible titanium materials (Bărbînţă et al.
2013; Toğaçar et al. 2022, 2021). By integrating experimental and
computational findings, researchers are now better equipped to de-
sign high-performance titanium alloys for biomedical applications,
further advancing the field of implant materials science.

MATERIALS AND METHODS

This study investigates the effects of alloying elements on the
density of titanium-based biomedical materials through a compu-
tational and data-driven approach. A total of 72 different compo-
sitions of Ti-Al-V alloys were modeled using JMatPro software,
enabling accurate simulation of material densities at room tem-
perature (25°C). The simulation results formed a comprehensive
dataset, which was subsequently used to train an Artificial Neural
Network (ANN)-based explainable AI (XAI) model. Advanced
interpretability techniques, including SHAP (SHapley Additive
exPlanations), LIME (Local Interpretable Model-agnostic Expla-
nations), and Partial Dependence Plots (PDP), were applied to
analyze the influence of individual alloying elements on density.
This integrated methodology combines computational material
science and machine learning to provide insights into the relation-
ship between composition and material properties, guiding the
optimization of lightweight titanium alloys for biomedical applica-
tions.

Dataset Preparation

The dataset utilized in this study comprises 72 different Ti-Al-V-
based alloy compositions, which were modeled within the compo-
sitional ranges provided in Table 1. The titanium content ranged
from 77% to 94%, while aluminum (Al) and vanadium (V) varied
between 3–7% and 2.5–5.4%, respectively. Trace elements such as
tin (Sn), zirconium (Zr), and molybdenum (Mo) were included
within limited ranges (0–2%, 0–4%, and 0–4%). These specific
composition ranges were selected based on their prominence in
biomedical alloy design, particularly to achieve optimal density
and mechanical properties (Brusewitz Lindahl et al. 2015). Each of
the 72 alloy compositions was modeled using JMatPro software,
and the density values at room temperature (25°C) were calculated
and recorded for each entry.

The choice of these composition ranges stems from the
widespread use of titanium-based alloys, particularly Ti-Al-V com-
binations, in biomedical applications such as orthopedic and dental
implants (Kartamyshev et al. 2020). Titanium, as the base mate-
rial, offers excellent biocompatibility, corrosion resistance, and a
density closer to that of human bone (Li et al. 2024). Aluminum is
included to stabilize the α-phase, providing strength and reducing
weight, while vanadium contributes to the β-phase, improving the
alloy’s flexibility and toughness (Luan et al. 2017). However, exces-
sive amounts of V and Al may lead to biocompatibility concerns,
prompting exploration of their optimal content (Bodunrin et al.
2020). Elements like Zr, Sn, and Mo were introduced to further
enhance specific properties, such as strength, corrosion resistance,
and stability, without compromising biocompatibility (Sun and Mi
2023). The simulation of density values at room temperature was
essential to evaluate the lightweight nature of the modeled alloys.

Room temperature properties are particularly relevant for biomed-
ical applications where implants must retain consistent structural
and mechanical integrity under physiological conditions (Alipour
et al. 2022). By systematically analyzing 72 alloy compositions, this
study provided a comprehensive dataset for training an explain-
able AI model to elucidate the contributions of individual elements
to the density of titanium-based materials. Such insights are crit-
ical for advancing the design of lightweight, high-performance
biomedical materials optimized for biomechanical compatibility
(Wan et al. 2020).

Development of the Explainable Artificial Intelligence Model In
this study, an Artificial Neural Network (ANN)-based regression
model was employed to predict the density of titanium-based
biomedical materials, replacing conventional machine learning
algorithms such as XGBoost. ANNs are widely recognized for
their capability to model complex, non-linear relationships in high-
dimensional datasets, making them ideal for applications in ma-
terial science where properties depend on intricate compositional
interactions (Valipoorsalimi 2023). The use of ANN ensures robust
predictions by simulating material density for the 72 compositions
of titanium alloys. This approach was particularly advantageous
given the non-linear and multivariable nature of the relationship
between alloying elements and material properties (Maitra et al.
2024).

