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Evaluating the Performance Disparity and the Role of
Gender-Aware Approaches in Machine Learning Based
Disease Detection
Önder Çoban ID ∗,1 and Ayşe Kartal ID ∗,2

∗Department of Computer Engineering, Faculty of Engineering, Atatürk University, 25240, Erzurum, Türkiye.

ABSTRACT Machine Learning (ML) is gaining attraction in medical research due to its ability to identify unnoticeable
patterns by the human eye. However, concerns about fairness in ML models, particularly performance differences across
groups, are growing. This study, therefore, focuses on evaluating the performance disparity and the role of gender-aware
approaches in ML-based disease detection. It uses the gender-aware approach and introduces its two new variants by
testing them on nine different disease datasets. Intensive experimental evaluations reveal that the detection performance
can increase up to an F1-score of 1.0, depending on the nature of the dataset at hand. On the other hand, the gender-
aware approach is successful in mitigating the performance disparity only in three out of nine cases. The variants relying
on a crossing-over fashion can capture the relationships and different patterns in some cases, but often fall behind
the gender-aware approach. This research distinguishes itself through the use of a significant number of datasets and
implemented pipelines, of which two are employed for mitigating performance disparity in disease detection for the first
time in the literature. The findings of this study, therefore, make important contributions to the field of disease detection in
terms of the aforementioned aspects.

KEYWORDS

Gender bias
Performance dis-
parity
Disease
Detection
Machine learning

INTRODUCTION

Diseases are continuing to be the top global causes of human
deaths. According to a report by WHO (World Health Organiza-
tion), seven of the ten leading causes of death were noncommu-
nicable diseases, accounting for 38% of all deaths, or 68% of the
top ten causes at a global level in 2021 (W.H.O. 2024). This reveals
that there is a vital need for effective diagnosis of various diseases
globally (Ahsan et al. 2022). However, the complexity of the differ-
ent disease mechanisms and underlying symptoms of the patient
population presents solid challenges in the early diagnosis phase
and in providing effective treatments. This is because many indi-
cations and symptoms are ambiguous and can only be diagnosed
by trained health experts who are often prone to error (Ahsan
et al. 2022). For instance, the symptoms become worse and almost
unmanageable as the Alzheimer’s disease progresses (Negi et al.
2025), and this makes it hard for health workers to diagnose it.

In this context, a report by the National Academies of Science,
Engineering, and Medicine revealed that the majority of people en-
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countered at least one diagnostic mistake during their lifespan (Ball
et al. 2015). The misdiagnosis may be influenced by various factors,
like a lack of proper symptoms, which are often unnoticeable for
rare diseases, and the disease is mistakenly omitted from the con-
sideration (Ahsan et al. 2022). Note that misdiagnosis (or biased
outputs) could have severe implications, such as unequal access
to diagnosis and treatment (Lozano 2025) in the healthcare con-
text. Contrarily, early diagnosis is highly beneficial in tackling the
challenges posed by diseases (Negi et al. 2025). Such a task may
be achieved more efficiently by predicting results from the data,
which is very helpful in making decisions for the medical supervi-
sors. The predicted results may also be useful in medical research
where practitioners can get benefits for their medical trials (Sharad
et al. 2025).

As such, Machine Learning (ML) has attracted the attention of
researchers whose recent studies have demonstrated its potential
in the medical field with the use of large datasets (Straw and Wu
2022). This is because ML can learn and recognize patterns that
may not be apparent to the human eye (Islam and Khanam 2024;
Raza et al. 2024; Petersen et al. 2023) due to the aforementioned
challenges in the medical domain. Accordingly, ML techniques
can identify trends in medical data and help to develop prediction
models which are useful in increasing efficiency of the healthcare
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Figure 1 Cases of binary classification for creation of different decision boundaries. Blue circles (majority) and red crosses (minority) represent
two patient groups of interest (Petersen et al. 2023; Raza et al. 2024).

system and managing electronic data in a better way (Sharad et al.
2025). Consequently, ML can help with better in-time and correct
diagnosis of diseases and offer solutions to difficult medical prob-
lems, including the detection of Parkinson’s disease (Islam and
Khanam 2024), Psychogene Dysphonie (Singhal and Sharma 2024),
liver disease (Straw and Wu 2022), Alzheimer’s disease (Negi et al.
2025), and coronary artery disease (CAD) (Hogo 2020). Despite
the promise of ML tools, however, the fairness of ML models has
come under increased scrutiny in recent years, with respect to
the performance disparities between different groups being one
potential source of unfairness (Petersen et al. 2023). The discussion
has also reached the medical ML community, where the effects of
group underrepresentation have received much attention in recent
years.

As depicted in Figure 1, ML models are often assumed to find
an optimal decision boundary for all subgroups (case A, not prob-
lematic). However, existing research efforts often report that there
is a performance disparity between subgroups created considering
several demographic attributes, including gender (Straw and Wu
2022). In such a situation (case B), optimal decision boundaries dif-
fer between groups, and either the model or the input data are not
sufficiently expressive to capture the optimal decision boundaries
for all groups. Standard ML models or approaches often optimize
performance in the majority group (i.e., the blue circles in this case).
It is worth noting that the relationship between a group’s represen-
tation in the training dataset and the model performance for that
group is complex. Using similar amounts of data from different
groups does not ensure equal model performance across groups,
and unfairness exists even with balanced data (Meissen et al. 2024;
Klingenberg et al. 2023). Group underrepresentation, on the other
hand, does not necessarily result in poor model performance (Pe-
tersen et al. 2023). Finally, an expressive model armed with an
efficient mitigation technique can learn a decision boundary (red
dashed line in Case C) that is optimal for both groups (Petersen
et al. 2023; Raza et al. 2024).

In light of the aforementioned cases, it is clear that ML models
should address disparities by properly training the algorithms
before implementation in the healthcare sector. This is because
any bias in an arbitrary ML model affects its diagnostic accuracy
as well as the treatment recommendation given by a medical su-
pervisor (Sharad et al. 2025). Nevertheless, bias detection is fre-
quently overlooked, and this is causing to have less-than-ideal
results (Kumar and Prabha 2025). The performance disparity of-
ten exists due to the estimator (or learner) bias, and using several
data-oriented mitigation techniques does not come with guaran-
tees. As a result, improved diagnostics and mitigation remain an

open research problem in the medical field (Petersen et al. 2023).
The data-oriented solutions include using other target variables,
bias-robust learners, stratification, more samples, and additional
features. On the one hand, narrow algorithmic fairness solutions
cannot address all of these issues (Petersen et al. 2023).

All of these cases make it clear that fairness and interpretabil-
ity are as crucial as predictive accuracy when applying ML in
healthcare (Lozano 2025), and gender bias is one of the frequently
observed complications of ML models in the medical domain.
Recent research has demonstrated that ML-based methods are re-
vealing several differences in sex-based health research (Kumar
and Prabha 2025). For instance, gender plays a vital role in de-
ciding probable targets of Alzheimer’s disease (Negi et al. 2025).
The performance disparity observed in favour of males (Islam
and Khanam 2024; Singhal and Sharma 2024; Kondaka 2024) or
females (Hogo 2020; Mushta et al. 2024; Klingenberg et al. 2023)
depending on the nature of the dataset at hand. Not that many
studies operate under the assumption that balancing datasets is
sufficient to address bias, but biases can still arise at the model
level (Lozano 2025).

Building upon these findings, this study aims to inspect the
effect of the gender-aware approach in mitigating performance
disparity across male and female instances in ML-based disease de-
tection. To the best of our knowledge, it also uniquely presents and
utilizes its two variations, never before seen in existing mitigation
research. The salient contributions of this study are as follows:

• We implement four different ML pipelines to uncover the real
power of the gender-aware approach in automatic disease
detection.

• We introduce two variants of the gender-aware approach and
comparatively employ them for the first time for mitigating
performance disparity in automatic disease detection.

• We use nine different datasets to evaluate the behaviours of
pipelines under different circumstances.

• We report our findings by relying on extensive experimental
evaluations.

We believe that the contributions given above make this study dif-
ferent from the existing research effort. Please note that this study
employs crossing-over pipelines for mitigating the performance
disparity in disease detection for the first time in the literature.
As such, the findings of this study provide useful insight for re-
searchers studying automatic disease detection.
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LITERATURE REVIEW

This section presents our literature review that covers existing
studies focusing merely on fairness and bias in ML-based disease
detection. The studies that we are aware of are as follows: different
ML classifiers are used to detect Parkinson’s disease based on MRI
(Magnetic Resonance Imaging) data in (Islam and Khanam 2024).
The authors analyzed male and female brain scans separately and
reported both complete and gender-specific results, which showed
that there is a performance disparity in favor of male instances
for all brain structures, even when they balanced the instances
using a sampling method. Hence, the authors emphasized the
need for using possible mitigation techniques to remove the perfor-
mance disparity. ML is employed to detect Psychogene Dysphonie
using voice signals in (Singhal and Sharma 2024). This study
performed gender-wise analysis in disease detection by using a
hybrid algorithm (Recurrent Neural Network Bidirectional Long
Short-Term Memory - RNN_BiLSTM) and revealed that there is a
performance disparity between male and female instances. This
disparity is observed in favour of males. ML models are used to
detect liver disease with the aim of stratified sex analysis in (Straw
and Wu 2022). The authors employed their algorithms on both
sex-balanced and sex-imbalanced datasets and built their pipelines
with and without feature selection. They observed the superior-
ity of Support Vector Machine (SVM) to other ML models and
observed that females suffer from a higher false negative rate.

Various ML classifiers are used to diagnose Alzheimer’s disease
on a single dataset in (Negi et al. 2025). The authors experimented
with both non-gender-aware and gender-aware approaches and
observed that there is a performance disparity across male and
female instances. The overall best performance is provided by a
modified k-Nearest Neighbor (k-NN) classifier, which provided
higher results on male instances. Another study Hogo (2020) used
ML for the diagnosis of CAD. The authors employed a gender-
aware approach and observed that the patient’s gender affects the
structure and performance of the CAD diagnosis system. Unlike
the studies (Islam and Khanam 2024; Singhal and Sharma 2024) in
which the performance disparity is observed in favour of males, the
disparity is observed in favour of females. The use of transcribed
speech is explored for automated Alzheimer’s disease detection
in (Lozano 2025). Unlike the aforementioned studies, this study
relies on text data and uses Random Forest (RF), which is fed with
linguistic features as well as an LLM (Large Language Model).
The author inspected the bias concerning both gender and age
attributes of patients and revealed that demographic disparities
exist in both models, particularly related to age. Another difference
of this study is that it uses Reject Option Classification (ROC) as
a mitigation method that significantly improves fairness without
substantial reductions in performance. Unstructured text datasets
are similarly used in (Kumar and Prabha 2025) for examining
gender and sex disparities and suggestions offered for maximizing
technology use to improve global health outcomes and reduce
inequality.

A framework based on a Multiple Domain Adversarial Neu-
ral Network (MDANN) is proposed for mitigating performance
disparity in (Li et al. 2025). The authors used pre-trained convolu-
tional autoencoders (CAEs) to extract deep representations of brain
image data. The findings of this study show that the proposed
framework achieves the best balance in terms of accuracy for both
sex and handedness in Autism disease diagnosis. Similarly, ML
models are used to evaluate bias across race and gender in (Raza
et al. 2024). The authors detected that there is a performance dis-
parity between male and female instances in favour of females.

Convolutional Neural Network (CNN) is used to evaluate poten-
tial performance bias for age and sex on MRI data for the diagnosis
of Alzheimer’s disease (Klingenberg et al. 2023). The authors made
their evaluation on both balanced and imbalanced data and found
that the CNN performed significantly better for women than for
men. They concluded that sex differences cannot be attributed
to an imbalanced training dataset and therefore point to the im-
portance of examining and reporting classifier performance across
population subgroups to increase transparency and algorithmic
fairness. Pretrained CNNs (i.e., specifically DenseNet-121 and
ResNet-50) are used to evaluate bias and fairness in skin lesion
diagnosis in (Kondaka 2024). The findings of this study reveal
statistically significant differences in diagnostic performance be-
tween genders in favour of males. Additionally, the study found
that data augmentation improved accuracy, especially for female
skin lesions. ML is used for the diagnosis of PD by exploring
the potential imaging biomarkers in (Mushta et al. 2024). The au-
thors used Dopamine transporter scan (DATSCAN) images to feed
their learners, from which the best model was found to be Ad-
aBoost (AB). The authors also evaluated their pipeline by using
the gender-aware approach that separates the dataset by gender to
independently evaluate classification performance for male and
female participants. The results of this study again show that there
is a performance disparity across male and female instances, and
the disparity is observed in favour of female instances. Fairness of
unsupervised ML models is evaluated on three large-scale publicly
available chest X-ray datasets in (Meissen et al. 2024). The results of
this study revealed that unfairness exists even with balanced data,
and it cannot be mitigated by balanced representation alone. On
the other hand, male subjects consistently received significantly
higher scores across all datasets, even under balanced conditions.

Our review of the literature, briefly provided above, empha-
sizes that fairness and interpretability are as crucial as predictive
accuracy when applying ML in healthcare. As such, a large major-
ity of the studies research bias, especially across gender and age in
ML models. On the other hand, studies (Islam and Khanam 2024;
Singhal and Sharma 2024; Straw and Wu 2022; Negi et al. 2025)
focusing on mitigating such a disparity mostly use the gender-
aware approach. Some other ones pursue a different purpose
and focus on providing fairness metrics (e.g., sAUROC (Meissen
et al. 2024), ROC (Lozano 2025), and PPGR (Raza et al. 2024)) to
quantify the fairness of ML models in disease detection. To sum-
marize, existing studies often report bias in ML models across
demographic attributes, including gender. They often rely on the
gender-aware approach for mitigating the performance disparity
and experimenting on a single disease type.

In this study, we therefore employ the gender-aware approach
not only for a single disease type but also for nine different disease
types to provide a more general view, unlike existing research
efforts. In addition, we employ its two variants by following a
crossing-over fashion for the first time in the literature for the pur-
pose of mitigating the performance disparity in disease detection.
Our extensive results obtained comparatively revealed that the
gender-aware approach improves subgroup performance in only
three cases. Its two variants rely on crossing-over ML models;
on the other hand able to capture the relationships and different
patterns in some cases. Building upon these findings, we believe
that this study makes an important contribution to the literature
by showing the limited efficiency of both the gender-aware ap-
proach and its variants, as well as the need for more sophisticated
approaches to remove performance disparity, which is not a trivial
task.
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■ Table 1 A summarized quantitative description of the underlying datasets

# of ... Distribution of ... instances across targets
Dataset

INS F Targets Males Females male female

B

ALZ 2149 38 2 [0: 1389, 1: 760] 1088 1061 0: 714, 1: 374 0: 675, 1: 386 ✗

AND 1421 5 2 [0: 801, 1: 620] 740 681 0: 328, 1: 412 0: 473, 1: 208 ✗

ADD 2392 32 2 [0: 2268, 1: 124] 1180 1212 0: 1118, 1: 62 0: 1150, 1: 62 ✗

CDD 2206 34 2 [Yes: 1843, No: 363] 1122 1084 Yes: 914, No: 208 Yes: 929, No: 155 ✗

CKD 1659 59 2 [0: 135, 1: 1524] 855 804 0: 60, 1: 795 0: 75, 1: 729 ✗

HFD 918 19 2 [0: 410, 1: 508] 725 193 0: 267, 1: 458 0: 143, 1: 50 ✗

HRD 4240 12 2 [0: 2923, 1: 1317] 1820 2420 0: 1249, 1: 571 0: 1674, 1: 746 ✗

LCD 309 28 2 [Yes: 270, No: 39 ] 162 147 Yes: 145, No: 17 Yes: 125, No: 22 ✗

ASD 1054 33 2 [Yes: 728, No: 326] 735 319 Yes: 534, No: 201 Yes: 194, No: 125 ✗

INS and F represent the number of instances and features, respectively. The last column B stands for if the corresponding dataset is imbalanced (shown with ✗).

DATASETS

In this study, we use nine different datasets to inspect the effect of
the employed methods under different circumstances. The datasets
are briefly described as follows:

• Alzheimer’s Disease Dataset (ALZ): This dataset (El Kharoua
2024a) includes health information of 2,149 patients. It has
been made publicly available in a tabular form and includes
demographic details, lifestyle factors, medical history, clinical
measurements, cognitive and functional assessments, symp-
toms, and a diagnosis of Alzheimer’s disease.

• Anemia Dataset (AND): This dataset (Ranjan 2022) includes
five features, which are gender, hemoglobin, mean corpus-
cular hemoglobin concentration (MCHC), mean corpuscular
volume (MCV), and mean corpuscular hemoglobin (MCH). It
is created for the purpose of predicting whether a patient is
likely to suffer from anemia.

• Asthma Disease Dataset (ADD): This dataset (El Kharoua
2024b) contains health information for 2,392 patients diag-
nosed with asthma disease. It is composed of several features,
including demographic details, lifestyle factors, environmen-
tal and allergy factors, medical history, clinical measurements,
symptoms, and a diagnosis indicator.

• Celiac Disease Dataset (CDD): It is created by Wageningen
University & Research Biotechnology Department to diagnos-
tically predict whether or not a patient has Celiac disease. This
dataset (Win 2022) is comprised of several features derived
from certain diagnostic measurements.

• Chronic Kidney Disease Dataset (CKD): This
dataset (El Kharoua 2024c) contains health information
for 1,659 patients diagnosed with chronic kidney disease. It
includes features like demographic details, lifestyle factors,
medical history, clinical measurements, and medication usage,
as well as symptoms, quality of life scores, environmental
exposures, and health behaviors.

• Heart Failure Dataset (HFD): This dataset (Soriano 2021)

contains 11 features that can be used to predict a possible
heart failure, which is a common event caused by cardio-
vascular diseases. It includes several features like age, sex,
serum cholesterol, resting blood pressure, maximum heart
rate achieved, and so on.

• Hypertension Risk Dataset (HRD): The dataset (Khan 2023)
comprised of both demographic and health-related attributes
and was created for predicting the risk of hypertension. It has
a total of 13 features, which are gender, age, smoking habits
(current smoker and cigarettes per day), medication for high
blood pressure (BPMeds), presence of diabetes, total choles-
terol levels, systolic and diastolic blood pressure, body mass
index (BMI), heart rate, glucose levels, and the corresponding
hypertension risk label.

• Lung Cancer Dataset (LCD): This dataset (Bhat 2021) is created
to predict cancer risk status based on 16 different attributes. It
has a total of 284 instances (or records) and includes features
like age, sex, smoking status, existence of chest pain, and so
on.

• Autism Screening Data for Toddlers (ASD): This
dataset (Fayez 2018) is created with the help of a mo-
bile application called ASDTests to screen autism in toddlers.
It has 1,054 records, each of which has values of 17 features.