The ANN regression model was trained on a comprehensive
dataset generated through simulations using JMatPro software,
where the density values of titanium-based alloys were computed
at room temperature (25°C). The network architecture was op-
timized by fine-tuning hyperparameters such as the number of
hidden layers, neurons per layer, activation functions, and learning
rates to minimize errors and improve generalization capability (Ha-
gan et al. 2014). To prevent overfitting, regularization techniques
such as dropout and L2 weight penalties were incorporated, en-
suring that the ANN model remained robust across the dataset.
The high predictive accuracy achieved by the ANN highlights
its suitability for capturing complex relationships within the data
(Goodfellow et al. 2016).

To ensure the transparency and interpretability of the developed
ANN model, Explainable Artificial Intelligence (XAI) methods,
including SHAP (SHapley Additive exPlanations), LIME (Local In-
terpretable Model-agnostic Explanations), and Partial Dependence
Plots (PDP), were integrated into the analysis. XAI techniques
address the "black-box" nature of neural networks, providing in-
sights into how the input features (alloying elements) influence
the model’s predictions (Lundberg and Lee 2017). This step is
particularly crucial in material design and biomedical applications,
where understanding the effect of alloying elements on density can
guide the development of lightweight, high-performance materials
(Ribeiro et al. 2016).

SHAP was utilized to quantify the contribution of each alloying
element to the predicted density. By leveraging Shapley values
from cooperative game theory, SHAP ensures fair attribution of
feature importance to the model’s predictions (Scavuzzo et al. 2022).
This method offers both local (individual predictions) and global
(model-wide) interpretability, enabling a detailed analysis of how
elements like aluminum, vanadium, zirconium, and tin influence
the material density. For example, it was observed that increasing
the vanadium content consistently reduced density, while alu-
minum showed a more complex interaction, stabilizing density
within a specific range (Sun and Mi 2023).

LIME was implemented to further enhance local interpretability
by generating simplified surrogate models for individual predic-
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■ Table 1 Elemental Composition Ranges of Alloys in the Dataset (values represent wt%)

Ti (%) Al (%) V (%) Sn (%) Zr (%) Mo (%) Fe (%) N (%) C (%) H (%) O (%)

77–94 3–5–7 2.5–3.5–4.5 0 and 2 0 and 4 0 and 4 0.3 0.05 0.08 0.015 0.2

tions. LIME creates perturbations around specific alloy composi-
tions and fits an interpretable model, such as linear regression, to
approximate the behavior of the ANN model locally (Ferdib-Al-
Islam et al. 2023). This approach allowed for a clearer understand-
ing of the decision-making process for specific alloy compositions,
ensuring that model predictions aligned with physical and chem-
ical principles. The combination of SHAP and LIME provided a
multi-faceted view of model behavior, improving confidence in
the ANN predictions.

Finally, Partial Dependence Plots (PDPs) were employed to vi-
sualize the global effects of individual features on the predicted
density. PDPs reveal the average influence of an alloying element
while holding other elements constant, enabling the identification
of critical compositional ranges for density optimization (Fried-
man 2001). By integrating PDPs into the analysis, it was possible to
uncover non-linear dependencies and interactions, offering valu-
able insights into the optimal ranges for alloying elements. For
example, Zr and Sn demonstrated significant effects on density
only within specific intervals, highlighting their potential for fine-
tuning material properties.

RESULTS AND DISCUSSION

In this study, the influence of alloying elements on the density
of titanium-based biomedical materials was analyzed using an
explainable artificial intelligence (XAI) approach. The ANN-based
regression model demonstrated high predictive accuracy for den-
sity values, supported by advanced interpretability techniques
such as SHAP, LIME, and Partial Dependence Plots (PDP). These
methods provided comprehensive insights into the individual and
combined effects of alloying elements, enabling the identification
of critical ranges and interactions. The results revealed that cer-
tain alloying elements, such as zirconium (Zr) and tin (Sn), play
a significant role in enhancing the density, while others, such as
molybdenum (Mo) and vanadium (V), contribute to reducing the
density. These findings underline the potential of integrating com-
putational materials science with XAI to optimize the design of
lightweight titanium alloys for biomedical applications.

The results of the XAI analysis are illustrated in Figure 1, which
presents the predicted density value and the contribution of each
alloying element. The predicted density of the alloy composition
is approximately 4.60 g/cm³, as shown on the horizontal bar. The
SHAP plot highlights the positive (orange) and negative (blue)
contributions of individual elements. Notably, Zr (0.98 ≤ Zr ≤ 1.02
wt%) and Sn (-0.95 ≤ Sn ≤ 1.05 wt%) exhibit the most significant
positive effects on density, while Mo and Al negatively impact the
overall density. This visualization underscores the critical role of
individual alloying elements and their optimized compositions in
achieving the desired material properties for biomedical applica-
tions.