Note that a quantitative description of the datasets briefly de-
scribed above is given in Table 1. For more detailed information,
the reader is advised to refer to the respective cited references.

METHODS

In this study, we implement four different ML pipelines, which are
depicted in Figure 2, showing that all pipelines commonly involve
preprocessing, classification, and performance measurement steps.
The only difference is arising from the way of cross-validation
employment. As seen in Figure 2, the baseline pipeline simply
employs cross-validation on overall instances, while the gender-
aware pipeline divides the instances into two disjoint subsets that
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Figure 2 Flowchart of our evaluation that relies on four different pipelines.

include only female and male instances. It then employs cross-
validation on these subsets and finally reports both gender-wise
and overall performances. On the other hand, the two variants of
gender-aware pipeline simply rely on the idea of the crossing-over
technique, in which any ML model trained on male instances is
then used to predict the labels of female instances, and vice versa.
There is also a difference between the crossing-over pipelines,
considering the size of the instances used to train the model at
hand. The first variant (i.e., V1) simultaneously applies cross-
validation on both male and female instances and uses only single
training and test sets at each fold. Contrarily, the second variant
(i.e., V2) uses the complete sets of male and female instances to
make predictions on their subsets again, following the crossing-
over fashion. The following subheadings provide the details of
methods used to implement the aforementioned pipelines.

Preprocessing

This is the first step employed on our datasets. It involves the
following two data cleaning tasks (Freire et al. 2025):

• Imputing: Some datasets used in this study include missing
values. Hence, missing values are filled using a linear interpo-
lation method implemented in the Pandas (McKinney 2011)
library.

• Scaling: The feature values in each dataset are scaled and
translated into a range between 0 and 1. This task is achieved
by using MinMaxScaler implemented in sklearn (Pedregosa
et al. 2011) package.

Classification

Upon completion of the preprocessing, the datasets are used to feed
ML classifiers for binary classification. We used several classifiers,
which are briefly described as follows:

• SVM: This classifier tries to find a linear or non-linear hyper-
plane that separates classes from each other. Maximizing the
margin between the hyperplane and instances on either side
corresponds to a lower generalization error (Yang et al. 2025;
Kotsiantis et al. 2007).

• RF: This classifier is also a type of ensemble learning and
trains multiple number of decision trees on different subsets
of the data at hand. The final decision for any test instance is
then given by using majority voting among the trees (Breiman
2001).

• AB: Follows an ensemble fashion in which a meta classifier
(often selected to be a tree-based learner) is trained on the
data at first. The copies of this classifier are trained on the
same data set again, with a difference that they mainly focus
on the instances the meta classifier has difficulty in classify-
ing (Zhu et al. 2009). The final decision to classify an instance
is given by a weighted voting such that the more a classifier
provides good performance, the more it has influence on the
final decision.

• Gradient Boosting Classifier (GBC): This learner relies on mul-
tiple regression trees as an additive model that follows a stage-
wise fashion. It aims to minimize the loss (i.e., the difference
between the actual and predicted classes of the training data)
to make a better classification (Friedman 2001).

• Logistic Regression (LR): It is a statistical algorithm for trans-
forming a linear regression by a sigmoid function and decid-
ing classification by calculating the distance to the decision
boundaries it previously built between classes (Yang et al.
2025).

• Sthocasting Gradient Descent Classifier (SGD): This is actu-
ally a way of training any ML model, like SVM and LR, by
optimizing several loss functions. In other words, it tries to
minimize the loss by iteratively updating the parameters of
the model at hand (Zhang 2004).

Please note that we employ the learners briefly described above
by using their implementations in the scikit-learn Python pack-
age (Pedregosa et al. 2011). The kernel of SVM is selected to be
Radial Basis Function (RBF), while the solver and the number of
iterations (i.e., max_iteer) of LR are set to be liblinear and 1000,
respectively. The remaining ones and all settings of parameters
for other classifiers are left untouched. It is important to note that
we intentionally left almost all of the parameters at their default
values since this strategy is more appropriate than an aggressive
hyperparameter optimization when fairness is the key concern. Us-
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ing default parameter settings provides a strong and reproducible
baseline for comparison. Accordingly, any practitioner ensures
that all models and all groups are treated consistently. Otherwise,
it may become unclear if observed unfairness is due to data, model
design, or tuning choices.

Performance Measurement and Evaluation
The globally accepted way of evaluating the performance of any
ML classifier is to use precision (P), recall (R), accuracy, and /or
F1-score metrics, which are actually derived from the confusion
matrix. For a binary classification task, this matrix stores four
values, namely true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). In this study, we report our results
using True Positive Rate (TPR), True Negative Rate (TNR), and
F1-score that is calculated as follows (Chicco and Jurman 2020;
Freire et al. 2025):

F1 =
2 × P × R

P + R
(1)

where P = TP
TP+FP and R = TP

TP+FN . Note that R, also known as
sensitivity, is a synonym of TPR and stands for the proportion of
all actual positives that are classified correctly as positives. The
TNR = TN

TN+FP is, on the other hand, also known as specificity,
which measures the proportion of all actual negatives that are
classified correctly as negative (Monaghan et al. 2021). We would
also like to note that the performance measurement results are
reported by using a stratified cross-validation (Kohavi 1995; Coban
2022) strategy, which is configured to run with five folds in this
study. This means that the dataset at hand is divided into train and
test subsets five times, and the performance of the learner at hand
is measured on five disjoint subsets (i.e., training and test sets). An
average value of the five folds is reported so as to ensure that our
results are as reliable as possible.

We would like to strongly emphasize that we intentionally rely
on well-known performance metrics and report the results only
with weighted F1 score (robust across imbalanced datasets), TPR,
and TNR values to save space and reduce complexity. Even though
there exist several fairness metrics (e.g., sAUROC (Meissen et al.
2024), ROC (Lozano 2025), and PPGR (Raza et al. 2024)), they rely
on different aspects and are not accepted as benchmark methods.
Hence, we used classical performance metrics that do not harm the
reliability of our evaluation and ease the burden of using additional
metrics for possible comparative analysis in the future.

RESULTS AND DISCUSSION

In this section, we provide our experimental results and their
discussion. Using the methods introduced in Section Methods,
we performed classification experiments on our datasets (see Sec-
tion Datasets). Please note that we employed all classifiers on
all datasets by creating four pipelines, namely baseline, gender-
aware, cross-over-v1, and cross-over-v2. This yielded too many
results, making it challenging to report all in this study. Hence,
we only report the results for the best cases of pipelines for each
dataset. We report the results not only with F1-score but also with
TPR and TNR to provide a deeper insight into the performance
effect of pipelines on different instance groups for each dataset.
For example, we experimented with the aforementioned pipelines
with all classifiers on the ALZ dataset, but only reported the best
cases in which GBC is the best model to reduce complexity and
space. The results are provided in Table 2, where the best overall F1
scores for each scenario are in bold typeset. As seen in Table 2, the
best pipeline on the ALZ dataset is baseline with the best f1-score

of 0.947. On the other hand, the crossing-over approach (with
both v1 and v2) outperforms the gender-aware approach, and the
cross-over-v2 pipeline achieves the second-best f1-score of 0.942.
Inspecting the performance metric values across instance groups
also reveals that the performance of pipelines is higher for females
than for males in all cases.

On the AND dataset, baseline and gender-aware pipelines show
the same behavior with the same best f1-score of 1.0, and they
outperform the crossing-over pipelines. Interestingly, crossing-
over pipelines show different behaviours. Using v1, scores on
males are higher than the results obtained on females. The pipeline
v2, on the other hand, reverses this situation and provides a better
overall f1-score of 0.764. Baseline and gender-aware pipelines
provide perfect classification of both male and female instances. On
the ADD dataset, the behaviour of the pipelines is the same, and
they provide the same overall f1-score of 0.922. Their performances
are also the same for male and female instance groups. Unlike the
ALZ dataset, the performance values are higher than the that ones
for the females on this dataset, which shows that performance
disparity can also be observed in favor of males. On the CDD
dataset, the behaviours of the baseline and gender-aware pipelines
are the same, with an f1-score of 0.996. Similarly, two versions
of the crossing-over pipelines show the same behavior with an
f1-score of 0.994. Performance values obtained on female instances
are higher than the results obtained on males in all cases. However,
baseline and gender-aware pipelines outperform the other two
pipelines and provide perfect classification of female instances.
On the CKD dataset, the best f1-score of 0.911 is provided by
the baseline pipeline. On the other hand, the crossing-over-v2
pipeline provides the second-best f1-score of 0.908 and provides a
slightly different improvement on male instances. However, the
f1-scores are higher again on female instances compared to male
instances in all cases. On the HFD dataset, the best f1-score of
0.867 is provided by the gender-aware pipeline. The crossing-over
pipelines fall behind the baseline and gender-aware pipelines, but
v2 outperforms v1.

A closer look at the results of crossing-over pipelines shows that
these pipelines classify female instances incorrectly. Considering
the overall f1-score, it seems that the results are higher on male
instances compared to the results obtained on females. The gender-
aware pipeline mitigates performance disparity in favour of male
instances and also improves the overall f1-score from the baseline
pipeline’s f1-score of 0.864 to 0.867. On the HRD dataset, the
gender-aware pipeline again mitigates performance disparity in
favour of female instances, also by improving the overall best f1-
score of 0.900. The crossing-over pipelines fall behind the baseline
pipeline and do not help to mitigate the performance disparity.
Nevertheless, the behaviors of crossing-over pipelines are different
even though their overall f1-scores are the same (i.e., 0.892). On the
LCD dataset, the best f1-score of 0.915 is provided by the gender-
aware pipeline. On the other hand, crossing-over pipelines fall
behind the baseline pipeline. There is a performance disparity in
favour of male instances in all cases. Interestingly, the crossing-
over v2 pipeline provides a slight improvement on the TNR value
on male instances, even though it provides a lower overall f1-
score (i.e., 0.906) than the respective baseline. Finally, on the ASD
dataset, the behaviours of all pipelines are the same with a perfect
classification.

These results make it clear that the gender-aware approach im-
proves the overall f1-score effectively in only three instances. The
second version (v2) of the crossing-over approach performs as well
or better than the first version (v1). However, both crossing-over
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■ Table 2 Weighted average F1, TPR, and TNR values considering four pipelines on nine datasets across different instance groups

Baseline Gender-Aware Cross-Over (V1) Cross-Over (V2)
Data IG

BC F1 TPR TNR BC F1 TPR TNR BC F1 TPR TNR BC F1 TPR TNR

M 0.938 0.938 0.939 0.921 0.921 0.921 0.927 0.927 0.928 0.937 0.937 0.938

F 0.956 0.956 0.957 0.940 0.940 0.940 0.940 0.940 0.940 0.947 0.947 0.948ALZ

O

G
B

C

0.947 0.947 0.948

G
B

C

0.931 0.931 0.931

G
B

C

0.933 0.933 0.934

G
B

C

0.942 0.942 0.943

M 1.000 1.000 1.000 1.000 1.000 1.000 0.783 0.775 0.848 0.759 0.750 0.840

F 1.000 1.000 1.000 1.000 1.000 1.000 0.692 0.708 0.861 0.771 0.777 0.866AND

O

G
B

C

1.000 1.000 1.000
G

B
C

1.000 1.000 1.000

S
G

D

0.738 0.740 0.747

S
G

D

0.764 0.764 0.764

M 0.923 0.948 1.000 0.923 0.948 1.000 0.923 0.948 1.000 0.923 0.948 1.000

F 0.921 0.947 1.000 0.921 0.947 1.000 0.921 0.947 1.000 0.921 0.947 1.000ADD

O

LR

0.922 0.948 1.000

LR

0.922 0.948 1.000

LR

0.922 0.948 1.000

LR

0.922 0.948 1.000

M 0.992 0.992 0.993 0.992 0.992 0.993 0.992 0.992 0.993 0.992 0.992 0.993

F 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.995 0.995 0.995 0.995 0.995CDD

O

G
B

C

0.996 0.996 0.996

A
B

0.996 0.996 0.996
G

B
C

0.994 0.994 0.994

G
B

C

0.994 0.994 0.994

M 0.899 0.919 0.967 0.897 0.907 0.932 0.892 0.911 0.956 0.901 0.920 0.967

F 0.922 0.934 0.963 0.915 0.926 0.951 0.906 0.915 0.935 0.915 0.930 0.967CKD

O

G
B

C

0.911 0.927 0.965

A
B

0.906 0.917 0.942

A
B

0.899 0.913 0.945

G
B

C

0.908 0.925 0.967

M 0.851 0.849 0.846 0.868 0.870 0.876 0.808 0.797 0.808 0.827 0.818 0.828

F 0.867 0.868 0.872 0.866 0.867 0.870 0.779 0.775 0.804 0.783 0.779 0.806HFD

O

R
F

0.864 0.864 0.867

LR

0.867 0.868 0.869

LR

0.780 0.779 0.792

LR

0.787 0.787 0.799

M 0.910 0.909 0.908 0.910 0.909 0.909 0.908 0.906 0.906 0.910 0.908 0.909

F 0.881 0.881 0.880 0.886 0.886 0.885 0.870 0.871 0.877 0.866 0.868 0.873HRD

O

R
F

0.898 0.897 0.896

G
B

C

0.900 0.899 0.899

R
F

0.892 0.891 0.891

R
F

0.892 0.891 0.890

M 0.924 0.925 0.926 0.916 0.918 0.922 0.904 0.911 0.932 0.922 0.925 0.931

F 0.887 0.901 0.934 0.913 0.919 0.935 0.892 0.907 0.945 0.887 0.901 0.934LCD

O

LR

0.907 0.912 0.925

LR

0.915 0.919 0.927

LR

0.898 0.909 0.937

LR

0.906 0.912 0.928

M 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000ASD

O

G
B

C

1.000 1.000 1.000

G
B

C

1.000 1.000 1.000

G
B

C

1.000 1.000 1.000

G
B

C

1.000 1.000 1.000

IG and BC stand for instance group and the best classifiers, respectively. Values M, F, and O under column IG represent males, females, and overall (males and
females), respectively.

variants often underperform the gender-aware approach in terms
of overall f1-score. Despite this, the crossing-over approach shows
advantages in specific cases. For example, both crossing-over vari-
ants outperform the gender-aware approach on the ALZ dataset.
On the CDD dataset, they match the gender-aware approach’s
performance on male instances. On the LCD dataset, both variants
provide better TNR values across all instances compared to the
baseline and gender-aware pipelines. These findings emphasize
that pipeline performance is dataset-dependent. The gender-aware

approach can mitigate performance disparities, while the crossing-
over approach, particularly v2, can enhance TNR values. Perfor-
mance disparities favoring males are seen in three datasets (i.e.,
ADD, HRD, and LCD), while disparities favoring females are seen
in four datasets (i.e., ALZ, CDD, CKD, and HFD). No significant
performance disparity between genders is observed only in two
datasets (i.e., AND and ASD).

A closer look at the confusion matrices makes it clearer to easily
observe the changes in values of both correctly and incorrectly
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(a) Dataset: HFD | Pipeline: Baseline (b) Dataset: HFD | Pipeline: Gender-Aware

(c) Dataset: HRD | Pipeline: Baseline (d) Dataset: HRD | Pipeline: Gender-Aware

(e) Dataset: LCD | Pipeline: Baseline (f) Dataset: LCD | Pipeline: Gender-Aware

Figure 3 Confusion matrices of different instance groups (i.e., male, female, and overall) for three cases in which the gender-aware pipeline outperforms the baseline pipeline
on HFD, HRD, and LCD datasets (see Table 2).

classified instances. As seen from the confusion matrices depicted
in Figure 3, the gender-aware pipeline only improves results in
favour of both male and female instances on the HRD dataset.
It improves the overall f1-score on HFD and LCD datasets, but
causes a slightly different decrease in male and female instances,
respectively. Table 3 provides the summarized view of Figure 3
with respect to the total number of correctly classified instances
(CCIs) and incorrectly classified instances (ICIs). As seen in Table 3,
the total number of ICIs on female, male, and entire instances is
reduced by 4 (i.e., from 29 to 25), increased by 1 (i.e., from 95 to
96), and reduced by 3 (i.e., from 124 to 121), respectively, on the
HFD dataset by using the gender-aware pipeline. The number of
CCIs increased by 4 (i.e., from 164 to 168) on female instances and
3 (i.e., from 194 to 797) on overall instances, while it decreased by
1 (i.e., from 630 to 629) on male instances. On the HRD dataset,
the number of CCIs is increased by 1 (i.e., from 2201 to 2202), 9
(i.e., from 1604 to 1613), and 10 (i.e., from 3805 to 3815) for female,
male, and entire instances, respectively. This paved the way to
decrease the number of ICIs by 1 (i.e., from 219 to 218), 9 (i.e., from
216 to 207), and 10 (i.e., from 435 to 425) on the same instance
groups, respectively. Finally, on the LCD dataset, the number of
CCIs is increased on male instances by 3 (i.e., from 146 to 149)
while decreased by 1 (i.e., from 136 to 135) on female instances.
This situation resulted in a total of 2 (i.e., from 282 to 284) increase
in the number of CCIs on the entire dataset.

As such, the findings reveal that the dataset-specific perfor-
mance variations likely stem from differences in data characteris-
tics, feature distributions, and the presence of biases. The gender-
aware approach’s success in mitigating disparities suggests that
it effectively addresses gender-related biases present in the data
or model. The crossing-over approach’s occasional advantages
indicate that it might be capturing different patterns or relation-

ships within the data, potentially related to how gender interacts
with other features. In other words, the feature interactions are
very close across male and female instances, and this explains why
any model trained on males improves TNR values on females. On
the other hand, the varying performance of crossing-over vari-
ants could be due to differences in feature interactions in different
datasets. Complications arise from the potential for overfitting to
specific datasets and the difficulty in generalizing results to new
data.

All of the aforementioned implications show that the role of
gender-aware approaches is limited in mitigating the performance
disparity. Unfortunately, using similar amounts of data from dif-
ferent groups does not ensure equal model performance across
groups, and unfairness exists even with balanced data. This obser-
vation shows that equal representation of subgroups is a necessary
but not sufficient condition for fairness. The performance dis-
parity may still arise from physiological differences, feature-label
mismatches, model biases, and structural inequities in healthcare
data. As such, ML-based disease detection must address how data
is modeled and evaluated, not just how much data is collected.
Sample size (i.e., for both the overall dataset and subgroups) is
another case that may directly affect the performance since the gen-
eralization ability of ML models often increases on large datasets.
However, the results of both this study and existing research efforts
reveal that the performance disparity persists on large datasets
as well. This case is also showing that mitigating performance
disparity in disease detection cannot be solved solely by using
data-oriented approaches but also requires developing fairness-
aware modeling strategies.