Figure 2 highlights the contributions of key alloying elements to
the density of titanium-based biomedical materials. The analysis
reveals that zirconium (Zr), tin (Sn), and aluminum (Al) have the
most significant positive impacts, with feature values of 1.02, 1.05,

Figure 1 Predicted density and SHAP-based contributions of alloy-
ing elements in titanium-based biomedical materials

and 1.14, respectively. These elements play a vital role in opti-
mizing the density while maintaining the mechanical properties
of the alloy. Conversely, molybdenum (Mo) and vanadium (V)
exhibit slight negative contributions (-1.09 and -0.09), reflecting
their density-reducing characteristics. Titanium (Ti), as the base
element, demonstrates a moderate negative impact (-0.80), consis-
tent with its lightweight nature. The negligible contributions of
other elements (O, Fe, N, C, H) suggest their minimal influence on
the alloy’s density within the studied composition. These insights
provide a comprehensive understanding of how specific elements
contribute to achieving desired material properties for biomedical
applications.

Figure 2 Contributions of Alloying Elements to Density

Figure 3 presents the LIME (Local Interpretable Model-Agnostic
Explanations) analysis for the contributions of individual alloying
elements to the density of a specific titanium-based composition.
Positive contributions are shown in green, while negative ones
are indicated in red. Tin (Sn) and aluminum (Al) are the most
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significant positive contributors, with their effects observed within
the ranges -0.95 < Sn ≤ 1.05 and -0.09 < Al ≤ 1.14, respectively.
Titanium (Ti) also exhibits a moderate positive impact. Zirconium
(Zr) shows a neutral to slightly positive influence, whereas molyb-
denum (Mo) and vanadium (V) contribute negatively, reducing
the density. Elements such as oxygen (O), iron (Fe), nitrogen (N),
carbon (C), and hydrogen (H) display negligible contributions,
highlighting their limited role in this specific alloy composition.
These results provide localized insights into the effects of alloying
elements, enabling targeted optimizations for biomedical material
design.

Figure 3 LIME Explanation of Alloying Element Contributions

Figure 4 presents the SHAP dependence plots for various alloy-
ing elements, providing insights into their individual contributions
to the predicted density of titanium-based biomedical materials.
The plots reveal that aluminum (Al) and tin (Sn) have strong posi-
tive effects on density, showing a direct relationship as their values
increase. Zirconium (Zr) exhibits a nonlinear contribution, with its
optimal effect occurring within a specific range. Conversely, vana-
dium (V) and molybdenum (Mo) contribute negatively, reducing
density as their values increase. Elements like oxygen (O), nitrogen
(N), carbon (C), and hydrogen (H) show negligible SHAP values,
indicating minimal influence on density. These results highlight
the importance of optimizing the composition of critical elements
such as Al, Sn, and Zr to achieve desired density properties in
biomedical applications.

Figure 4 SHAP Dependence Plots for Alloying Elements

CONCLUSION

This study investigated the effects of alloying elements on the
density of titanium-based biomedical materials using a compu-
tational materials science approach integrated with explainable
artificial intelligence (XAI). The findings demonstrated that spe-
cific elements, such as aluminum (Al), tin (Sn), and zirconium (Zr),
play a critical role in enhancing density, while others like molybde-
num (Mo) and vanadium (V) reduce it. SHAP and LIME analysis
provided valuable insights into the contributions of individual
elements, revealing their importance in achieving optimal density
for lightweight and biocompatible materials. The integration of
computational modeling with XAI enables precise evaluation of
complex relationships between alloy compositions and material
properties, offering a systematic approach to improving implant
designs.

Future studies should explore a broader range of alloying ele-
ments and their interactions to optimize additional properties such
as mechanical strength, corrosion resistance, and biocompatibility.
Advanced machine learning techniques combined with experi-
mental validation can further enhance the reliability of predictions
and provide a more comprehensive understanding of material
performance under physiological conditions. The adoption of such
data-driven methodologies holds significant potential for advanc-
ing the development of high-performance titanium alloys tailored
for specific biomedical applications.
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ABSTRACT Artificial intelligence has emerged as a transformative tool in medical imaging, enabling automated diagnosis and
analysis across various domains. While significant advancements have been made in abdominal imaging, many studies struggle to
achieve robust detection of diseases. The complexity and variability in abdominal structures present unique challenges for traditional
machine learning models, necessitating the adoption of more advanced object detection frameworks. Motivated by these challenges, this
study focuses on leveraging the YOLOv9 object detection architecture to enhance the identification of abdominal diseases using the
TEKNOFEST 2022 Abdomen Dataset. Advanced preprocessing techniques, including CLAHE (Contrast Limited Adaptive Histogram
Equalization) and Gaussian noise augmentation, were applied to improve image contrast and model robustness. The dataset was
processed into YOLO-compatible formats, and multiple training configurations were evaluated using YOLOv9c and YOLOv9s variants.
These configurations included variations in batch size, optimizer type (SGD and Adam), dropout rate, and frozen layers. Among the
configurations tested, the YOLOv9s model with 32 batch size, SGD optimizer, and a 35% dropout rate demonstrated the best performance,
achieving a Recall of 0.7698, Accuracy of 0.7698, and F1 Score of 0.8228. The highest mAP50 of 0.9385 was observed with the YOLOv9c
model trained using the Adam optimizer and a 35% dropout rate. Confusion matrix analysis revealed strong detection capabilities for
conditions like acute cholecystitis and abdominal aortic aneurysm. This study highlights the potential of YOLOv9 models in medical
imaging and emphasizes the importance of high-resolution datasets and advanced feature extraction techniques for improving diagnostic
accuracy in abdominal disease detection. These findings lay a foundation for the development of reliable and efficient AI-driven diagnostic
tools.
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INTRODUCTION

Artificial intelligence (AI) has brought about transformative
changes in the diagnosis and treatment processes within the med-
ical field. AI technologies, such as machine learning and deep
learning, have significantly enhanced accuracy in medical imaging,
thereby improving the efficiency of healthcare services (El-Tanani
et al. 2025). In the analysis and processing of medical data, AI has
enabled the early detection of diseases and the development of
personalized treatment approaches (Shaikh et al. 2025). Moreover,
the application of AI in genomic research has deepened the un-
derstanding of genetic disorders, offering innovative solutions in
treatment strategies (Zhou et al. 2025; Chen et al. 2025).

The integration of AI into healthcare services through auto-
mated machine learning (AutoML) applications has allowed for
reduced error rates and faster processing of healthcare workflows
(Shujaat 2025). These advancements have not only optimized di-
agnostic and treatment processes but also increased the overall
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efficiency of healthcare systems (Donovan et al. 2025). Further-
more, the necessity to uphold data privacy and ethical standards
in healthcare systems remains a critical priority to ensure the safe
and equitable application of AI.

Abdominal diseases, which encompass pathological conditions
affecting organs in the abdominal region, involve complex pro-
cesses in both diagnosis and treatment. AI-based approaches offer
significant opportunities to enhance accuracy, save time, and sup-
port clinical decision-making mechanisms in these processes. In
particular, machine learning and deep learning techniques have
demonstrated high performance in analyzing abdominal imaging
data, enabling the early detection of conditions such as appen-
dicitis, pancreatic cancer, and abdominal aortic aneurysm. Recent
studies show that AI-based image processing algorithms can be
utilized not only for diagnosis but also in conjunction with verifica-
tion systems that ensure the security of patient data. The increasing
adoption of these technologies in clinical applications facilitates
more precise disease management and drives transformation in
healthcare services (Zhou et al. 2025; Boyraz et al. 2022; Santos et al.
2024).
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Object detection algorithms have significantly advanced the
field of medical diagnosis by enabling the rapid and accurate iden-
tification of diseases in medical imaging data. Deep learning-based
models like YOLO have made it possible to identify thyroid nod-
ules in ultrasound images with high accuracy (Wang et al. 2025).
Moreover, multi-object detection algorithms have contributed to
the precise differentiation of reactive lymphocytes in blood sam-
ples, playing a crucial role in the diagnosis of hematological dis-
eases (Liu et al. 2025). In another study, YOLO-based deep learning
models were employed to detect extrahepatic common bile duct
obstruction in MRCP images, allowing for the clinical diagnosis
of these complex conditions with high accuracy (Tho et al. 2025).
Additionally, multi-scale feature fusion algorithms used in the
staging of occupational diseases such as pneumoconiosis have
enhanced diagnostic precision while improving the understanding
of disease progression (Ren et al. 2025). These studies demonstrate
that object detection algorithms not only improve the accuracy of
image analysis but also make patient care processes more efficient.