This analysis does not delve into the specific features or biases
driving these results, which limits a deeper understanding. Hence,
further investigation is necessary to fully understand the implica-
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■ Table 3 Total number of CCIs and ICIs across different instance groups of three datasets on which the gender-aware pipeline outperforms
the baseline pipeline

Dataset | Instance Groups (Male →, Female → F, and Overall → O)

HFD (see Figures 3a, 3b) HRD (see Figures 3c, 3d) LCD (see Figures 3e and 3f)Pipeline # of ...

F M O F M O F M O

Baseline
CCIs 164 630 794 2201 1604 3805 136 146 282

ICIs 29 95 124 219 216 435 11 16 27

Gender-Aware
CCIs 168 629 797 2202 1613 3815 135 149 284

ICIs 25 96 121 218 207 425 12 13 25
CCI and ICI stand for the number of correctly and incorrectly classified instances, respectively. The values are extracted from the confusion matrices of Figure 3.

tions of these findings and develop more effective and equitable
ML systems. A more detailed feature analysis or an efficient fea-
ture selector may be used to mitigate the performance disparity
as much as possible. Note that this is not a trivial task, and a
large majority of existing research efforts rely on the gender-aware
approach whose success is shown to be limited in this study. This
study, therefore, strongly suggests understanding the underly-
ing causes of performance disparities, especially concerning the
feature correlations across instance groups, and using robust ML
models in mitigating performance disparities.

CONCLUSION

In this study, we studied the problem of automatic disease detec-
tion using classical ML techniques. We aim to inspect the effect of
gender-aware and crossing-over approaches in the mitigation of
performance disparity, mostly observed between male and female
instances in disease detection. For this purpose, we intentionally
used nine different disease datasets to provide a more general view.
One interesting outcome of this study is that the performance dis-
parity can also be observed in favour of male instances in disease
detection. On the other hand, the gender-aware approach helps to
efficiently mitigate the performance disparity only in three cases,
and therefore, its success is limited. Crossing-over approach, on
the other hand able to capture different patterns and relationships
within data, again with a limited capability. Hence, we conclude
that there is still an open room for mitigating the performance
disparity, which is not a trivial task in automatic disease detec-
tion. Further investigation is also necessary to fully understand
the implications of these findings and develop more effective and
equitable ML systems.

As future work, we are planning to conduct further research on
the mitigation of the performance disparity. For this purpose, we
will similarly employ several well-known deep learners to inspect
if the performance disparity still exists when traditional learners
are replaced with deep learners. Providing an intense effort to run
deep learners on 1D patient records will be another future direction
of this study. Another direction will be making an effort to find the
fairest ML models in general by evaluating several well-known
fairness metrics.
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ABSTRACT In recent years, there has been a growing interest in the artificial intelligence (AI)-based analysis of
electroencephalography (EEG) signals. This surge has made the potential of EEG more evident, both in monitoring
cognitive states and in the early diagnosis of neurological disorders. This review systematically evaluates the academic
literature from the past decade focusing on the processing of EEG signals through machine learning (ML), deep learning
(DL), and other alternative techniques. The study compares personalized ML models (e.g., SVM, Random Forest) with
wavelet decomposition–based optimized approaches and further analyzes the performance of Hilbert transform–based
Convolutional Neural Network (CNN) architectures, label-free autoencoder frameworks, and multi-architecture DL systems
in contemporary brain–computer interface (BCI) applications. In addition, incremental learning models based on multimodal
data fusion are reviewed in the context of diagnosing disorders such as Alzheimer’s disease and epilepsy. The findings
indicate that EEG–AI integration holds substantial potential for both research and clinical applications.
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INTRODUCTION

Electroencephalography (EEG) is a non-invasive neuroimaging
technique that measures electrical fluctuations on the scalp re-
sulting from action potentials generated during neuronal activity
(Edelman et al. 2025; Kimmatkar and Babu 2021). The signals ob-
tained through metal electrodes allow for high temporal resolution
recording of electrical patterns in the brain. Owing to this fea-
ture, EEG stands out as a particularly valuable tool for real-time
monitoring of mental and emotional processes.

The history of electroencephalography (EEG) dates back to 1875,
when Richard Caton made the first observations on animals; fol-
lowing Hans Berger’s successful recording of human EEG signals
in 1924, it gained widespread clinical and scientific application
(Wan et al. 2019). Today, EEG is effectively used in a wide range of
areas, from epilepsy diagnosis to the analysis of sleep disorders,
from detecting attention deficit, depression, and mood disorders
to rehabilitation-oriented systems (Liu et al. 2025). This broad spec-
trum of applications has also facilitated the development of EEG
devices with various electrode types, connectivity technologies,
and user-friendly designs (Soufineyestani et al. 2020). In partic-
ular, brain-computer interfaces (BCIs) have attracted significant
attention due to their potential to interpret EEG data and translate
individuals’ mental states into external system commands (Wan
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et al. 2019; Sozer and Fidan 2017; Sözer and Fidan 2019). Over the
past five decades, research efforts have enabled brain–computer
interface (BCI) systems to evolve from experimental foundations
into applicable technologies across various domains, including
clinical practice, rehabilitation, and human–machine interaction.
This transformation has encompassed not only technical advance-
ments but also sparked multidimensional discussions surrounding
ethics, user experience, and societal acceptance (Kawala-Sterniuk
et al. 2021). For example, motor imagery-based prosthetic control
can be provided for paralyzed individuals, while alternative com-
munication mechanisms can be developed for those with limited
interaction abilities (Orban et al. 2022).

The integration of electroencephalography (EEG) into artifi-
cial intelligence (AI)-based systems, particularly for the diagnosis
and monitoring of neurodegenerative diseases, represents a new
paradigm in clinical decision-making (Mouazen et al. 2025). This
integration is supported by digital tools that enable the prepro-
cessing and enhancement of EEG signals for analytical purposes.
Notably, open-source MATLAB-based platforms such as EEGLAB
and Fieldtrip facilitate artifact removal, time–frequency analysis,
and feature extraction through standardized modules. Extensions
integrated into these platforms, such as MARA, AAR, ADJUST,
clean rawdata, and icablinkmetrics, allow for the automatic detec-
tion and removal of artifacts caused by eye blinks, muscle activity,
and environmental noise. This provides a robust preprocessing
infrastructure that enhances the reliability and accuracy of down-
stream analyzes (Gu et al. 2021).

Computers and Electronics in Medicine 11

ADBa
Computers and Electronics in Medicine

 Cutting-Edge Scientific Solutions

e-ISSN: 3023-8609
RESEARCH ARTICLE

Vol.3 / No.1 / 2026 / pp.11-26
https:/ /doi .org/10.69882/adba.cem.2026012

https://orcid.org/0009-0005-1340-4113
https://orcid.org/0000-0001-5252-6301


With the advancement of AI algorithms, EEG data analysis has
undergone a significant transformation. Machine learning (ML)
and deep learning (DL) approaches have demonstrated high accu-
racy in classifying emotional states, cognitive levels, and mental
tasks by learning spatiotemporal patterns from EEG signals (Khan
et al. 2024; Nandakumar et al. 2025). In this context, AI-based
analytical approaches involving multi-layered processes, such as
feature extraction, classification, and even compression of EEG sig-
nals, are becoming increasingly comprehensive (Khlief and Idrees
2023). These developments not only enhance clinical diagnostic
workflows but also expand the role of EEG in multidisciplinary
applications, including human–computer interaction (HCI), driver
fatigue detection, and emotion-aware user interfaces.

Figure 1 The rule of the EEG signal as the main element in the
BCI-EEG rehabilitation system (Orban et al. 2022).

In this study, the scientific literature focusing on the analysis
of EEG signals through AI-based methods is examined in depth.
Within this scope, prominent machine learning and deep learning
approaches are systematically categorized and compared, both in
the context of individualized models and collective frameworks.

METHODOLOGY OF LITERATURE REVIEW

This review adopts a structured methodology to explore the re-
cent advances in artificial intelligence applications on EEG signals.
Academic articles published between 2018 and 2025 were systemat-
ically retrieved from reputable databases including PubMed, IEEE
Xplore, Scopus, and SpringerLink. The search strategy involved
Boolean keyword combinations such as "EEG + Deep Learning",
"Brain-Computer Interface + AI", and "EEG + Classification"

Studies were included in the article based on the following
criteria:

• Use of real EEG data (clinical or experiment in in most studies,
traditional ML methods such as Support Vector Machines
(SVM), k-nearest neighbors (kNN), and decision trees have
been used for classification purposes due to their simplicity
and interpretabilityental)

• Implementation of AI techniques (ML or DL)
• Focus on emotion recognition, mental task classification, BCI

systems, or neurological diagnosis
Studies were not included in the article based on the following
criteria:

• Simulation-only data

• Hardware-only reviews without algorithmic analysis
• Articles lacking peer-review

After deduplication and abstract screening, 63 articles were
included in this review.

RECENT ADVANCES IN AI-DRIVEN EEG APPLICATIONS

Electroencephalography (EEG) signals are currently evaluated in
integration with disciplines such as artificial intelligence, bioinfor-
matics, psychology (Elnaggar et al. 2025), and neuroscience, and
are utilized across a wide variety of application domains. In this
context, existing studies span a broad spectrum, ranging from the
characterization of meditation to the diagnosis of neurological dis-
orders, and from mental command recognition to human–robot
interaction.

Meditation, Mental State, and Mindfulness Classifications
In a study aiming to distinguish techniques such as Vipassana,
Isha Shoonya, and Himalayan Yoga, a one-dimensional convolu-
tional neural network (1D-CNN) combined with chi-square–based
feature selection achieved an accuracy rate of 60% (Jain et al. 2025).
The differentiation of meditation states through EEG signals con-
tributes to the objective assessment of individuals’ levels of mental
awareness.

Studies aimed at classifying cognitive states such as mental
relaxation and concentration constitute the fundamental build-
ing blocks of BCI systems (Aggarwal and Chugh 2022; You 2021).
In addition, in studies focusing on the classification of imagined
words, classification was performed using CNN after Hilbert trans-
formation; however, model complexity has been a limiting factor
in real-time applications (Agarwal and Kumar 2024). In the field of
mental task recognition, autoencoder architectures operating with
unlabeled data have been proposed, where “abnormal” states are
identified based on reconstruction errors (Dairi et al. 2022).

Classification of Emotional States
The classification of emotional states using EEG signals holds a
significant place in the literature (Mendivil Sauceda et al. 2024).
The biologically informed Spiking Neural Network-based BISNN
model has improved emotional classification performance and
enhanced sensitivity through the biological meaningfulness of
synaptic parameters (Sun et al. 2025).

Figure 2 Overview of the training process of the proposed
BISNN method for EEG-based emotion recognition. Pre-
processed EEG signals are divided into T-slices to reduce tem-
poral feature complexity. Pre-trained weights from a knowledge-
based ANN model are transferred to a homogeneous BISNN
model composed of biologically inspired neurons (Sun et al.
2025).
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Similarly, models developed for the classification of emotions
in the context of human-robot interaction (HRI) have achieved
high accuracy through the use of global optimization algorithms,
demonstrating that emotional intelligence can be integrated into
HRI systems (Staffa et al. 2023)

Studies on the classification of anxiety levels have been con-
ducted using algorithms such as SVM, kNN, and Decision Tree;
the use of closed-loop neurofeedback systems for therapeutic pur-
poses has also been evaluated (Chen et al., 2021). Additionally,
a personalized machine learning approach was developed using
the DEAP dataset, taking into account individual emotional differ-
ences (Barrowclough et al. 2025)

Additionally, a comprehensive study conducted by Reza et al.
proposed a machine learning framework to classify four emotional
states, positive, neutral, depressed, and anxiety, using EEG signals.
The study utilized a dataset of 300 patients and addressed class
imbalance through advanced data augmentation techniques in-
cluding GAN, SMOTE, and ADASYN. Discrete Wavelet Transform
and Shannon entropy were applied for feature extraction, and nine
different ML/DL algorithms (MLP, CNN, RF, SVM, etc.) were
compared. The highest accuracy of 98.8% was achieved with the
MLP model (Sobhani et al. 2025).

Recent review studies have also highlighted the progress and
limitations of deep learning techniques in EEG-based emotion
recognition. In particular, Abgeena and Garg systematically an-
alyzed more than one hundred studies published between 2018
and 2024, emphasizing that models such as BiLSTM, CNN, and
hybrid CNN–LSTM architectures achieved the highest accuracy
rates across datasets like SEED and DEAP (Abgeena and Garg
2025). Similarly, Li and Chen (2025) proposed a cross-modal align-
ment and fusion framework that combines EEG and visual features
through a hybrid attention mechanism, achieving up to 96.49%
accuracy on the SEED dataset.

The analysis of mental stress levels using EEG in virtual reality
(VR) environments has also emerged as a prominent topic in recent
years. In one study, stress levels were classified using EEG signals
recorded in a VR environment, and the performances of algorithms
such as SVM and Random Forest were compared (Albayrak-Kutlay
and Bengisu 2025; Kamińska et al. 2021).

Diagnosis and Follow-up of Neurological Diseases

In the differentiation of neurodegenerative diseases such as
Alzheimer’s Disease (AD) and Frontotemporal Dementia (FTD),
the Coherence-CNN method achieved three-class classification
with over 94% accuracy by utilizing functional connectivity mea-
sures (Jiang et al. 2025). In another recent study, a wavelet-ML
framework incorporating OTFL-THFB decomposition was pro-
posed for Alzheimer’s detection using EEG signals. With features
derived from Hjorth Parameters and Higuchi’s Fractal Dimension,
the model achieved up to 98.91% accuracy, outperforming existing
state-of-the-art classifiers (Puri et al. 2025).

Wang et al. (2025b) extracted effective connectivity information
using the GRU-GC algorithm for pre-surgical focus localization
in patients with refractory epilepsy, enabling the classification
of epileptic foci through directional connectivity graphs. Pacia
(2023) demonstrated that sub-scalp implantable telemetric EEG
(SITE) systems enable the identification of diagnostic biomarkers
and objective monitoring of treatment responses in neurological
and behavioral disorders beyond epilepsy through long-term EEG
recording. Tautan et al. (2025) systematically reviewed the use of
unsupervised and self-supervised machine learning methods on
EEG data for epilepsy, highlighting methodological trends and

clinical application gaps in the field.
Shafiezadeh et al. (2024) evaluated patient-independent AI mod-

els for EEG-based epileptic seizure prediction and emphasized the
lack of generalizability and methodological validation in most ex-
isting studies. Gurmessa and Jimma (2025) conducted a systematic
review evaluating interpretable artificial intelligence (XAI) meth-
ods for EEG-based epileptic seizure diagnosis, emphasizing the bal-
ance between model performance and clinical interpretability. The
study provided a comprehensive methodological framework for
developing reliable, ethical, and explainable AI systems in epilepsy
diagnosis. The study developed by Leela and Helenprabha (2025)
stands out with the proposed TMDFILE model, a two-level mul-
timodal data fusion and incremental learning approach aimed at
the early diagnosis of Alzheimer’s disease. By integrating differ-
ent data types such as EEG, MRI/PET, speech, and written text,
this approach dynamically optimizes inter-modality contribution
levels through the use of a gating mechanism.

Figure 3 Overview of workflow process (Leela and Helenprabha
2025).

Thanks to its incremental learning structure, the model can
adapt to newly incoming data and achieved 94.5% accuracy when
tested on five different datasets (ADNI, OASIS, EEG, AUSD,
BRATS). Compared to traditional methods such as CNN, SVM,
and RF, TMDFILE demonstrated superior performance in terms of
both accuracy and generalizability (Leela and Helenprabha 2025;
Shang et al. 2024; Uyanik et al. 2025).

Brain-Computer Interfaces (BCI)
BCI systems are effectively utilized, particularly in the rehabilita-
tion of individuals with limited motor abilities Fig. 4 A review
study on these systems evaluated the performance of potentials
such as P300 and SSVEP in terms of signal processing (Sözer and
Fidan 2018), pattern recognition and control techniques (Orban
et al. 2022).

In another study, EEG-based BCI applications for elderly and
disabled individuals were examined, and the application methods
of machine learning algorithms such as ANN, SVM, and LDA to
EEG data were elaborated (Wan et al. 2019). Endogenous EEG-
based BCI systems developed to enable online communication
for individuals with complete loss of motor functions rely on
paradigms that operate without external stimuli (Turi et al. 2021).
In the study conducted by Han et al., a classification approach
based on Riemannian geometry achieved an accuracy of 87.5%
(Han et al. 2019; Ma et al. 2025; Remsik et al. 2022).

Computers and Electronics in Medicine 13



Figure 4 (a) Shows the prototype model BCI and its experimental conditions, (b) is the control scheme of the soft robot hand (Orban et al.
2022).

Furthermore, a comprehensive review on EEG-based BCI sys-
tems systematically presented the strengths and weaknesses of
deep learning architectures such as CNN, RNN, LSTM, GAN, and
Transformer models (Alshehri et al. 2025; Hossain et al. 2023). An-
other noteworthy study on the classification of motor movements
from EEG signals was conducted by Al-Dabag and Ozkurt (2019).
In this study, classification was performed using statistical fea-
tures obtained from EEG signals through artifact removal, wavelet-
based frequency band decomposition, and cross-correlation with
effective channels (Al-dabag and Ozkurt 2019). In experiments
conducted on both the BCI Competition III Dataset IVa and data
recorded using the Emotiv device, classification accuracies exceed-
ing 98% were achieved with ANN and SVM algorithms (Al-dabag
and Ozkurt 2019). Similar signal processing approaches contribute
to the development of BCI systems used not only in clinical settings
but also in various application areas such as gaming, education,
and marketing (Maiseli et al. 2023).

Mental Command and Human-Machine Interaction
Mental command recognition using EEG expands the possibilities
of thought-based control in human–machine interaction. Classifica-
tion of EEG signals preprocessed with EMD using deep neural net-
works has enabled the differentiation of various mental commands
(Agrawal et al. 2024). In another study, biometric identification
based on individuals’ EEG signals was achieved, where a multi-
band deep embedding learning network provided high-accuracy
identification using features extracted from SSVEP signals (Gu
et al. 2025). In a study based on a hybrid BCI architecture, motor
imagery (MI) and steady-state visual evoked potential (SSVEP)
signals were combined to control a quadcopter in 3D space. The
system, which switches between two modes using an eye-blinking
signal, is capable of controlling flight directions through eight
different EEG commands, achieving a classification accuracy of
87.09%. Enhanced with real-time feedback and offline optimiza-
tion, this architecture offers a high level of control capacity based
on mental commands in human–machine interaction (Yan et al.
2020).

Sleep, Fatigue, and Mental State Monitoring
In studies focusing on tracking time-dependent cognitive states,
fatigue levels were successfully detected using a spatial–temporal
CNN and a bidirectional LSTM-based model (Ahn et al. 2016; Jeong

et al. 2019). Building on EEG-derived cognitive state models, a
vocal fatigue detection system was developed for air traffic con-
trollers using SVM and Random Forest classifiers. The system
performs cognitive state classification based on speech signal fea-
tures such as MFCCs, fundamental frequency, and energy (Kouba
et al. 2023).