In this study, a YOLOv9-based (Wang et al. 2024) object de-
tection model was developed to enable the early and accurate
detection of acute abdominal diseases using the Abdomen Dataset
presented in the TEKNOFEST 2022 Artificial Intelligence in Health
Competition (Koç et al. 2024). Detailed preprocessing steps were
conducted for the dataset classes, including the enhancement of
image contrast through the CLAHE method (Pisano et al. 1998)
and the addition of noise at varying levels. The model training
was performed using the s and c variants of YOLOv9 with dif-
ferent hyperparameter combinations. Furthermore, the model’s
performance was evaluated using metrics such as precision and
accuracy, emphasizing the effectiveness of AI-based methods in
medical image analysis.

The main contributions of this paper are as follows:

• An object detection-based model for the detection of abdomi-
nal diseases was developed using the Abdomen Dataset from
the TEKNOFEST 2022 Artificial Intelligence in Health Com-
petition.

• Image contrast was enhanced through the CLAHE method,
and preprocessing techniques such as noise addition at vary-
ing levels enriched the diversity of the training data.

• The model was trained using different variants of YOLOv9
(YOLOv9s and YOLOv9c) and hyperparameter combinations,
with optimization techniques analyzed in detail.

• The effects of different optimization algorithms (SGD and
Adam) and hyperparameters on the classification accuracy of
medical image data were thoroughly analyzed.

• The proposed method offers the potential for faster and more
accurate diagnosis in medical imaging, making a significant
contribution to clinical decision support systems.

The remainder of this paper is organized as follows. The Related
Work section reviews previous studies utilizing object detection
models for analyzing abdominal medical images and detecting
related diseases. The Dataset section introduces the TEKNOFEST
2022 Abdomen Dataset, describing its class structure, annotations,
and preprocessing steps. The Methodology section explains the
proposed workflow in detail, including preprocessing techniques
like CLAHE for enhancing image contrast and noise augmenta-
tion, along with the training steps of YOLOv9 models with varying
hyperparameters. The Experiments and Results section presents
quantitative evaluations of model performance, including preci-
sion, recall, and overall accuracy, f1-score across different configu-
rations. The Discussion section interprets these results, highlights

the significance of the findings, and compares the proposed ap-
proach with existing methods. Lastly, the Conclusion and Future
Work section summarizes the study’s contributions and provides
insights into potential future developments for improving disease
detection in abdominal images using advanced object detection
techniques.

Object detection algorithms play a crucial role in the diagnosis
and classification of abdominal diseases in medical image analy-
sis. Ramamoorthy et al. (2024) employed deep learning methods
for early cancer detection and ulcer classification in endoscopy
videos. In this study, cancer and ulcer lesions were automati-
cally detected. The research demonstrated that object detection
models could precisely identify small and ambiguous lesions in
endoscopic images. Moreover, this approach ensured the accurate
classification of lesions. Maity et al. (2024) integrated explainable
artificial intelligence (XAI) with object detection methods for the
diagnosis of gastroesophageal reflux disease (GERD). The study
identified different stages of the disease through segmentation and
classification processes. Using object detection models, anatomi-
cal abnormalities caused by GERD were automatically detected,
thereby supporting clinical decision-making processes.

Su et al. (2023) compared Faster RCNN, Cascade RCNN, and
Mask RCNN models for the diagnosis of early gastric cancer in gas-
troscopic images. This study successfully detected and localized
cancerous regions using object detection algorithms. The results
showed that RCNN-based models achieved high accuracy rates in
lesion detection in gastroscopic images. Jin et al. (2022) performed
segmentation and detection of gastric cancer lesions in endoscopic
images using the Mask RCNN model. Object detection algorithms
optimized the diagnostic process by accurately identifying can-
cerous regions. This study demonstrated that Mask RCNN is an
effective method for improving detection accuracy in endoscopic
images.