Figure 5 The experimental session representation (Kouba et al.
2023).

Additionally, wavelet transform-based multilayer models were
employed to classify mental states such as alertness and drowsi-
ness by enhancing time–frequency resolution (Joo et al. 2025; Khare
et al. 2023). In a study on the detection of driver fatigue using
EEG signals, the fatigue state was classified with high accuracy
through the fusion of four different entropy measures (spectral,
approximate, sample, and fuzzy). Using selected classifiers (SVM,
BP, RF, and kNN), an accuracy of up to 98.3% was achieved, and
effective results were obtained with only four channel regions.
These findings highlight the traceability of mental states in hu-
man–machine interaction systems and their potential contribution
to driving safety (Kouba et al. 2023).

In this context, Hassan et al. conducted a comprehensive survey
summarizing the current progress and key challenges in electroen-
cephalogram (EEG)-based driver fatigue detection. The review
systematically analyzed 87 studies published between 2015 and
2025, focusing on signal preprocessing, feature extraction, and
classification techniques. Commonly adopted classifiers such as
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Support Vector Machine (SVM), Convolutional Neural Network
(CNN), and Long Short-Term Memory (LSTM) networks were
found to achieve accuracies ranging from 85% to 99%. The study
emphasized that increased power in theta (4–8 Hz) and alpha
(8–13 Hz) frequency bands is strongly correlated with fatigue onset.
Moreover, the authors highlighted critical limitations, including
inter-subject variability, real-time implementation challenges, and
a lack of standardized EEG acquisition protocols, suggesting the
need for adaptive and wearable EEG systems for practical applica-
tions (Hassan et al. 2025).

Unique Sensory Experiences and Neurophysiological Represen-
tations

The study by Shen et al. (2025) investigated the effects of acupunc-
ture sensation on brain functional connectivity using EEG data
and analyzed this sensory experience through graph theory met-
rics. Based on the obtained measures, acupuncture sensation was
predicted with a mean absolute error (MAE) of 0.65%. EEG-based
investigations conducted on individuals with high autistic traits
revealed the neurophysiological foundations of social interaction
difficulties and identified a negative correlation between low alpha
coherence in the occipital region and AQ scores (Wang et al. 2025a).

Music, as a form of expression capable of eliciting strong emo-
tional responses, enables the recognition of music-evoked emotions
through EEG signals, contributing to a deeper understanding of
the underlying neural mechanisms of such responses. Artificial
intelligence plays a crucial role in this process by facilitating the
extraction of characteristic frequencies (Su et al. 2024) and the iden-
tification of novel features, thereby enhancing the development of
emotion recognition models.

The studies presented demonstrate that the analysis of EEG
signals using AI-assisted approaches plays a significant role in
the objective assessment of cognitive, emotional, and neurolog-
ical states. Deep learning and graph theory-based methods re-
veal the versatile potential of EEG in clinical, rehabilitation, and
human–computer interaction domains. In this context, the de-
velopment of personalized EEG analyses and real-time systems
represents a significant advancement in literature.

ARTIFICIAL INTELLIGENCE APPLICATIONS ON EEG SIG-
NALS

Several studies identified in the literature that utilize artificial
intelligence methods are comparatively examined in the following
section.

Machine Learning Method (ML)

Comprehensive reviews are also available in the literature regard-
ing the role of machine learning (ML) algorithms in enhancing
the processing, interpretation, accuracy, and effectiveness of EEG
signals (Hosseini et al. 2021). The methods used in the study con-
ducted by Joseph et al. (2025) are as follows:

Preprocessing: In this section, the researchers explain that the
four-channel signals obtained from the MUSE EEG device were
converted into microvolts using the BlueMuse and Muse-lsl soft-
ware and then standardized by resampling them to 200 Hz through
a Fourier transform. Each EEG recording, approximately one
minute in duration, was segmented using a one-second “sliding
window” with a 0.5-second overlap to capture temporal variations.
Statistical features (such as skewness and variance) were extracted

from these windows and subsequently used for signal analysis
and emotional state classification.

The graph in Figure 6 illustrates the segmentation of the EEG
signal over time for analysis. In other words, the continuous
signal is divided into overlapping small segments (windows). Each
segment (for instance, one second in length) serves as an analytical
unit from which statistical features are extracted.

Figure 6 Sliding window approach (Barrowclough et al. 2025).

µ̃3 =
∑N

i (xi − x̄)3

(N − 1) ∗ σ3 (1)

S2 =
∑(xi − x̄)2

n − 1
(2)

Overall, the data processing procedure involves standardizing
the raw EEG signals, segmenting them into time windows, and
extracting statistical features (such as skewness and variance) from
each window. These features were then utilized in the affective
classification model.

Feature Extraction: To capture different dimensions of emotions
(e.g., valence and arousal), features were extracted from the signals
in the time–frequency domain. Among the prominent techniques
are methods such as Empirical Mode Decomposition (EMD) and
Wavelet Transform.

Classification: For personalized models, the best results were ob-
tained using Support Vector Machines (SVM) and Random Forest
algorithms. The researchers also experimented with ensemble
learning strategies to improve classification performance. Accord-
ing to the results, personalized models performed significantly
better than general models.

Performance Criteria: Classical evaluation metrics such as accu-
racy, sensitivity, and specificity were used as performance mea-
sures. The SVM-based personalized model achieved an accuracy
of up to 85%, which outperforms many general models reported
in the literature.

Evaluation and Observation: Based on the assumption that each
individual’s EEG signal structure differs, the researchers investi-
gated whether personalized models outperform generic ones. To
this end, six machine learning algorithms were tested on the MUSE
and DEAP datasets: K-NN, Decision Tree, Random Forest, SVM,
Naïve Bayes, and Stacking Ensemble Classifier. The experiments
aimed to enhance prediction performance by accounting for EEG
features specific to each individual.
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Figure 7 High level method pipeline (Barrowclough et al. 2025)

The experimental design of the study is visualized in Fig. 7. This
diagram illustrates, step by step, how both the generic and person-
alised model pipelines are implemented with the machine learning
algorithms. The fundamental mathematical foundations of the
algorithms (e.g., Minkowski distance, Gini impurity, Bayesian
distributions, SVM kernel functions) are also provided; during
evaluation, confusion matrices were used and accuracy rates were
compared.

■ Table 1 Summary of Methods and Techniques Used in the
Study by Joseph et al.

Feature Methods Used Advantages Disadvantages

Feature Extrac-
tion

EMD, Wavelet
Transform

High time-
frequency resolu-
tion

High computa-
tional cost

Classifier SVM, Random
Forest, Ensemble
Methods

High accuracy
with personal-
ized modeling

Slow due to the
need for training
multiple models

Dataset DEAP Widely used,
suitable for com-
parative analysis

Limited number
of subjects

Model Structure Personalized
models

Able to capture
individual differ-
ences

Not suitable for
generalization

The methodological contribution of this study lies in demon-
strating that a personalized modeling strategy can substantially
enhance the performance of EEG-based emotion classification.
Such approaches are particularly well-suited for applications such
as user-specific neurofeedback systems, mental health monitoring,

and human–computer interaction.

The methods used in the study conducted by Khare et al.
(2023) are as follows:

Dataset and Preprocessing: In this part of the study, a publicly
available EEG dataset from the Kaggle platform was utilized. Five
participants performed experiments using a train simulator (Am-
trak–Philadelphia route). The participants’ mental states were
categorized into three classes: Focused, Unfocused, and Drowsy.
EEG recordings were collected using the Emotiv EPOC EEG sys-
tem with a sampling frequency of 128 Hz, a bandwidth of 0.2–43
Hz, and a resolution of 0.51 µV. Each 10-minute session was di-
vided into 30-second segments, resulting in 680 EEG segments per
class.

The raw EEG signals were processed using an ensemble wavelet
decomposition approach to remove noise and artifacts. In this
process, three different wavelet-based methods were employed in
combination:

• MDWT (Multilevel Discrete Wavelet Transform): It separates
low- and high-frequency components.

• TQWT (Tunable Q Wavelet Transform): It performs
parameter-based (q, R, B) decomposition without requiring the
selection of a main wavelet.

• FAWT (Flexible Analytic Wavelet Transform): It analyzes
complex signals such as EEG through two high-pass and one low-
pass channels.

• The combination of these methods allows for precise analysis
of the signals in both time and frequency domains.

Figure 8 Proposed ensemble model for mental state detection
(Khare et al. 2023)
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Figure 9 A typical example of SBs generated by the TQWT
(Khare et al. 2023)

Feature Extraction and Wavelet-Based Decomposition: A total of
27 statistical, fractal, and nonlinear features were extracted from
the decomposed EEG signals. These features include indicators
such as mean energy, variance, skewness, Hurst exponent, Hjorth
mobility, Higuchi fractal dimension, Lyapunov exponent, and zero-
crossing rate. The extracted features represent the dynamics of
brain activity and were utilized to differentiate between various
mental states.

Classification: Optimized ensemble classifiers were employed in
the study. The classifiers used included models such as boosted
trees, bagged trees, ensemble discriminant, and subspace KNN.
Feature fusion was applied to achieve dimensionality reduction
and enhance performance.

During the training and testing phases, holdout, 5-fold, and
10-fold cross-validation techniques were implemented.

Figure 10 Typical working of ensemble classifier techniques
(Khare et al. 2023)

Success Performance and Results:

• The best performance was achieved using FAWT, yielding
97.8% accuracy with the Iterative Majority Voting technique.

• In the three-class analysis (F, UF, D), FAWT-based features
provided higher separability compared to other methods.

• Feature fusion achieved the highest F1 score (98.18%) particu-
larly for the drowsy class.

• The best-performing subband (SB) levels were as follows:

– B-1 for MDWT and TQWT
– SB-7 for FAWT

Evaluation and Observation: This study demonstrates how the
combination of wavelet transform techniques and optimized en-

■ Table 2 Summary of Methods, Features, and Classification
Performance in the Study by Khare et al. (2023)

Feature Methods Used Advantages Disadvantages

Feature Extrac-
tion

MDWT, TQWT,
FAWT

Versatile
time–frequency
decomposition

Parameter tuning
is complex

Feature Type 27 statisti-
cal/chaotic
features

Rich info, high
discriminative
power

Large features →
reduction may be
required

Classifier Ensemble (opti-
mized)

High accuracy
and generaliza-
tion

High computa-
tional cost

Accuracy (with
IMV)

97.8% Superior perfor-
mance in the lit-
erature

Limited number
of subjects

semble classification can yield robust results in EEG-based mental
state classification. In particular, the high time–frequency resolu-
tion of FAWT has proven to be ideal for complex and oscillatory
signals such as EEG.

Compared to previous studies, this work adopts an ensemble
wavelet decomposition with feature fusion strategy rather than
personalization. While personalized models focus on capturing
individual variations, the advantage of the present study lies in
providing a more generalizable classification model.

The two studies considered (Barrowclough et al. 2025; Khare
et al. 2023) focus on the machine learning-based classification of
mental states from EEG signals and present distinct methodologi-
cal approaches. Although the objectives of both studies are similar,
they demonstrate significant differences in the signal processing
and classification strategies employed.

Modeling Approach:

• The first study, “Personalised Affective Classification Through
Enhanced EEG Signal Analysis,” focused on individual-
specific emotion classification and developed personalized
machine learning models (Khare et al. 2023). Training a sepa-
rate model for each participant aimed to enhance classification
accuracy by accounting for personal variations in EEG signals.

• The second study, “Ensemble Wavelet Decomposition-Based
Detection of Mental States,” aimed to establish a generalizable
model and adopted an ensemble wavelet decomposition com-
bined with an optimizable ensemble classifier approach rather
than personalization (Ma et al. 2025). In this study, mental
states such as focused, unfocused, and drowsy were classified
into three distinct classes.

The first study emphasizes personalized models, whereas the
second focuses on generalized models. While the former highlights
individual adaptation, the latter underscores the power of signal
processing and algorithm optimization.

Feature Extraction and Signal Processing Techniques:

• In the first study, features were extracted from EEG signals
using conventional time–frequency decomposition methods,
such as Empirical Mode Decomposition (EMD) and Wavelet
Transform. These extracted features were used to model affec-
tive dimensions, such as valence and arousal.

• In the second study, a more sophisticated approach was
adopted. Multilevel Discrete Wavelet Transform (MDWT),
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Tunable Q Wavelet Transform (TQWT), and Flexible Ana-
lytic Wavelet Transform (FAWT) were used in combination to
perform ensemble decomposition. Each of these techniques
excels at decomposing different frequency bands and signal
characteristics. A total of 27 statistical and chaotic features
were extracted, and dimensionality reduction was achieved
using a feature fusion method.

In the second study, the feature space is considerably richer and
more diverse. In particular, the use of FAWT provides a significant
advantage in analyzing the temporal complexity of EEG signals.
The methods employed in the first study are comparatively more
basic in nature.

■ Table 3 Machine learning based Comparative Performance
and Methodological Analysis of Barrowclough et al. (2025) and
Khare et al. (2023)

Feature Study 1: Personalized
Model

Study 2: Ensemble
Wavelet Model

Modeling Approach Individual-specific Generalizable + opti-
mized

Feature Extraction EMD, Wavelet MDWT, TQWT, FAWT

Classifier SVM, RF Ensemble + IMV

Accuracy ∼85% 97.8%

Signal Type DEAP dataset Kaggle EEG

Strengths Captures individual
variations

Advanced decomposi-
tion + fusion

Limitations Limited generalization Small number of partici-
pants

Classification Methods:

• In the first study, Support Vector Machines (SVM) and Ran-
dom Forest classifiers were primarily employed, and person-
alization increased the accuracy to approximately 85% (Khare
et al. 2023).

• In the second study, optimized ensemble classifiers were pre-
ferred. A combination of methods, including bagged trees,
boosted trees, and subspace KNN, was applied, and the final
decision mechanism was implemented using Iterative Ma-
jority Voting (IMV). This framework increased the accuracy
rate to 97.8%. The classification approach in the second study
demonstrated superior performance due to its more advanced
framework and inclusion of hyperparameter optimization.
Despite the use of personalized models in the first study, the
overall accuracy remained lower.

Deep Learning Method (DL)
In the literature review section, three key studies employing deep
learning (DL) approaches for EEG-based classification problems
were analyzed (Agarwal and Kumar 2024), and their method-
ological differences and performances were compared in detail.
Prabhakar et al. in 2024, the methods employed are as follows:

Preprocessing:

• The preprocessing stage aimed both to enhance signal quality
and to provide a suitable foundation for feature extraction.

• The signals were divided into segments of equal length to
enable meaningful analysis.

• Each segment was time-normalized to ensure consistent learn-
ing by the model.

• The preprocessing stage aimed both to enhance signal quality
and to provide a suitable basis for feature extraction.

Feature Extraction:

• The Hilbert Transform was applied to the EEG signals to
obtain the envelopes of each signal.

• This transformation provided both instantaneous amplitude
and phase information, offering a richer representation com-
pared to classical time–frequency analysis methods.

• The resulting envelopes were converted into a suitable matrix
format to serve as input for the classification model.

• In this way, both the neural and semantic components of the
signals were successfully represented

Figure 11 Detailed steps for feature extraction (Agarwal and
Kumar 2024)

Figure 12 Detailed steps for preprocessing (Agarwal and Kumar
2024).

Classification:

• A deep neural network (DNN) based on a multilayer percep-
tion (MLP) was employed for classification.

• The model was trained under a supervised learning paradigm
and optimized using the backpropagation algorithm.

• The network architecture enabled the deep processing of
features, allowing for successful discrimination of imagined
word tasks.

Performance Criteria:

• The model’s performance was primarily evaluated in terms
of accuracy. Additionally, its cross-subject generalizability
was tested to assess the ability for participant-independent
classification.
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Figure 13 Proposed CNN architecture (Agarwal and Kumar
2024).

■ Table 4 Summary of Preprocessing, Feature Extraction, and
Classification Methods Used by Remsik et al. (2022)

Feature Methods Used Advantages Disadvantages

Preprocessing Band-pass
filtering, seg-
mentation, time
normalization

Signals cleaned
from noise and
artifacts; suitable
for analysis

Filter parame-
ters may not be
universal due
to individual
variations

Feature Extrac-
tion

Envelope extrac-
tion via Hilbert
Transform

Rich representa-
tion containing
both phase and
amplitude info

Computational
load of Hilbert
Transform can be
high

Classification MLP-based Deep
Neural Network,
backpropagation

Strong classifica-
tion capability;
parametric flexi-
bility

Deep learning
models require
large datasets;
risk of overfitting

Performance
Evaluation

Accuracy, cross-
subject generaliz-
ability tests

Effective perfor-
mance across dif-
ferent individu-
als

Despite high
accuracy, not yet
tested in real-
time applications

• The study demonstrated high performance with similar ac-
curacy rates across different individuals. However, the ap-
plicability of the model in real-time systems has not yet been
experimentally tested.

• The F1 score is not directly reported as a metric in the article
content and tables; the study focuses more on accuracy and
Network Prediction Time (NPT).

• Accuracy Percentage:

– Maximum Accuracy: 94.29% was achieved.
– Average Accuracy: An average accuracy of 71.75% was

achieved throughout the study.

In the study conducted by (Dairi et al. 2022), the methods em-
ployed are as follows:

Preprocessing:

• In this section of the study, the Multi-Channel Wiener Filter
(MWF) algorithm was applied for artifact removal. MWF
has been shown to perform effectively on both real and hy-
brid EEG data, offering superior performance compared to
conventional techniques.

• The fundamental principle of the algorithm involves modify-
ing the artifact covariance matrix using a low-rank approx-
imation and processing it through generalized eigenvalue
decomposition. This approach provides a generalizable and
robust solution for the removal of various types of EEG arti-
facts.

Feature Extraction:

• In this study, conventional manual feature extraction was not
performed. Instead, the task of feature extraction was directly
handled by the encoder layers of the model.

• In particular, the convolutional layers (CNN) acted as a struc-
ture that automatically learned the spatial and temporal pat-
terns of the EEG signals to extract features. This approach
aligns with the deep learning capability to reduce the need
for manual feature engineering.

• Consequently, the data was fed directly into the neural net-
work, allowing the model itself to generate meaningful repre-
sentations without relying on hand-crafted features.

Classification:

• The novelty of the study lies in employing an anomaly de-
tection approach instead of conventional classifiers. In this
context, the developed system is based on an autoencoder
architecture. The encoder–decoder model aims to summarize
and reconstruct the input signal.

• During training, the model was allowed to learn only “nor-
mal” mental tasks. In the testing phase, reconstruction errors
were measured to identify “anomalous” patterns. This ap-
proach is particularly effective for high-variance data such
as EEG signals, providing both the ability to work with unla-
beled data and robustness to individual differences.

Performance Criteria:

• The success of the DBN-iF model proposed in this study has
proven its superiority compared to other results in the litera-
ture:

– DBN-iF (This study): 98.5%
– LS-SVM (Closest competitor): 97.56%
– KNN: 92.8%
– CNN-SAE: 90.0%

• The model’s performance was evaluated primarily based on
reconstruction error rather than conventional accuracy met-
rics. Anomalous events were identified when this error ex-
ceeded a predefined threshold, enabling functional output
even on unlabeled samples.

• Experimental results demonstrate the system’s high capac-
ity both for discriminating between different tasks and for
adapting to inter-subject variations.However, the absence of
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■ Table 5 Summary of Preprocessing, Feature Extraction, and
Classification Methods Used by (Dairi et al. 2022)

Feature Methods Used Advantages Disadvantages

Preprocessing Multi-Channel
Wiener Filter
(MWF); low-
rank covariance;
eigenvalue de-
composition

Superior de-
noising on
real/hybrid
EEG; robust to
multiple artifacts

More complex
than classical
filtering; requires
expertise

Feature Extrac-
tion

Automatic ex-
traction via CNN
layers; no man-
ual features

Eliminates
manual engi-
neering; learns
spatial-temporal
patterns

Requires large
data; less inter-
pretable than
handcrafted
features

Classification /
Detection

Autoencoder-
based anomaly
detection; recon-
struction error

Learning from
unlabeled data;
robust to inter-
subject variabil-
ity

Lack of softmax
makes direct
comparison dif-
ficult; threshold
selection issues

Performance
Evaluation

Reconstruction
error and
anomaly thresh-
olding

Enables detec-
tion without
labels; shows
generalization

No classical met-
rics (accuracy,
etc.) reported;
limited compara-
bility

comparison using traditional metrics such as class-wise ac-
curacy limits the direct comparability of these results with
conventional systems.

• According to the findings of this article, combining QTFD
(Quadrificial Time-Frequency Distribution) feature extraction
with DBN-based Anomaly Detector (Isolation Forest) can
achieve higher accuracy in recognizing mental tasks compared
to traditional supervised learning models (such as CNN or
SVM).

In the study conducted by Khondoker Murad et al. (Hossain
et al. 2023), the techniques employed are as follows:

Preprocessing: The raw EEG signals inherently contain noise, arti-
facts, and low signal-to-noise ratios, which complicate their direct
use in BCI applications. Therefore, among the prominent prepro-
cessing methods highlighted in the studies reviewed, the following
are commonly employed:

• Frequency filtering (particularly band-pass filtering between
0.5–45 Hz).

• Artifact removal (especially signals arising from eye blinks
and muscle movements).

• Manual cleaning and methods such as Independent Compo-
nent Analysis (ICA) and Discrete Wavelet Transform (DWT).

Feature Extraction. One of the main advantages of deep learning
is its ability to eliminate the need for manually defined feature ex-
traction. In the studies reviewed, feature extraction was primarily
performed automatically by the initial layers of CNN, RNN, LSTM,
or even Transformer architectures.

However, some hybrid approaches employed time–frequency
representations to support model learning, applying transforma-
tions such as STFT, CWT, or Morlet wavelets as a pre-processing
step. Notably, in tasks such as motor imagery or emotion recog-
nition, these rich representations were observed to significantly
enhance classification performance.

Classification: In the review, various deep learning architectures
employed for EEG-based BCI applications are presented in detail.
The most frequently used classifiers include:

• Convolutional Neural Networks (CNN) – effective for captur-
ing spatial features.

• Recurrent Neural Networks (RNN) and Long Short-Term
Memory (LSTM) – suitable for temporal signals such as EEG.

• Generative Adversarial Networks (GAN) – employed for data
augmentation and balancing.

• Transformer architectures – offer potential for modeling long-
range dependencies.

Performance Criteria: In this study, deep learning models demon-
strated different success levels depending on the application type:

• Driver Fatigue Detection: Studies in this area have resulted in
high accuracy rates between 83% and 98%.

• Epileptic Seizure Detection: Accuracy rates of over 99% have
been reported using CNN and RNN models.

• Emotion Recognition: Most researchers have achieved accu-
racy rates above 90% in datasets such as DEAP and SEED.

• Motor Imagery (MI): While classical machine learning meth-
ods struggle in this area (between 72% and 86%), deep learn-
ing (especially LSTM and CNN) has significantly improved
performance.

■ Table 6 Summary of Preprocessing, Feature Extraction, and
Classification Methods Used by (Hossain et al. 2023)

Feature Methods Em-
ployed

Advantages Limitations

Preprocessing Frequency fil-
tering, artifact
removal (ICA,
DWT), manual
visual inspection

Noise reduction
and improved
signal quality

Standardization
is challenging
due to method-
ological diversity

Feature Extrac-
tion

CNN, LSTM,
Transformer
architectures;
time–frequency
transformations
(CWT, STFT)

Automatic learn-
ing instead
of manual ex-
traction; rich
representations

Loss of inter-
pretability and
high computa-
tional cost in
some models

Classification CNN, LSTM,
GAN, Trans-
former; hy-
brid architec-
tures (e.g.,
CNN+LSTM)

High accuracy
with task-specific
selection; cap-
tures patterns

Model selection
depends on task
type; no univer-
sal architecture

Performance
Evaluation

Accuracy, F1-
score, sensitivity,
specificity, cross-
validation

Multi-
dimensional
analysis; im-
proved gener-
alization via
transfer learning

Direct compar-
ison is difficult
due to differ-
ences in datasets

Additionally, some approaches employed cross-validation
strategies to assess generalizability. It has also been highlighted
that increasing the amount of data, as well as applying domain
adaptation and transfer learning techniques, has a significant im-
pact on accuracy. However, the lack of methodological consistency
among the datasets used has led to inconsistencies in comparative
results.

20 | Akdeniz and Fidan Computers and Electronics in Medicine



Comparison of Deep Learning-Based Studies
These three studies collectively illustrate the multidimensional
utilization of deep learning techniques in EEG signal analysis.
The first study introduces a CNN-based framework focusing on
a specific task (imagined words), whereas the second emphasizes
an anomaly detection paradigm rather than direct classification.
The third article provides a higher-level synthesis encompassing
multiple studies, underscoring that the selection of an appropri-
ate methodological approach should be determined contextually,
depending on the experimental design and target application.

Explanations of Technical Terms:

• Hilbert Transform: An analytical signal approach used to
extract the temporal amplitude and phase components of
EEG signals. It enhances temporal resolution.

• Autoencoder: An unsupervised learning architecture that
identifies anomalies by learning low-dimensional representa-
tions of data and minimizing reconstruction error.

• STFT / CWT / Wavelet Transforms: Fundamental time-
frequency transformation techniques used in EEG signal anal-
ysis. They facilitate the generation of more meaningful inputs
for deep learning models.

• Domain Adaptation: A subfield of transfer learning employed
to maintain model consistency across EEG data collected from
different individuals.

Similarities and Differences Between Methods:

• CNN architecture plays a significant role in all three studies.
In the first study, it is employed directly for classification
purposes, whereas in the second study, it is incorporated
within an autoencoder structure for reconstruction. In the
third study, CNN is discussed within the context of a literature
review as a commonly used method in EEG applications.

• Noticeable differences emerge in terms of pre-processing tech-
niques. The first study enriches the data using advanced
signal processing methods such as the Hilbert transform,
whereas the second study employs simpler, more basic prepro-
cessing procedures. This distinction clearly demonstrates the
impact of data preparation methods on the resulting model
performance.

• In terms of learning paradigms, the first study is based on
supervised learning and utilizes labeled data. In contrast, the
second study employs an unsupervised learning approach
applied to unlabeled datasets. The third study compares these
two methods and discusses which approach may be more
appropriate depending on the type of application.

• Advanced techniques such as generalizability and transfer
learning are discussed in detail particularly in the third study.
Since EEG signals exhibit substantial inter-individual variabil-
ity, these strategies are crucial for ensuring that models remain
effective across different subjects. In contrast, the other two
studies address this topic in a more limited manner.

Results: Although these three studies serve different objectives,
they collectively demonstrate that deep learning–based analyses
of EEG signals encompass a broad methodological spectrum. The
common use of CNN-based architecture indicates that such models
can effectively capture and represent spatial patterns within EEG
data. However, the adaptation of these architectures to dataset-
specific characteristics, such as preprocessing strategies, labeling

schemes, and levels of architectural complexity, constitutes a criti-
cal factor influencing application performance. As a consequence
of this methodological diversity, models such as autoencoders
tend to offer advantages in scenarios emphasizing unsupervised
learning, whereas CNN-based models enriched with information-
dense inputs yield more efficient outcomes in contexts requiring
linguistic imagery or complex classification.

Studies Utilizing Alternative Modeling Approaches
The methods and techniques used in the studies of Al-Dabag and
Ozkurt (Al-dabag and Ozkurt 2019),

Preprocessing:

• Artifact Removal (EEG Subtraction): Noise was suppressed
by subtracting the resting-state (motionless) EEG signal from
the EEG signal containing movement. This procedure was
applied to enhance signal clarity and make it suitable for
classification.

• Channel Selection: EEG channels located near the motor cor-
tex were pre-identified and selected. In particular, the F3 and
F4 channels were utilized as “effective channels.

Figure 14 Selected EEG channels in both datasets. (A) Se-
lected channels of BCI datasets, (b) selected channels of Emotiv
datasets (Al-dabag and Ozkurt 2019).

Feature Extraction:

• Discrete Wavelet Transform (DWT): EEG signals were decom-
posed into beta and gamma bands using the DWT method.
This decomposition allowed the extraction of frequency com-
ponents related to movement.

• Cross-Correlation: The selected effective channels (F3, F4)
were subjected to cross-correlation with other channels in the
right and left hemispheres, thereby extracting information on
similarity/synchronization between two channels.

• Statistical Features: From the cross-correlation outputs, 10
normalized statistical features were calculated, including min-
imum, maximum, mean, median, mode, standard deviation,
variance, entropy, and the first and third quartiles.

Classification:

• Artificial Neural Network (ANN): A multilayer ANN was
implemented. The number of nodes in the hidden layer was
optimized through multiple trials (e.g., 14 nodes yielded the
best performance).
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■ Table 7 Comparative Deep Learning-Based EEG Applications

Criterion / Study Imagined Words Classification (Hilbert
Transform + CNN)

Mental Task Recognition (Autoencoder-
Based Anomaly Detection)

Comprehensive Literature Review (Mul-
tiple Deep Learning Architectures)

Application Domain Recognition of mentally imagined words
(Imagined Speech BCI)

Identification of different cognitive tasks
(Mental Task Recognition)

General methodological categorization
for EEG-based BCI systems

Preprocessing Approach Extraction of instantaneous amplitude
and phase components using the Hilbert
Transform

Z-norm–based standardization and basic
spectral filtering

Time–frequency transformations (STFT,
CWT, Wavelet Decompositions)

Modeling Architecture Deep Convolutional Neural Network
(Deep CNN)

Encoder–decoder–based Autoencoder
structure (CNN embedded)

Advanced DL architectures such as
CNN, LSTM, GAN, and Transformer

Methodological Contribution / Innova-
tion

Enriched input representation via
Hilbert Transform for meaningful signal
encoding

Mental state differentiation through un-
supervised detection of anomalous pat-
terns

Architecture–application mapping and
architecture recommendations based on
task type

Data Labeling Requirement Moderate (requires labeled data for su-
pervised learning)

Low (suitable for unsupervised or
anomaly detection tasks)

High (requires extensively labeled data
or transfer learning scenarios)

Generalizability / Subject Independence Cross-participant generalizability tested Proposed structure tolerant to partici-
pant variability

Discussion of domain adaptation and
transfer learning strategies

Highest Accuracy %94.29 %98.50 99.00%+ (Epilepsy)

Average / Other Results Average: 71.75% LS-SVM: %97.56, KNN: %92.8, CNN-
SAE: %90.0

Driver Fatigue: 83–98%, Emotion Recog-
nition: >90%, Motor Imagery: 72–86%

Figure 15 Three-level DWT decomposition (Al-dabag and
Ozkurt 2019)

• Support Vector Machine (SVM): An SVM with a Radial Basis
Function (RBF) kernel was employed. The kernel scale was
determined automatically.

• Datasets: Classification was performed using both the BCI
Competition III Dataset IVa (imagined movements) and Emo-
tiv Epoc+ data (actual movements).

Figure 16 ANN architecture (Al-dabag and Ozkurt 2019)

Performance Criteria:

• Accuracy: An accuracy of 99.33% was achieved with the ANN,
and 99.69% with the SVM (BCI dataset).

• Cross-Validation (10-Fold): A 10-fold cross-validation was
performed for both classifiers to assess their validity.

• User Independence: Both subject-specific (patient-based) and
pooled-subject (movement-based) classifications were tested.
In movement-based classification, accuracy did not drop be-
low 92%.

The methods and techniques used in the studies of Leela and
colleagues (Leela and Helenprabha 2025),

Preprocessing: Since different data modalities (temporal, spectral,
spatial, audio, and text data) were used for Alzheimer’s disease
prediction, specific preprocessing procedures were applied for
each data type:

• Temporal (gait) data: Erroneous and missing data were re-
moved using statistical methods, and outliers were eliminated
based on standard deviation thresholds.

• Spectral (EEG) data: Signals were filtered within the 1–45 Hz
band and subsequently prepared for time-frequency transfor-
mation.

• Spatial (MRI/PET/CT) data: Imaging data underwent size
standardization and resampling procedures.

• Audio data: Noise reduction and normalization were per-
formed.

• Text data: After converting audio data to text, tokenization,
stop-word removal, and vectorization were carried out.

Feature Extraction: The study employed deep learning models
that extract distinctive representations from multimodal datasets:

• Temporal (gait) data: A BiLSTM (Bidirectional Long Short-
Term Memory) network was used for the time series data.
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■ Table 8 Summary of Preprocessing, Feature Extraction, and
Classification Methods Used by (Al-dabag and Ozkurt 2019)

Feature Methods Used Advantages Disadvantages

Preprocessing Resting-state
EEG subtraction,
channel selection

Noise was
suppressed, re-
sulting in cleaner
signals. Focus
on motor cortex
regions was
enhanced.

Manual channel
selection may
require expert
knowledge.
Performance
may depend
on recording
conditions.

Feature Extrac-
tion

Frequency de-
composition
using DWT,
cross-correlation,
statistical param-
eter extraction

Provided mean-
ingful and
effective features
with low compu-
tational cost. A
comprehensive
feature set was
created.

Features were
intuitively ex-
tracted from the
signal; additional
optimization
may be required
for universal
generalization.

Classification ANN
(Levenberg-
Marquardt),
SVM (RBF ker-
nel)

Tested with two
different classi-
fiers, achieving
high accuracy.
Comparison
between ANN
and SVM was
conducted.

ANN results
show run-to-run
variability; pa-
rameter tuning
may require care-
ful adjustment.

Performance
Evaluation

98–99+% accu-
racy, 10-fold
cross-validation,
two datasets (BCI
and Emotiv),
subject-specific
and pooled clas-
sification

Method gener-
alizability was
tested, achieving
success across
different indi-
viduals and
devices. High
performance
achieved with a
simple approach.

Slight drop in
accuracy ob-
served in pooled
classification sce-
narios (∼92%);
individual differ-
ences may have
a stronger effect.

• Spectral (EEG) data: Frequency-dynamic features were ex-
tracted from EEG images using the GoogLeNet convolutional
neural network.

• Spatial data: Imaging data were analyzed using the MobileNet
architecture, achieving high-accuracy representations with
low computational cost.

• Audio data: Audio files were analyzed using a CNN-MLP
(convolutional neural network combined with a multilayer
perceptron).

• Text data: Semantic information was captured using the BERT
(Bidirectional Encoder Representations from Transformers)
model.

A two-level data fusion approach was implemented:

• Level 1: Temporal, spatial, and spectral data were combined
through a gating mechanism to generate an intermediate rep-
resentation.

• Level 2: This intermediate representation was then integrated
with audio and text representations to obtain the final fusion
vector.

Classification: The final feature vector was given to the Incremen-
tal Learner Ensemble Classifier (TMDFILE) model, which was
specifically developed for Alzheimer’s prediction. The main char-
acteristics of this model are as follows:

• Ensemble structure: It combines different classifiers (e.g., de-
cision trees, SVM) to enable more robust decision-making.

• Incremental learning: The model can be updated with newly
incoming data; in other words, it is not static but has an adap-
tive learning process.

• Gating mechanism: It assigns weights by determining which
modality is more effective in the classification process.

Performance Metrics: ADNI, OASIS, EEG Emotion, Aberystwyth
Dementia, and BRATS. The obtained performance metrics:

• Accuracy: %94.5
• Precision: %93.5
• Recall: %95.1
• F1 Score: %94.1

■ Table 9 Summary of Preprocessing, Feature Extraction, and
Classification Methods Used by (Leela and Helenprabha 2025)

Feature Methods Used Advantages Disadvantages

Data Types Temporal, spec-
tral, spatial, au-
dio and text data

Integrated analy-
sis of disease di-
mensions

Complex data
collection and
synchronization

Preprocessing Band-pass fil-
tering, outlier
removal, resam-
pling

Modality-
specific cleaning
improves quality

Long processing
time; high techni-
cal expertise

Feature Extrac-
tion

BiLSTM,
GoogLeNet,
MobileNet,
CNN-MLP, BERT

Optimized DL
architectures for
each modality

High hardware
requirements;
long training
time

Data Fusion Ap-
proach

Two-level: hier-
archical fusion
with gating

Optimized
modality contri-
bution

Complex struc-
ture; limited
explainability

Classification
Method

Incremental
Learner Ensem-
ble (TMDFILE)

Updatable, adap-
tive system; high
accuracy

Needs additional
management for
real-time

Performance
Metric

Acc: 94.5%, Prec:
93.5%, Recall:
95.1%, F1: 94.1%

High success
rates across
datasets

High system
complexity for
integration

Clinical App. Multimodal neu-
rological imaging
system

Evaluates cogni-
tive and motor
symptoms

Access to all data
sources may not
be feasible

Comparative Analysis in Terms of Methods and Techniques Al-
Dabag and Ozkurt (2018) proposed a simple and low-cost method
that can be integrated into online BCI systems for motor move-
ment classification based on EEG data. By utilizing DWT, cross-
correlation, and statistical features, high accuracy was achieved
without the need for complex optimization processes, and classical
models such as ANN and SVM were employed for classification.
On the other hand, Leela et al. (2025) introduced an incremental
learning-based system called TMDFILE, which integrates EEG,
MRI, speech, text, and gait data for Alzheimer’s diagnosis. This
approach is grounded in multidisciplinary data fusion. The two
studies differ significantly in terms of data diversity, scale, and
intended application.