In the study conducted by Koçer et al. (2024), the YOLOv5 al-
gorithm was employed to detect and classify various diseases in
abdominal CT images. The study was carried out on a dataset
containing 11 different disease conditions from 1200 patients. The
YOLOv5 algorithm demonstrated high accuracy, particularly in
detecting conditions such as acute appendicitis, kidney stones,
gallstones, and ureteral stones. The data were converted from
DICOM format to formats required by the YOLO algorithm, mak-
ing them compatible with the deep learning model. The object
detection algorithm was equipped with class labels and bound-
ing boxes to pinpoint the exact locations of disease regions. The
study highlighted that YOLOv5 is a promising tool for fast and
accurate diagnosis in medical imaging and can expedite diagnos-
tic processes while reducing the workload of radiologists. These
studies emphasize the significant advantages of object detection
algorithms in medical image analysis, particularly in the early
diagnosis and accurate classification of abdominal diseases. Mod-
els such as YOLO, RCNN, and Mask RCNN have been observed
to contribute to faster and more precise diagnostic processes on
abdominal images.

DATASET

In this study, the TR_ABDOMEN_RAD_EMERGENCY dataset
(Koç et al. 2024), used in the TEKNOFEST-2022 Artificial Intelli-
gence in Healthcare Competition, was utilized. The dataset aims
to classify abdominal emergencies into six distinct categories: (i)
acute cholecystitis, (ii) kidney and/or ureter stones, (iii) acute pan-
creatitis, (iv) abdominal aortic aneurysm/dissection/rupture, (v)
acute appendicitis, and (vi) acute diverticulitis.
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The dataset was collected through the infrastructure of the e-
Nabız (Pulse) and National Teleradiology System (NTS) managed
by the Ministry of Health of the Republic of Türkiye (Koç et al.
2024). DICOM-format images recorded between 2019 and 2021
underwent a centralized screening and selection process. These
anonymized images were meticulously labeled by 10 radiologists
with 5 to 10 years of professional experience. During the label-
ing process, bounding boxes were used to ensure the accurate
classification of radiological data.

The dataset is divided into two distinct parts for training and
competition phases:

• Training data: 1,209 cases and 357,428 images.
• Competition data: 308 cases and 98,101 images.

The distributions and detailed information for each class are
presented in Table 1.

METHODOLOGY

This section outlines the methodology employed for detecting ab-
dominal diseases using the TEKNOFEST 2022 Abdomen Dataset.
The Preprocessing step focuses on enhancing the quality and con-
trast of medical images by applying CLAHE (Contrast Limited
Adaptive Histogram Equalization), which improves visibility in
low-contrast regions. To further simulate real-world variability
and increase model robustness, various levels of Gaussian noise
were added to the dataset. The Training Step involves utilizing
the YOLOv9 model, which was trained with multiple configura-
tions, including variations in hyperparameters such as batch size,
optimizer type, and dropout rates.

Preprocessing Step
The preprocessing phase is a critical step in preparing the
TEKNOFEST 2022 Abdomen Dataset for training. Several pre-
processing techniques were employed to enhance the dataset and
prepare it for training with the YOLOv9 model. These steps in-
clude:

• DICOM to JPG Conversion: The medical images in DICOM
format were converted to JPG format to ensure compatibility
with the YOLO framework.

• Bounding Box Conversion: The bounding box annotations
provided in the dataset were converted to YOLO-compatible
coordinates.

• Image Resizing: Each image was resized to a resolution of
640× 640 pixels, adhering to the YOLO model’s input require-
ments.

• Contrast Enhancement (CLAHE): CLAHE (Contrast Limited
Adaptive Histogram Equalization) was applied to improve
the visibility of critical details, especially in low-contrast re-
gions.

• Noise Addition: Gaussian noise was added at varying levels
to simulate real-world variability and increase model robust-
ness. Four variations were tested: CLAHE without noise,
CLAHE with 0.03 noise, CLAHE with 0.1 noise, and CLAHE
with 0.3 noise.

Among the tested preprocessing methods, CLAHE with 0.03
Gaussian noise yielded the best results in terms of model accuracy,
as it provided an optimal balance between noise robustness and
enhanced contrast. This highlights the importance of careful tuning
of preprocessing parameters to achieve superior performance.

As demonstrated in Figure 1, the original image (left) has rela-
tively low contrast, which is significantly improved after applying

CLAHE (middle). When Gaussian noise is combined with CLAHE
(right), the contrast is further enhanced, with CLAHE + 0.03 noise
providing the best results. This combination ensures that the pro-
cessed images retain their clinical significance while providing
robust input for the YOLO model.