Computers and Electronics in Medicine 23



■ Table 10 Comparative Analysis of EEG-Based Studies by (Al-dabag and Ozkurt 2019) and (Leela and Helenprabha 2025)

Comparison Al-Dabag & Ozkurt (2018) Leela et al. (2025)

Application Area EEG-based motor movement recognition, BCI systems Alzheimer’s disease diagnosis, multi-modal biomedical data

Data Type EEG only (BCI Dataset & Emotive) EEG, MRI/PET, gait, audio, and text data

Preprocessing EEG subtraction, channel selection Modality-specific preprocessing: filtering, normalization, resampling,
etc.

Feature Extraction DWT, cross-correlation, 10 statistical features BiLSTM, GoogLeNet, MobileNet, CNN-MLP, BERT, two-level data
fusion

Classification Algorithms Artificial Neural Network (ANN), Support Vector Machine (SVM) TMDFILE (Ensemble & Incremental Learning Classifier)

AI Level Traditional ML techniques Advanced deep learning and incremental learning

Fusion Usage None Two-level data fusion (EEG + MRI → + audio + text)

Accuracy 99.33% (ANN), 99.69% (SVM) 94.5% on average (across five datasets)

Advantages Simple, low computational cost, suitable for online BCI applications Comprehensive modality analysis, adaptive learning, clinical general-
izability

Disadvantages EEG-only usage → limited information representation, sensitivity to
individual data

High computational and data requirements, system complexity

Generalizability Limited (restricted to BCI systems) High (broad clinical application with data from multiple sources)

CONCLUSION

This review systematically classified the literature from the past
decade on AI-based EEG analysis and provided comprehensive
methodological comparisons. The findings highlight that person-
alized machine learning models, supported by advanced signal
representation techniques such as Hilbert-based analytic signal
extraction and time–frequency decompositions using STFT, CWT,
and wavelet transforms, significantly improve sensitivity to in-
dividual neural dynamics. In parallel, representation learning
approaches based on autoencoders contribute to robust feature
extraction and dimensionality reduction in high-dimensional EEG
data. Moreover, advanced multichannel signal enhancement tech-
niques, particularly the Multi-Channel Wiener Filter (MWF), play
a critical role in artifact suppression, signal-to-noise ratio improve-
ment, and preservation of physiologically meaningful neural in-
formation, thereby strengthening the robustness of downstream
machine learning and deep learning models. Deep learning archi-
tectures such as CNN, LSTM, and Transformer networks demon-
strate strong capability in capturing both spatial and temporal
dependencies inherent in multichannel EEG recordings.

Beyond conventional clinical diagnosis and monitoring, EEG-
based AI systems are increasingly applied in interdisciplinary do-
mains, including emotional state recognition, human–computer
interaction, and driving safety. In this context, incremental learning
frameworks combined with multimodal data fusion show promis-
ing potential for the early detection of complex neurological dis-
orders such as Alzheimer’s disease. Looking forward, the more
systematic integration of domain adaptation and transfer learning
strategies that explicitly address inter-subject and cross-session
variability is strongly recommended. Additionally, the develop-
ment of low-latency, optimized software–hardware co-design solu-
tions remains essential for real-time EEG applications. Finally, the
adoption of ethical data practices and explainable AI frameworks
is critical to ensure the safe, transparent, and clinically reliable
translation of EEG–AI technologies into real-world healthcare sys-
tems.
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Determinants of Viewer Engagement in Health and
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ABSTRACT This study assessed the quality, reliability, and popularity of Reformer Pilates videos on YouTube, evaluating educational
value, credibility, and viewer engagement using standardized scoring while exploring factors affecting popularity. On November 1, 2024,
a YouTube search for “Reformer Pilates“ identified the top 70 most-viewed videos. Videos were excluded if irrelevant, promotional, or
under 25 seconds. Video quality and reliability were assessed using the Global Quality Scale (GQS), Modified DISCERN (mDISCERN),
and JAMA benchmarks. Viewer engagement and popularity were measured with the Video Power Index (VPI). Factors associated with
engagement were analyzed using Quantile Regression Forest modeling. Most videos (87.1%) were uploaded by individual channels,
12.9% by Pilates studios. Average GQS (3.06), mDISCERN (3.09), and JAMA (2.61) scores indicated moderate quality and reliability.
Videos claiming instructor expertise had lower mDISCERN scores (p = 0.005). Studio-recorded videos had higher GQS scores than
home-recorded videos, though not statistically significant. Quantile Regression Forest analysis indicated that mentioning safety information,
shorter video duration, and higher GQS scores were among the factors associated with higher viewer engagement (VPI). Older videos
tended to exhibit lower engagement levels, reflecting a preference for newer content. Findings highlight the importance of high-quality,
concise, and safety-focused Reformer Pilates videos, as these characteristics are associated with higher engagement and popularity.
Content creators may benefit from prioritizing these factors to attract and retain audiences, underscoring YouTube’s role in delivering
potentially reliable Pilates content.

KEYWORDS

Machine learning
Reformer pilates
Video power in-
dex
YouTube
Viewer engage-
ment

INTRODUCTION

Reformer Pilates is an effective and modern exercise system that
supports the foundation of the musculoskeletal system, enhances
the movement capacity and quality of the human body, and en-
ables the body to move as a whole by correcting muscle weak-
nesses and imbalances (Lee 2023; Pereira et al. 2022). In Reformer
Pilates, individuals engage in exercises in a controlled and focused
manner, discovering their movement capacities (Lim and Hyun
2021). This makes the exercise more beneficial and improves the
quality of individuals’ daily life activities. Moreover, Reformer
Pilates has become a commonly preferred method in the treat-
ment processes of orthopedic problems in the muscles and joints
(Rangabprai et al. 2024). In athletes, it is frequently chosen to
enhance performance and accelerate the recovery process after
injuries (Kaner and Ayer 2022). As Reformer is a functional and
complex piece of equipment, ensuring multifaceted physical devel-
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opment and maintenance is prioritized. Therefore, it is essential to
perform exercises under the guidance of expert trainers and with
proper technique to achieve effective results and avoid injuries
(Sim et al. 2022).

In today’s digital age, YouTube has become more than just a
social media and entertainment platform; it has transformed into a
tool for beneficial content creation and a large-scale information
sharing and interaction medium (Aharul 2023; Di Virgilio and Das
2023). In this context, YouTube has become a highly preferred
tool for reaching a wide audience in exercise and healthy living
fields, particularly for popular exercise techniques like Reformer
Pilates. The global reach of YouTube plays a significant role in
the growing popularity of Reformer Pilates (McDonough et al.
2022). Content created by both professional and amateur trainers
has raised awareness of this exercise technique by making the
system and principles of Reformer Pilates easy to understand.
However, the quality, reliability, and academic accuracy of these
created contents have become a part of the general discussions
about exercise content on YouTube (Ratwatte and Mattacola 2021;
Sari et al. 2025).

The purpose of this study is to evaluate the accuracy and relia-
bility of Reformer Pilates videos shared on YouTube, in addition
to analyzing key viewer engagement metrics. By examining the
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visibility of Reformer Pilates on the platform, analyzing the di-
versity of content, the expertise and quality of the content creator,
its popularity, and user interaction, the study seeks to reveal the
impact of these videos on users and determine the role of YouTube
in the widespread adoption of Reformer Pilates.

MATERIALS AND METHODS

Data Collection
On November 1, 2024, data for this analysis were sourced from
YouTube, a widely used platform for video sharing and social
networking. A search was performed using the term “Reformer
Pilates“ as the only keyword, and the resulting videos were sorted
by their view counts, with the highest-ranked videos appearing
first. The top 70 videos, all demonstrating Pilates exercises, were
identified according to specific inclusion criteria. Videos were
excluded if they were irrelevant, categorized as shorts, or were
promotional in nature. Additionally, videos containing personal
testimonials, those in languages other than English, those with-
out sound, or those shorter than 25 seconds were also removed.
The final dataset included videos with view counts ranging from
over 2 million for the most watched to over 32 thousand for the
least watched. Data from these videos were analyzed statistically.
An instructor, accredited by the Turkish Gymnastics Federation,
conducted the evaluation of each video. This evaluation process
was based on standardized instruments, namely the Modified DIS-
CERN (mDISCERN) scale, the Global Quality Scale (GQS), and
the Journal of the American Medical Association (JAMA) scoring
method Furthermore, metrics such as the view-to-like ratio and
the Video Power Index (VPI) were computed from the available
video data.

Evaluation Criteria
In this cross-sectional investigation, YouTube video reliability, qual-
ity, and popularity were assessed through various evaluation meth-
ods. The mDISCERN, GQS, and JAMA benchmarks were specifi-
cally used to ascertain the credibility and educational merit of the
videos. Viewer engagement and popularity levels were gauged
using the VPI.

The GQS, established by Bernard et al. (2007), is a five-point
scale designed for evaluating the quality of medical video content
intended to support patient education. It evaluates core elements
such as scientific accuracy, clarity and effectiveness of commu-
nication, comprehensiveness, educational value, and the overall
potential of the content to benefit viewers. Given the growing role
of Reformer Pilates in rehabilitation, posture correction, pain man-
agement, and overall wellness, this scale was used to evaluate how
effectively the videos present accurate and understandable infor-
mation about Pilates exercises and their potential health benefits.
Scores range from 1 (poor quality, useless/limited use to view-
ers) to 5 (excellent quality, highly beneficial/useful for viewers)
(Bernard et al. 2007).

To assess the reliability and accuracy of content in the Reformer
Pilates videos, the mDISCERN scale was utilized. This instrument,
adapted by Singh et al. (2012) from the original DISCERN tool by
Charnock et al. (1999), comprises five items. It evaluates depend-
ability, clarity, effective presentation, and the capacity to deliver
accurate health-related information. It was applied to examine
whether the Reformer Pilates videos clearly define their purpose,
provide balanced and evidence-based explanations of Reformer
Pilates techniques, and address any benefits or limitations relevant
to health outcomes. Each item receives a score of 1 (yes) or 0 (no),
yielding a total score between 0 and 5, where higher scores denote

superior informational quality (Singh et al. 2012; Charnock et al.
1999).

Evaluation of the Reformer Pilates videos’ reliability and qual-
ity was conducted using the JAMA scale, a tool developed by
Silberg et al. (1997). This scale examines essential components
such as the accuracy of the information, scientific validity, clarity
of expression, and the usefulness of the content for viewers.The
four evaluation points—authorship (is it clear who is responsible
for the content and their qualifications?), attribution (are sources
for claims clearly cited?), disclosure (are conflicts of interest or
sponsorships declared?), and currency (is the information up-to-
date?)—were examined in the context of Reformer Pilates videos.
Fulfillment of each criterion contributes one point to the score,
leading to a possible range of 0 to 4, with higher scores signifying
greater trustworthiness and reliability (Silberg et al. 1997).

Finally, the VPI, proposed by Erdem and Karaca (2018), was
calculated to quantify viewer engagement and the popularity of
Reformer Pilates videos. The VPI is used to determine the effective-
ness of video content on social media platforms and to evaluate the
extent of viewer interest it generates Given the growing interest
in Reformer Pilates as both a fitness and rehabilitative practice,
VPI quantified public interaction by incorporating metrics such as
the likes and dislikes counts, total views, and the duration of time
passed since each video was published (Erdem and Karaca 2018;
Çoşkun and Demir 2024, 2025).

To perform the calculations, the following formulas were ap-
plied (Erdem and Karaca 2018; Çoşkun and Demir 2024).

VPI =
Like ratio × View ratio

100

Like ratio =
100 × Like count

Like count + Dislike count

View ratio =
View count

Days since initial upload

Statistical Analyses
Analysis of the data was performed using SPSS software (Version
22.0, SPSS Inc., Chicago, IL, USA, License: Hitit University). For
categorical variables, frequencies (n) and percentages (%) were
used for description. Continuous data were summarized as mean
± standard deviation for those with a normal distribution, and
as median (min–max) for non-normally distributed data. The
assessment of data normality was carried out through the Shapiro–
Wilk test along with graphical techniques. Since the data were
not normally distributed, the Mann–Whitney U test was utilized
for comparisons between two independent groups. The Kruskal–
Wallis test was applied for comparisons across more than two
independent groups when the assumptions of parametric tests
were not satisfied. In cases of significant differences, pairwise post-
hoc comparisons were conducted using the Dunn–Bonferroni test.
Depending on the distributional features of the continuous vari-
ables, Spearman’s correlation coefficient was employed to assess
their associations. Statistical significance was set at p < 0.05.

Because the Video Power Index (VPI) is inherently skewed
and heavy-tailed, mean-based regression models and variance-
explained performance measures (e.g., R2) were considered subop-
timal. Therefore, a Quantile Regression Forest (QRF) approach was
employed to estimate conditional quantiles of VPI and to identify
predictors associated with high and very high viewer engagement.
QRF is a non-parametric, tree-based machine learning method
that extends random forests and is robust to nonlinear relation-
ships, mixed predictor types, and non-normal error structures. The
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outcome variable was VPI (continuous). Predictors included qual-
ity and reliability indicators (Global Quality Scale, modified DIS-
CERN, and JAMA scores), video characteristics (video length and
time since upload), and categorical descriptors related to content
features and source characteristics (safety mention, publisher type,
application location, instructor expertise, accessory use, machine
settings demonstration, and region). The dataset was randomly
divided into a training set (70%) and an independent test set (30%).
All model selection and tuning procedures were conducted on the
training set, with internal validation performed using 5-fold cross-
validation. Model hyperparameters were optimized via random-
ized search using cross-validated pinball loss as the optimization
criterion for τ = 0.75 and τ = 0.90. Model performance was evalu-
ated using pinball loss, the standard metric for quantile regression
models, with lower values indicating improved predictive accu-
racy. To enhance interpretability, quantile-specific permutation
feature importance was computed by assessing changes in pinball
loss following permutation of each predictor in the test set. All
machine learning analyses were conducted using Python.

RESULTS

The first 70 videos featuring Reformer Pilates exercises were up-
loaded by individual YouTube channels (87.1%, n=61) and Pilates
studio YouTube channels (12.9%, n=9). Of these videos, 55.7%
(n=39) were filmed at home, while 44.3% (n=31) were filmed in
a studio. It was found that 81.4% of the Pilates exercise videos
did not specify the trainer’s expertise, while 18.6% did indicate
the trainer’s expertise. The exercises targeted the following areas:
72.9% of the videos focused on the arms, 91.4% on the legs, 70%
on the abdomen, 54.3% on the back, 77.1% on the hips, and 52.9%
on the neck. The average video length was 1943.44 ± 1001.1 sec-
onds, with video lengths ranging from 105 to 4234 seconds. The
period since video upload ranged from 102 to 5507 days, averag-
ing 1318 ± 1035.8 days. The number of views per video averaged
203335.4 ± 299235.8 (ranging from 32062 to 2003528), and the aver-
age number of likes was 2397.9± 2077.4 (ranging from 159 to 8828).
The average Video Power Index (VPI) was 173.5 ± 193.1 (ranging
from 22 to 1214.7). Additional descriptive statistics concerning the
videos are detailed in Table 1.

The mean scores calculated for each evaluation tool were as
follows: GQS, 3.06 ± 0.899; mDISCERN, 3.09 ± 1.073; and JAMA,
2.61 ± 1.09. The GQS assessment categorized 28.6% of the 70 ana-
lyzed videos as low quality, 45.7% as moderate quality, and 25.7%
as high quality. Six videos achieved the maximum possible GQS
score of 5. Eight videos attained a perfect score on the mDISCERN
tool, and eighteen videos received a score of 4 on the JAMA cri-
teria. Notably, a single video, which had garnered 77,000 views
and was uploaded in 2020 by Homebody Pilates, achieved max-
imum scores across all three evaluation instruments; this video
presented a studio-based Pilates routine targeting multiple body
regions. The video with the highest view count (2003528 views),
uploaded by VivaPilatesStudio, received scores of 4 for both GQS
and mDISCERN, and 3 for JAMA. The second most viewed video
(984,980 views) received scores of 4 for GQS, 3 for mDISCERN,
and 3 for the JAMA criteria. The third and fourth most viewed
videos (867220 and 683466 views) had scale scores of 3, 3, 4 and
3, 2, 2, respectively. The fifth most-viewed video (658421 views)
scored 4 on GQS, 4 on mDISCERN, and 3 on JAMA.

Videos featuring expert trainers exhibited shorter durations,
fewer views, lower VPI, and lower JAMA scores relative to those
by non-expert trainers; however, these observed differences did
not reach statistical significance (P-values: 0.862, 0.294, 0.886, and

0.324, respectively; see Table 2). Conversely, expert trainer videos
showed higher GQS scores than those without expert trainers,
though this difference also lacked statistical significance (P-value:
0.809; Table 2). Videos by expert trainers had statistically signifi-
cantly lower mDISCERN scores than those by non-expert trainers
(P-value: 0.005; see Table 2). A jittered boxplot illustrating the
distribution of GQS, mDISCERN, JAMA, and VPI scores across
different instructor expertise levels is presented in Figure 1A.

Videos recorded in studios tended to have higher views, VPI,
GQS, mDISCERN, and JAMA scores than home-filmed videos, yet
none of these differences were statistically significant (P-values:
0.274, 0.411, 0.098, 0.820, and 0.257, respectively; see Table 2). The
length of studio-filmed videos was shorter than that of home-
filmed videos, but this difference was not statistically significant
(P-value: 0.290; see Table 2). A jittered boxplot depicting the
distribution of GQS, mDISCERN, JAMA, and VPI scores across
different pilates location categories is presented in Figure 1B.

Figure 1 Distribution of quality, reliability, and engagement met-
rics across video characteristics. (A) Boxplot with jitter illustrating
the distribution of Global Quality Scale (GQS), modified DISCERN
(mDISCERN), Journal of the American Medical Association (JAMA),
and Video Power Index (VPI) scores across different instructor ex-
pertise. (B) Boxplot with jitter illustrating the distribution of Global
Quality Scale (GQS), modified DISCERN (mDISCERN), Journal of
the American Medical Association (JAMA), and Video Power Index
(VPI) scores across different pilates locations. (C) Boxplot with jitter
illustrating the distribution of Global Quality Scale (GQS), modified
DISCERN (mDISCERN), Journal of the American Medical Associ-
ation (JAMA), and Video Power Index (VPI) scores among different
video publishers.