Training Step
The training phase involved the application of the YOLOv9 model,
specifically using its two variants: YOLOv9c and YOLOv9s. These
models were trained using a variety of configurations to identify
the best-performing setup for abdominal disease detection. The
training process utilized several key hyperparameters and tech-
niques, as summarized in Table 2.

In this study, the models were trained using batch sizes of 16
and 32 to examine the effect of batch size on training stability and
performance. Two optimization algorithms, SGD and Adam, were
employed to compare convergence rates and generalization. Each
model was trained for 90 epochs, with input images resized to
640 × 640 pixels to meet YOLO requirements.

Additional techniques included applying dropout rates of 35%
to reduce overfitting and freezing the first 10 layers in some con-
figurations to leverage pre-trained weights. The models were eval-
uated using 5-fold cross-validation, ensuring reliable and robust
results across different data splits.

This systematic experimentation allowed for the identification
of the optimal configuration, which utilized YOLOv9c, a batch
size of 32, SGD optimizer, and a dropout rate of 35%, achieving
the highest performance with a mean average precision (mAP) of
83.1%.

RESULTS AND DISCUSSION

The results obtained from training YOLOv9c and YOLOv9s models
using various configurations are summarized in Table 3. The
evaluation metrics, including Precision, Recall, Accuracy, F1 Score,
and mAP50, were calculated for each configuration to assess the
performance of the models.

As shown in Table 3, the performance of the models varied
across different configurations. The following observations can be
made:

Performance of YOLOv9c and YOLOv9s Models
The results indicate that the YOLOv9s variant, when trained with
32 batch size, SGD optimizer, and a 35% dropout rate, achieved the
highest F1 Score (0.8228) and mAP50 (0.8738) among SGD-based
configurations. On the other hand, the YOLOv9c model, trained
with the Adam optimizer and a 35% dropout rate, achieved the
highest overall mAP50 (0.9385) and Precision (0.9530).

Effect of Dropout and Freezing Layers
Applying a 35% dropout rate improved the generalization per-
formance, as evidenced by higher F1 Scores and mAP50 values
compared to configurations without dropout. However, freezing
the first 10 layers in the models led to slight reductions in Re-
call and Accuracy metrics, suggesting that freezing may limit the
model’s ability to adapt to new data.

Comparison of Optimizers
The Adam optimizer showed superior performance in terms of Pre-
cision and mAP50, particularly for the YOLOv9c model. However,
SGD provided more balanced results across all metrics, making it
a reliable choice for configurations focused on generalizability.
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■ Table 1 Distribution of Dataset

Class Training Cases Test Cases Total Images

Acute Appendicitis 221 83 7,541

Acute Cholecystitis 124 34 6,345

Acute Pancreatitis 146 48 8,841

Kidney/Ureter Stones 283 97 3,488

Acute Diverticulitis 76 16 1,403

Abdominal Aortic Aneurysm 159 49 12,667

Figure 1 The comparison of original, CLAHE-applied, and Gaussian noise + CLAHE-applied abdominal images

■ Table 2 Training Parameters and Configurations

Parameter Values Used

Batch Size 16, 32

Optimizer SGD, Adam

Epochs 90

Input Size 640 × 640 pixels

Dropout 0%, 35%

Frozen Layers 0, 10

Model Variants YOLOv9c, YOLOv9s

Cross-Validation 5-fold

Best Configuration Performance Evaluation

The best-performing configuration in terms of Recall, Accuracy,
and F1 Score was achieved using the YOLOv9s model with a
batch size of 32, the SGD optimizer, and a 35% dropout rate. This
configuration produced a Recall of 0.7698, an Accuracy of 0.7698,
and an F1 Score of 0.8228, demonstrating its robust ability to detect
and classify abdominal diseases effectively. The mAP50 value of
0.8738 further supports the strong generalization of this model
across all test cases.

Figure 2 presents the normalized confusion matrix for this con-
figuration, providing a detailed view of the model’s performance
across different classes. Notably, the model achieved high classi-
fication accuracy for categories such as "Compatible with acute
cholecystitis" (0.78) and "Abdominal aortic aneurysm" (0.89), in-
dicating its capability to identify larger and more distinct features
associated with these conditions. However, the matrix reveals
that the classification performance for "Kidney stone" was notably
lower, with a Recall of 0.48.

The low performance for the "Kidney stone" category can be
attributed to the small size of these stones, which makes them
challenging to detect even with advanced object detection mod-
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■ Table 3 Training Results and Metrics for YOLOv9 Configurations

Configuration Precision Recall Accuracy F1 Score mAP50

YOLOv9c, 16 Batch, SGD, No Dropout 0.8758 0.7619 0.7619 0.8149 0.8651

YOLOv9c, 16 Batch, SGD, 35% Dropout 0.8781 0.7639 0.7639 0.8170 0.8689

YOLOv9c, 16 Batch, SGD, 35% Dropout, 10 Freeze 0.8658 0.7564 0.7564 0.8074 0.8574

YOLOv9c, 32 Batch, SGD, No Dropout 0.8713 0.7583 0.7583 0.8109 0.8628

YOLOv9c, 32 Batch, SGD, 35% Dropout 0.8744 0.7609 0.7609 0.8137 0.8665

YOLOv9c, 32 Batch, SGD, 10 Freeze 0.8603 0.7637 0.7637 0.8091 0.8532

YOLOv9c, 32 Batch, SGD, 35% Dropout, 10 Freeze 0.8594 0.7629 0.7629 0.8083 0.8531

YOLOv9s, 32 Batch, SGD, No Dropout 0.8795 0.7662 0.7662 0.8190 0.8672

YOLOv9s, 32 Batch, SGD, 35% Dropout 0.8836 0.7698 0.7698 0.8228 0.8738

YOLOv9s, 32 Batch, SGD, 35% Dropout, 10 Freeze 0.8790 0.7574 0.7574 0.8137 0.8715

YOLOv9c, 32 Batch, Adam, No Dropout 0.9499 0.7002 0.7002 0.8061 0.9347

YOLOv9c, 32 Batch, Adam, 10 Freeze 0.9551 0.6871 0.6871 0.7992 0.9372

YOLOv9c, 32 Batch, Adam, 35% Dropout 0.9530 0.7024 0.7024 0.8088 0.9385

els. Their subtle appearance in medical images often results in
misclassification or lower detection confidence. This observa-
tion highlights the need for higher-resolution datasets or more
advanced preprocessing techniques tailored to enhance the visibil-
ity of smaller objects.

In summary, the YOLOv9s model with the aforementioned
configuration provided strong results for most abdominal disease
categories, but certain challenges, such as detecting small-sized
features like kidney stones, emphasize the necessity for further
dataset improvements and potential model fine-tuning.

CONCLUSION

In this study, a YOLOv9-based object detection approach was im-
plemented to identify abdominal diseases using the TEKNOFEST
2022 Abdomen Dataset. The dataset was enhanced through ad-
vanced preprocessing techniques, including CLAHE and Gaussian
noise augmentation, to improve image contrast and robustness.
Multiple training configurations were evaluated using YOLOv9c
and YOLOv9s variants, with variations in batch size, optimizer,
dropout rate, and frozen layers. The results demonstrated that the
YOLOv9s model, trained with a batch size of 32, the SGD opti-
mizer, and a 35% dropout rate, provided the best performance in
terms of Recall (0.7698), Accuracy (0.7698), and F1 Score (0.8228).
Additionally, the highest mAP50 (0.9385) was achieved using the
YOLOv9c model with the Adam optimizer and a 35% dropout
rate.

The confusion matrix analysis highlighted the strong perfor-
mance of the proposed approach in identifying diseases such as
acute cholecystitis and abdominal aortic aneurysm. However, the
detection of smaller objects, such as kidney stones, remained chal-
lenging due to their subtle appearance in medical images. This

Figure 2 Normalized Confusion Matrix for YOLOv9s, 32 Batch,
SGD, 35% Dropout Configuration.

observation emphasizes the need for higher-resolution datasets
and advanced preprocessing methods in future studies.

As part of future work, several enhancements can be consid-
ered. First, incorporating higher-resolution medical images and
exploring multi-scale feature extraction techniques could improve
the detection of small-sized objects. Second, leveraging ensemble
learning by combining YOLO models with other object detection
frameworks could enhance overall performance. Lastly, expanding
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the dataset with diverse samples and annotating additional classes
would further strengthen the model’s robustness and applicability
in clinical settings.
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