Content from Pilates studio YouTube channels demonstrated
higher view counts and JAMA scores when compared to videos
from personal YouTube channels, though these distinctions were
not statistically significant (P-values: 0.101, and 0.971, respec-
tively; see Table 3). Additionally, Pilates studio YouTube chan-
nel videos had lower VPI and mDISCERN scores compared to
personal YouTube channel videos, but these differences were not
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■ Table 1 Descriptive statistical findings regarding the characteristics of the analysed YouTube videos (n=70)

n % Mean ± SD Median (min–max)

Video publisher Video features

Personal YouTube Channel 61 87.1 Video length (seconds) 1943.44 ± 1001.1 2077.5 (105–4234)

Pilates studio’s YouTube channel 9 12.9 Time since upload (days) 1318 ± 1035.8 1077.5 (102–5507)

Pilates application location Number of views 203335.4 ± 299235.8 94415.5 (32062–2003528)

Home 39 55.7 Number of likes 2397.9 ± 2077.4 1591 (159–8828)

Studio 31 44.3 Number of dislikes 46.81 ± 76.99 19.5 (0–510)

Instructor expertise Comments 107.8 ± 143.4 76.5 (1–1018)

No 57 81.4 View ratio 177.8 ± 200.2 108.5 (23.3–1283.5)

Yes 13 18.6 Like ratio 97.9 ± 2.52 98.6 (87.8–100)

Activated regions VPI 173.5 ± 193.1 106.2 (22–1214.7)

Arm Scales

No 19 27.1 GQS 3.06 ± 0.899 3 (2–5)

Yes 51 72.9 Modified DISCERN 3.09 ± 1.073 3 (1–5)

Leg JAMA 2.61 ± 1.09 3 (1–4)

No 6 8.6

Yes 64 91.4

Abdomen

No 21 30.0

Yes 49 70.0

Back

No 32 45.7

Yes 38 54.3

Hips

No 16 22.9

Yes 54 77.1

Neck

No 33 47.1

Yes 37 52.9

Region

Single region 5 7.1

Multiple regions 65 92.9

Is the activated region specified?

No 25 35.7

Yes 45 64.3

Are the machine settings demonstrated?

No 23 32.9

Yes 47 67.1

Is there use of additional accessories?

No 42 60.0

Yes 28 40.0

Is safety mentioned?

No 54 77.1

Yes 16 22.9

Content type

Theoretical knowledge 5 7.1

Application 18 25.7

Mixed 47 67.1

VPI: Video Power Index; JAMA: Journal of the American Medical Association; GQS: global quality scale
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■ Table 2 Statistical findings comparing video length, number of views, VPI, GQS, Modified DISCERN, and JAMA scores among groups
categorized by instructor expertise and reformer Pilates application location.

Instructional Expertise Location

No (n=57) Yes (n=13) P values Studio (n=31) Home (n=39) P values

Video length (seconds)

2082

(105–3425)

1948.6±980.5

1812

(148–4234)

1920.5±1129.47

0.862

1812

(105–4234)

1793.6±1151.2

2198

(148–3425)

2062.5±860.7

0.290

Number of views

78787

(32062–2003528)

211461.5±325237.8

123615

(37141–575970)

167705.5±139785.3

0.294

110952

(32916–2003528)

264331.8±402417.6

88503

(32062–867220)

154851.1±171156.4

0.274

VPI

108.9

(22–1214.7)

179.8±204.3

100.4

(50.1–555.8)

145.9±136.2

0.886

74.8

(22–1214.7)

196.02±256.8

122

(30.9–622.6)

155.6±122.1

0.411

GQS
3 (2–5)

3.04±0.865

3 (2–5)

3.15±1.068

0.809
3 (2–5)

3.26±0.930

3 (2–5)

2.9±0.852

0.098

Modified DISCERN
3 (1–5)

3.26±1.061

2 (1–3)

2.31±0.751

0.005
3 (1–5)

3.13±1.118

3 (1–5)

3.05±1.05

0.820

JAMA
3 (1–4)

2.68±1.038

3 (1–4)

2.31±1.316

0.324
3 (1–4)

2.77±1.117

3 (1–4)

2.49±1.073

0.257

Mann Whitney U test with median (min–max) and mean ± SD
VPI: Video Power Index, GQS: Global Quality Scale, JAMA: Journal of the American Medical Association

statistically significant (P-values: 0.951, and 0.848, respectively;
see Table 3). However, Pilates studio YouTube channel videos had
statistically significantly higher GQS scores compared to personal
YouTube channel videos (P-value: 0.016; see Table 3). Videos from
Pilates studio channels were statistically significantly shorter in
length than those from personal channels (P-value: 0.043; see Table
3). A jittered boxplot illustrating the distribution of GQS, mDIS-
CERN, JAMA, and VPI scores across different video publishers is
presented in Figure 1C.

Correlation analysis revealed no statistically significant rela-
tionships between GQS, Modified DISCERN, or JAMA scores and
time since video upload, video length, number of views, number
of likes, or VPI (all P > 0.05; see Table 4). Nevertheless, a weak
positive correlation was observed between time since upload and
number of views (r = 0.466, P < 0.001), whereas weak negative
correlations were identified between time since upload and VPI
(r = −0.298, P = 0.012) and between video length and number of
views (r = −0.308, P = 0.009). No other statistically significant
relationships were detected (all P > 0.05; Table 4).

Given the heavy-tailed and highly skewed distribution of the
Video Power Index (VPI), Quantile Regression Forest (QRF) analy-
sis was performed to model high and very high levels of viewer
engagement. Model performance was evaluated using the pinball
loss function, which provides quantile-specific predictive accu-
racy without reliance on variance-explained measures. Using a
70/30 train–test split with internal 5-fold cross-validation on the
training set, the QRF model demonstrated stable and consistent
performance across quantiles. For high engagement (τ = 0.75), the

mean pinball loss during cross-validation was 66.96 ± 36.95, while
the corresponding pinball loss in the independent test set was
53.22. For very high engagement (τ = 0.90), model performance
improved, with a cross-validated pinball loss of 54.06 ± 35.73 and
a lower pinball loss of 35.80 in the test set (Table 5).

Quantile-specific permutation feature importance analysis was
conducted to improve interpretability of the model. Feature impor-
tance profiles differed across quantiles, indicating heterogeneity in
the factors associated with viewer engagement at different levels
of VPI. At the high engagement level (τ = 0.75), time since upload
was the most influential predictor, followed by overall content
quality, as measured by the Global Quality Scale (GQS). Video du-
ration also contributed notably, with longer videos associated with
lower engagement, while explicit mention of safety information
and publisher type showed additional influence (Figure 2).

At the very high engagement level (τ = 0.90), time since upload
remained the dominant predictor; however, indicators related to
professional credibility, particularly publisher type, gained relative
importance. GQS continued to contribute meaningfully, and video
duration retained a negative association with engagement, even
among the most highly viewed videos (Figure 3). Across both
upper quantiles, time since upload, GQS, video duration, safety
mention, and publisher type were consistently ranked among the
most influential predictors of viewer engagement.
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■ Table 3 Statistical findings comparing video length, number of views, VPI, GQS, Modified DISCERN, and JAMA scores among groups
created based on video publisher

Video Publisher

Personal YouTube Channel (n=61) Pilates Studio’s YouTube Channel (n=9) P values

Video length (seconds)
2132 (105–4234)

2039.1±971.09

1210 (192–2920)

1294.6±1014.4
0.043

Number of views
88503 (32062–867220)

154882.5±168284.6

211989 (36628–2003528)

531738.4±648592.4
0.101

VPI
108.9 (26.10–622.60)

156.7±140.5

65.8 (22–1214.7)

287.05±396.1
0.951

GQS
3 (2–5)

2.97±0.894

4 (3–5)

3.67±0.707
0.016

Modified DISCERN
3 (1–5)

3.1±1.106

3 (2–4)

3±0.866
0.848

JAMA
3 (1–4)

2.61±1.144

3 (1–3)

2.67±0.707
0.971

Mann Whitney U test with median (min–max) and mean ± SD
VPI: Video Power Index, GQS: Global Quality Scale, JAMA: Journal of the American Medical Association

■ Table 4 Correlation analysis findings determining the relationships between video metrics and GQS, Modified DISCERN, and JAMA scale
scores, along with the relationships between video characteristics and video metrics (n=70)

GQS Modified DISCERN JAMA

Time since upload (days) r 0.114 -0.209 0.055

P 0.349 0.083 0.649

Video length (seconds) r 0.078 -0.094 0.019

P 0.521 0.437 0.875

Number of views r 0.195 -0.029 -0.036

P 0.105 0.814 0.767

Number of likes r 0.047 0.038 -0.008

P 0.701 0.753 0.949

VPI r 0.105 0.185 -0.078

P 0.386 0.126 0.520

Correlation between video characteristics and video metrics

Time since upload (days) Video length (seconds)

Number of views r 0.466∗∗ -0.308∗∗

P < 0.001 0.009

Number of likes r 0.169 -0.017

P 0.161 0.889

VPI r -0.298∗ -0.128

P 0.012 0.289

GQS: Global Quality Scale; JAMA: Journal of the American Medical Association; VPI: Video Power Index

DISCUSSION

The findings of this study reveal several key factors influencing
the popularity, perceived quality, and characteristics of Reformer

Pilates videos on YouTube. In particular, Quantile Regression For-
est analysis focusing on high and very high engagement levels
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■ Table 5 Quantile Regression Forest performance for predicting
Video Power Index (VPI)

Quantile (τ) Evaluation Strategy Pinball Loss (Mean ± SD)

0.75 5-fold CV (training set, 70%) 66.96 ± 36.95

0.75 Hold-out Test Set (30%) 53.22

0.90 5-fold CV (training set, 70%) 54.06 ± 35.73

0.90 Hold-out Test Set (30%) 35.80

Abbreviations: Pinball loss: quantile-specific loss function (lower
values indicate better predictive accuracy); VPI: Video Power Index;
CV: cross-validation.

Figure 2 Feature importance at high engagement level (τ = 0.75).
Footnote: Permutation-based feature importance for the Quantile
Regression Forest model. Importance values represent the increase
in pinball loss following permutation of each predictor.

Figure 3 Feature importance at very high engagement level
(τ = 0.90). Footnote: Permutation-based feature importance for
the Quantile Regression Forest model at the very high engagement
quantile (τ = 0.90). Importance values represent the increase in
pinball loss following permutation of each predictor.

indicated that specific content-related features are associated with
higher viewer engagement, with explicit mention of safety infor-
mation emerging as one of the influential predictors of the Video
Power Index (VPI). This indicates that viewers, likely including a
significant proportion of beginners or those less familiar with the
specialized equipment, prioritize safety when engaging with exer-
cises like Reformer Pilates, which inherently involve technical skill
and potential injury risk. The explicit emphasis on safety appears
to foster trust and drive engagement. This result is in line with
the study by Ratwatte and Mattacola (2021), which suggested that
safety warnings in fitness content enhance viewer trust and posi-
tively affect engagement. The importance of clear, actionable safety
information in online exercise content cannot be overstated, espe-
cially given the autonomous nature of at-home exercise guided by
such videos Gronwald et al. (2022), while focusing on hamstring
injuries in football, highlight the general need for demand-specific
risk reduction, a principle applicable to online exercise guidance).

Time since upload was identified as the most influential predic-
tor of viewer engagement in the Quantile Regression Forest anal-
ysis at both high and very high engagement levels. This finding
reflects the “content decay” phenomenon, in which older videos
gradually lose visibility and relative popularity as platforms and
viewers prioritize newer content. This can be explained by social
media algorithms prioritizing new content and viewers’ tendency
to engage with new videos. Supporting this trend, Di Virgilio
and Das (2023) noted that social media platforms highlight con-
tinuously updated content, causing older videos to lose visibility.
While older videos accumulate more total views over time (as
shown by the weak positive correlation between time since upload
and views), their power to engage relative to newer content dimin-
ishes. This necessitates a strategy of regular content creation or
strategic re-promotion of older, high-quality content for creators
aiming for sustained impact on platforms driven by novelty and
recency.

Video duration was identified as an influential predictor of
viewer engagement in the Quantile Regression Forest analysis at
both high and very high engagement levels. Longer videos were
consistently associated with lower engagement, indicating that
shorter and more concise content is more effective in achieving
higher Video Power Index (VPI) values. This finding is consis-
tent with McDonough et al. (2022), who found that shorter, goal-
oriented content in exercise programs on YouTube receives higher
engagement. The average video length in our sample was substan-
tial (1943.44 ± 1001.1 seconds), suggesting that many videos may
exceed the optimal duration for viewer attention and engagement
in the current digital landscape, which often favors “snackable”
content. Interestingly, our finding that videos from Pilates studio
channels were statistically significantly shorter in length than those
from personal channels might indicate that professional studios
are more attuned to this preference for brevity or are structuring
content in more digestible segments.

Overall content quality, as measured by the Global Quality
Scale (GQS), consistently ranked among the influential predictors
of viewer engagement in the Quantile Regression Forest analy-
sis at both high and very high engagement levels. This finding
suggests that higher-quality instructional content is more strongly
represented among videos achieving elevated engagement levels.
The GQS scale, developed by Bernard et al. (2007), is a recognized
tool for assessing video quality. Our results align with Erdem and
Karaca (2018), who found that channels producing high-quality
content on YouTube received more engagement in their study of
kyphosis exercise videos.
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Furthermore, videos published by Pilates studio channels ex-
hibited higher GQS scores compared with personal channels, sug-
gesting that professionally produced content may be associated
with higher perceived quality. Given that GQS consistently ranked
among the influential predictors of engagement in the Quantile
Regression Forest analysis, this finding supports the relevance of
professional production standards in achieving higher viewer en-
gagement. The average GQS score for the analyzed videos was
3.06 ± 0.899, with 45.7% rated as medium quality and only 25.7%
as high quality, indicating substantial room for improvement in the
overall quality of Reformer Pilates content on YouTube. The poten-
tial for video analysis to assess and improve movement quality, as
demonstrated in various contexts from running gait (Vergeer et al.
2023) to specific exercises like back squats (Peres et al. 2024), un-
derscores the value of high-quality visual presentation in exercise
videos.

An unexpected finding of this study was that videos featur-
ing trainers who explicitly stated their expertise tended to receive
lower Modified DISCERN scores compared with videos presented
by trainers without stated expertise. The Modified DISCERN tool
assesses reliability and content accuracy, particularly the clarity
and effective presentation of health-related information (Singh et al.
2012; Charnock et al. 1999). This counterintuitive result does not
necessarily imply that expert trainers provide less reliable informa-
tion, but rather, as Singh et al. (2012) highlighted, the presentation
of content, particularly the excessive use of technical terms, can
reduce viewer comprehension. With 81.4% of videos not specify-
ing trainer expertise, those that did might have fallen into the trap
of using overly technical language, thereby diminishing clarity
and accessibility for a general audience, which is reflected in lower
DISCERN scores. This underscores the critical importance for ex-
pert trainers to employ clear, simple, and understandable language
when conveying information to a broad audience on platforms like
YouTube, ensuring their expertise translates into accessible and
truly informative content. While methods like 2D video analysis
are increasingly used to evaluate exercise form and ROM (Tanioka
et al. 2022), the verbal communication accompanying these visuals
is equally crucial for the viewer’s understanding and perceived
quality.

Regarding filming location, videos filmed in studios had de-
scriptively higher views, VPI, GQS, mDISCERN, and JAMA scores
compared to those filmed at home. However, these differences
were not statistically significant, although studio-filmed videos
tended to exhibit higher GQS scores. This suggests that while
professional settings can contribute to higher production quality,
high-quality content can also be produced in home settings with
appropriate equipment and planning. The lack of statistical signif-
icance may also be due to the relatively small number of studio
channel videos (n=9) in our sample. The ability of platforms like
YouTube to host content from diverse creators, regardless of ac-
cess to professional studios, is a key aspect of its democratizing
influence on information dissemination.

Overall, these findings provide valuable insights into how Re-
former Pilates videos are perceived by their audience and which
content features enhance engagement. The average quality scores
(GQS 3.06, Modified DISCERN 3.09, JAMA 2.61) indicate a general
landscape of moderate quality, highlighting a significant opportu-
nity for content creators to improve. Creators can increase their
success on digital platforms by producing content that emphasizes
safety, is concise and up-to-date, is of high overall quality, and
communicates expertise in an accessible manner.

Limitations

This study encountered some methodological limitations while
evaluating Reformer Pilates content on YouTube. Due to the study
design, the analysis was limited to the 70 most-watched English-
language videos at a specific point in time (November 1, 2024).
This limitation may affect the generalizability of the findings, as
the dynamic nature of the platform and algorithmic changes can
influence content visibility over time. Despite these limitations,
the study provides a robust methodological framework for eval-
uating digital exercise content and lays an important foundation
for future research. In particular, it paves the way for multicenter
and longitudinal studies that encompass content produced across
different cultures and languages. Furthermore, the findings offer
practical value by providing concrete recommendations for con-
tent creators to enhance the quality and engagement potential of
their videos.

CONCLUSION

The results of this study reveal factors influencing the popularity
of Reformer Pilates videos, offering important insights for digital
exercise content creators. The findings suggest that videos that
include safety information, are of high quality, short in duration,
and up to date are more likely to be associated with higher viewer
engagement. The observed association between video quality, con-
tent reliability, and viewer interaction highlights the importance for
content creators to consider professionalism and clarity when de-
veloping educational materials. Furthermore, the observed decline
in engagement of older videos over time underscores the critical
need for consistent production of updated content to maintain vis-
ibility on digital platforms. It has been observed that technical lan-
guage in content created by expert trainers can sometimes reduce
comprehensibility, negatively affecting the informative quality.
Therefore, it is recommended that content be prepared to main-
tain scientific accuracy while using clear and accessible language.
Based on the data obtained, effective presentation of exercise con-
tent such as Reformer Pilates on digital platforms is more likely
when videos emphasize safety, are high quality, concise, and up to
date. This approach will enhance both viewer satisfaction and the
level of information provided. The findings of this study highlight
the need to evaluate Reformer Pilates content on YouTube not only
based on view counts but also in terms of content quality and
relevance.
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ABSTRACT The identification of effective inhibitors targeting β-site amyloid precursor protein cleaving enzyme-1 (BACE-1) is crucial
for developing therapeutic strategies for Alzheimer’s disease. This study developed a structure-based computational framework for
predicting BACE-1 inhibitory activity using both deep learning and conventional machine learning techniques. A publicly available BACE-1
dataset with chemical structures defined in SMILES (Simplified Molecular Input Line Entry System) format was subjected to feature
extraction using the RDKit program. Global molecular characteristics and substructural information were captured using both molecular
fingerprint representations and physicochemical descriptors. Circular (Morgan/ECFP4) fingerprints, RDKit fingerprints, and MACCS keys
were used to encode molecular substructures into binary vectors. Subsequently, Support Vector Machines (SVM), k-Nearest Neighbors
(kNN), deep neural networks (DNN), and enhanced deep neural networks were trained and validated using these features under the
same experimental conditions. Confusion-matrix analysis and standard classification metrics (accuracy, precision, recall, and F1-score)
were used to assess the model’s performance. Deep learning models outperformed traditional machine learning techniques in capturing
intricate nonlinear structure–activity correlations, according to comparison research. The proposed enhanced DNN demonstrated
balanced precision and recall across both classes and achieved an accuracy of 0.99 on a test set of 303 molecules, including 138
active inhibitors and 165 inactive non-inhibitors. All things considered, these results imply that deep learning models, in conjunction
with molecular fingerprints, offer a robust and reliable approach to BACE-1 inhibitor prediction and could accelerate early-stage virtual
screening. All experiments were conducted using a fixed random seed and a held-out random split to ensure reproducibility.

KEYWORDS

BACE-1 in-
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Machine learning
Molecular finger-
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Structure activity
relationship

INTRODUCTION

The most common cause of dementia globally, Alzheimer’s disease,
is a progressive neurological condition that primarily affects older
persons (Knopman et al. 2021). Memory and other cognitive abili-
ties gradually deteriorate because of the illness, which eventually
affects independence and day-to-day activities. Alzheimer’s dis-
ease has a significant macroeconomic impact on healthcare systems
in addition to its dramatic effects on patients and caregivers. The
need for more potent disease-modifying therapies is highlighted
by the fact that, despite symptomatic therapies, current therapeutic
options remain limited in their ability to prevent or reverse disease
progression.

The build-up of β-amyloid (β) peptides is one of the main
pathogenic characteristics of Alzheimer’s disease at the molec-
ular level (Hampel et al. 2023). The amyloidogenic processing of
the amyloid precursor protein, involving multiple cleavage events,
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results in the production of β (Hampel et al. 2023). The first cleav-
age step that commits amyloid precursor protein to β synthesis is
catalysed by β-site amyloid precursor protein cleaving enzyme-1
(BACE-1, β-secretase). As a result, pharmacological inhibition of
BACE-1 has been extensively studied as a tactic to lower β for-
mation and impede downstream aggregation-related processes,
making BACE-1 a significant therapeutic target and an ongoing
focus of drug development research (Coimbra et al. 2024; Ghosh
2024).

Simultaneously, the availability of vast biochemical datasets
and the expansion of computational resources have made machine
learning, especially deep learning, increasingly crucial in early-
stage drug discovery (Zhang and Saravanan 2024; Pala 2025a).
By learning quantitative structure–activity relationships (QSAR)
from molecular representations, machine-learning-based screening
can save time and money compared to conventional trial-and-
error methods (Pala 2025b). Previous studies have reported the
effectiveness of deep neural network–based approaches for drug
interaction and bioactivity-related prediction tasks (Pala 2025c).
DNNs are particularly well-suited to capturing nonlinear patterns
in chemical data (Pala 2025a; Qian et al. 2023). Deep learning-based
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methods have also been shown to outperform traditional machine
learning baselines for BACE-1 inhibitor prediction.

Inspired by these advancements, this study proposes a
structure-based computational framework that utilises molecu-
lar information derived from SMILES strings to classify BACE-1
inhibitors. We extract a feature set comprising physicochemical
descriptors generated with RDKit tools and fingerprint-based rep-
resentations that encode substructural patterns. To facilitate a fair
and direct comparison, we integrate these molecular representa-
tions into both deep learning architectures and traditional machine
learning models, such as SVM and KNN, within a single experi-
mental setup. All models are trained and evaluated on the same
dataset and shared feature space, providing a controlled, system-
atic comparison of DNN-based and traditional ML approaches
for differentiating BACE-1 inhibitors from non-inhibitors, in con-
trast to prior studies that primarily focus on a single modelling
paradigm.

MATERIALS AND METHODS

Dataset
The dataset used in this study was obtained from an open-access
BACE-1 inhibitor classification dataset widely used in the literature
and contains a total of 1513 compounds with experimentally re-
ported BACE-1 inhibitory activity (Wu et al. 2018). Each compound
is represented in SMILES format and annotated with binary class
labels (active/inactive), framing the prediction task as a binary
classification problem (Weininger 1988; Lenselink et al. 2017).

The raw data were preprocessed to remove any erroneous or
illegible molecular structures. The RDKit chemical computing li-
brary was then used to calculate molecular descriptors that quanti-
tatively represent the compounds’ structural and physicochemical
properties. The calculated descriptors include molecular weight
(MolWt), octanol/water partition coefficient (LogP), numbers of
hydrogen bond donors and acceptors (HBD, HBA), topological
polar surface area (TPSA), numbers of rotatable bonds, rings, and
heavy atoms, and the carbon sp3 ratio (FractionCSP3) (Todes-
chini and Consonni 2009). These descriptors are widely used in
structure–activity relationship (SAR) modelling and exhibit strong
discriminatory power for predicting inhibitory activity.

In addition to global physicochemical descriptors, molecular
structures were also encoded using fingerprint-based representa-
tions to capture local substructural information. Circular and key-
based molecular fingerprints were generated for each compound
using the RDKit library. Circular (Morgan/ECFP4) fingerprints,
RDKit fingerprints, and MACCS keys were used to encode molec-
ular substructures (Rogers and Hahn 2010; Durant et al. 2002; Yang
et al. 2019). Fingerprints encode molecular substructure patterns
as binary vectors, enabling machine learning and deep learning
models to learn structural similarities and recurring motifs among
compounds effectively. This representation facilitates the incor-
poration of local chemical features that are not fully captured by
traditional descriptor-based approaches. After feature generation,
the dataset was split into training and test sets using a stratified
random split with an 80/20 ratio, ensuring that the class distri-
butions of active and inactive compounds were preserved across
both subsets.

Table 1 summarises the various fingerprint types, computa-
tional factors, and basic characteristics used in this study. In this
study, predicting BACE-1 inhibitor activity is treated as a binary
classification problem. Both standard machine learning techniques
and deep learning models were trained on a high-dimensional
feature space comprising chemical IDs and fingerprint images.

All models attempt to distinguish between inhibitory and non-
inhibitory substances.

Machine Learning Models
Support Vector Machine (SVM) Support vector machines are su-
pervised learning algorithms that try to maximise class separation
by defining an ideal decision boundary (Cortes and Vapnik 1995).
They produce effective results, particularly on high-dimensional
and nonlinear datasets. In this study, kernel functions were used to
create the SVM model and capture intricate interactions between
chemical characteristics. SVM’s fundamental purpose is to identify
a hyperplane that maximises the margin between classes. The
optimisation problem presetnted in Equation 1./2. is solved by
minimising a regularised loss function, where xi represents the
molecular feature vector, yi the class label, w the weight vector, b
the bias term, and ξi the slack variables. The regularisation param-
eter C controls the trade-off between maximising the margin and
allowing classification errors.

min
w,b,ξ

1
2
∥w∥2 + C

N

∑
i=1

ξi (1)

yi(w · xi + b) ≥ 1 − ξi (2)

Equation 1./2. The Support Vector Machine (SVM) optimisation
issue is formulated mathematically, with the goal of maximising
the margin between classes while permitting controlled misclassi-
fication using slack variables and the regularisation parameter C.

k-Nearest Neighbors (kNN) The k-nearest neighbour (kNN) algo-
rithm is a sample-based classification method that accounts for
similarities among samples (Cover and Hart 1967). A test sample’s
class is determined by the class labels of its k nearest neighbours
in the feature space. When predicting activity based on molecular
similarities, the kNN algorithm produces intuitive and effective
results.

Equation 3 illustrates the class prediction rule of the kNN clas-
sifier, where Nk(x) represents the set of k nearest neighbours of
the test sample x, and I(·) denotes the indicator function. Distance
between samples is measured using the Euclidean distance.

ŷ = arg max
c ∑

i∈Nk(x)
I(yi = c) (3)

Equation 3 decision rule of the k-Nearest Neighbors (kNN)
classifier, where the predicted class is determined by majority
voting among the k nearest neighbors in the feature space.

Deep Learning Models
Deep Neural Network (DNN) For binary classification, a feed-
forward deep neural network architecture was used. In addition
to batch normalisation, dropout regularisation, and early stopping
to enhance generalisation and avoid overfitting, the model was
trained with class weighting to mitigate potential class imbalance.
Based on validation performance, hyperparameters were selected
empirically. Multilayer artificial neural networks have been suc-
cessfully applied to model complex nonlinear structure–activity
relationships in various molecular property and drug interaction
prediction tasks (Pala 2025a,b). These networks provide a hierarchi-
cal learning process that begins at the input layer and propagates
through one or more hidden layers to the output layer (LeCun et
al. 2015).

The following equation defines the output of a neuron in a fully
connected neural network layer:
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■ Table 1 Summarises the descriptive features, parameter settings, vector types, and dimensionalities of the chemical fingerprint
representations used in this investigation.

Fingerprint Type Description Parameters Vector Type Bit Length

Morgan (ECFP4) Circular fingerprints encoding
atomic neighbourhoods up to a
radius of two bonds

Radius = 2 Binary 1024

RDKit Topological (RDKFin-
gerprint)

Path-based fingerprint encoding lin-
ear atom paths and molecular bond-
ing patterns

Default Binary 2048

MACCS Keys Predefined chemical substructure
keys representing common chemical
patterns

166 keys Binary 166

h(l) = f
(

W(l)h(l−1) + b(l)
)

(4)

Equation 4. Forward propagation in a fully connected layer, where
h(l) denotes the activation vector of layer l, h(l−1) the activations
from the previous layer, W(l) the weight matrix, b(l) the bias vector,
and f (·) the activation function.

Here, W(l) represents the weight matrix, b(l) the bias vector,
and f (·) the activation function. For the binary classification prob-
lem, the sigmoid activation function is used in the output layer:

σ(z) =
1

1 + e−z (5)

Equation 5. Sigmoid activation function for binary classification,
where the function maps real-valued inputs to the interval (0, 1).

A binary cross-entropy loss function was selected to reduce the
discrepancy between the expected outputs and the actual class
labels during model training:

L = − 1
N

N

∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (6)

Equation 6. Binary cross-entropy loss function used for training
the deep neural network, where yi denotes the true class label, ŷi
the predicted probability, and N the total number of samples.

Improved Deep Neural Network Architecture A binary cross-
entropy loss function was selected to reduce the discrepancy be-
tween expected outputs and actual class labels during model train-
ing. Several regularisation strategies were incorporated into the
baseline DNN architecture to improve model performance and
prevent overfitting. During training, a proportion of the network’s
neurons was randomly deactivated using dropout layers, which
helps reduce co-adaptation of neurons and enhances generalisation
(Srivastava et al. 2014). To address potential class imbalance in the
dataset, class weights were incorporated into the training process,
following strategies adopted in previous deep learning studies
(Pala 2025a). Furthermore, an early stopping mechanism was
employed to monitor the model’s validation loss and terminate
training once performance ceased to improve, thereby preventing
unnecessary overtraining (Prechelt 1998). The hyperparameter
configuration of the improved DNN model is summarized in Table
2.

EXPERIMENTAL RESULTS

This section presents and analyses the experimental findings from
using deep learning and classical machine learning models on the
BACE-1 dataset. Standard classification metrics, including accu-
racy, precision, recall, F1-score, and confusion matrices, were used
to assess the model’s performance (Sokolova and Lapalme 2009).
These criteria provide a thorough evaluation of each model’s abil-
ity to differentiate between BACE-1 inhibitors and non-inhibitors
accurately. To guarantee the validity and applicability of the pre-
sented findings, all experiment was carried out on a separate test
set. The efficacy of the deep neural network model in capturing
intricate nonlinear correlations between chemical fingerprints and
BACE-1 inhibitory activity was evaluated.Table 3 summarises the
classification performance of the DNN model on the test dataset.

Figure 1 The confusion matrix of the DNN model illustrating its
ability to correctly classify both inhibitory and non-inhibitory
compounds, while revealing a limited number of misclassifica-
tions.

The performance of the proposed deep neural network (DNN)
model was compared with that of traditional machine learning
techniques, including Support Vector Machines (SVM) and k-
Nearest Neighbours (kNN), to further evaluate the effectiveness of
the proposed deep learning methodology. To ensure a fair and un-
biased comparison, all models were trained and evaluated using
identical molecular feature representations and the same held-
out test dataset. Standard classification metrics were employed
for the comparative analysis, enabling an objective assessment
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■ Table 2 Hyperparameter configuration of the improved deep neural network (DNN) model used for BACE-1 inhibitor classification.

Hyperparameter Value Description

Neurons per layer 512–256–128 Decreasing layer sizes (funnel-shaped architecture)

Activation function ReLU Nonlinear activation for hidden layers

Output activation Sigmoid Binary classification output

Loss function Binary cross-entropy Optimization objective for binary labels

Optimizer Adam Adaptive gradient-based optimizer

Learning rate 0.001 Initial learning rate for Adam

Batch size 32 Number of samples per gradient update

Max epochs 100 Upper bound; training may stop earlier with early stop-
ping

Dropout rate 0.30 Regularization to reduce overfitting

Validation split 0.20 Fraction of training data reserved for validation

■ Table 3 Classification performance on the BACE-1 inhibitor
prediction problem.

Class Precision Recall F1-Score Support

0 0.98 0.97 0.98 165

1 0.96 0.98 0.97 138

Accuracy 0.97 303

Macro Avg 0.97 0.97 0.97 303

Weighted Avg 0.97 0.97 0.97 303

of each model’s capability to distinguish BACE-1 inhibitors from
non-inhibitors.

■ Table 4 Standard classification criteria used to compare the
performance of deep neural network designs and classical ma-
chine learning models on the BACE-1 inhibitor prediction prob-
lem.

Model Accuracy Precision Recall F1-score

SVM 0.97 0.97 0.97 0.97

kNN 0.82 0.82 0.82 0.82

DNN 0.97 0.97 0.97 0.97

Improved DNN 0.99 0.99 0.99 0.99

As shown in Table 4, the improved DNN model achieved the
highest overall performance across all evaluation metrics, outper-
forming both classical machine learning methods and the base-
line DNN architecture. While the SVM and standard DNN mod-
els demonstrated strong and comparable predictive performance,
with an accuracy of 0.97, the kNN model exhibited substantially
lower performance, indicating a limited ability to capture complex
structure–activity relationships. In contrast, the improved DNN ar-
chitecture achieved an accuracy of 0.99, along with precision, recall,
and F1-score values of 0.99, highlighting its superior capability to
model nonlinear relationships between molecular fingerprints and
BACE-1 inhibitory activity. These results demonstrate the effective-
ness of deep learning–based approaches, particularly optimised
DNN architectures, for reliable inhibitor classification.

In addition to threshold-dependent performance metrics, re-
ceiver operating characteristic (ROC) analysis was conducted to
evaluate the models’ discriminative capability across varying deci-
sion thresholds. Unlike accuracy-based measures, ROC curves pro-
vide a threshold-independent assessment of classification perfor-
mance, making them particularly suitable for imbalanced datasets
such as BACE-1. The area under the ROC curve (AUC) reflects
the overall ability of the models to distinguish between inhibitors
and non-inhibitors. ROC curves are reported for classical machine
learning models (SVM and KNN) to highlight their threshold-
independent discrimination. In contrast, deep learning models
were primarily evaluated using confusion matrices and standard
classification metrics.
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Figure 2 (a) Figure 2 (b)
Figure 2 The confusion matrices of SVM and kNN highlight the differences in their classification behavior, with SVM exhibiting fewer
misclassifications compared to kNN.

Figure 3 Compared to the baseline DNN, the improved DNN
confusion matrix demonstrates a further reduction in classifica-
tion errors, indicating enhanced generalisation capability.

Figure 4 ROC curve analysis indicating that classical machine
learning models, particularly SVM, exhibit strong discriminative
capability for BACE-1 inhibitor prediction.

CONCLUSION

This study integrated chemical descriptors and fingerprint-based
representations to develop a structure-based machine learning
framework for predicting BACE-1 inhibitory activity. To assess
how well deep learning techniques and classical machine learning

models, such as Support Vector Machines and k-Nearest Neigh-
bours, model the structure–activity relationships in the BACE-
1 dataset. The experimental findings showed that deep neural
network models outperform traditional techniques for extract-
ing intricate nonlinear patterns from chemical fingerprint data.
With an overall accuracy of 0.99, the enhanced DNN architec-
ture outperformed SVM across prediction accuracy, precision, re-
call, and F1-score. These results show that for BACE-1 inhibitor
classification tasks, deeper architectures in conjunction with opti-
mised feature representations offer a substantial advantage. All
things considered, the suggested method emphasises the promise
of deep learning-based models as dependable and effective in-
struments for early-stage drug discovery, especially in the identi-
fication of prospective BACE-1 inhibitors. To improve predictive
performance, future research might focus on extending this frame-
work to regression-based activity prediction, external validation on
separate datasets, and incorporating sophisticated representation
learning methods, such as graph neural networks.
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ABSTRACT Skin cancer represents an escalating global public health challenge where early detection is paramount,
potentially increasing five-year survival rates to 99%. While dermoscopy improves diagnostic sensitivity, its effectiveness
often depends on clinician experience and is subject to inter-observer variability. To address these limitations, this study
presents a rigorous comparative analysis of four state-of-the-art Vision Transformer (ViT) architectures, DeiT III-Base,
Swin-Base, ViT-Base, and PiT-B, for the automated classification of pigmented skin lesions. We utilized the HAM10000
dataset (n=10,011) and implemented a stratified 70-15-15 split to ensure balanced training, validation, and testing phases.
Images were resized to 224×224 pixels and normalized using ImageNet parameters, while transfer learning was employed
to stabilize training and enhance generalization. Experimental results indicate that DeiT III-Base achieved superior
diagnostic efficacy, reaching an accuracy of 92.04% and an F1-score of 85.44%. Furthermore, computational evaluation
revealed that DeiT III-Base and ViT-Base offered highly efficient clinical throughput with sub-millisecond inference times
(0.5674 ms and 0.5459 ms, respectively), whereas PiT-B exhibited the lowest computational workload (21.1067 GFLOPs).
These findings underscore the viability of attention-based paradigms as robust real-time Computer-Aided Diagnosis
(CAD) tools. Future research will explore the integration of multi-modal patient data and Explainable AI (XAI) to foster
transparency and clinical trust.

KEYWORDS

Vision transform-
ers (ViTs)
Skin cancer clas-
sification
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Computer-aided
diagnosis (CAD)
DeiT III-Base

INTRODUCTION

Skin cancer constitutes a significant and escalating public health
challenge globally, accounting for a substantial proportion of all
diagnosed malignancies. With incidence rates rising steadily due
to factors such as increased exposure to ultraviolet (UV) radiation,
environmental changes, and aging populations, the burden on
healthcare systems continues to grow. Among the various types,
melanoma represents the most aggressive and lethal form, char-
acterized by a high potential for metastasis (Gloster Jr and Neal
2006; Armstrong and Kricker 1995; Madan et al. 2010). However,
prognosis is strongly correlated with the stage at diagnosis; early
detection can increase the five-year survival rate to nearly 99%,
whereas delayed diagnosis significantly diminishes treatment suc-
cess and patient survival. Consequently, the development of rapid,
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accessible, and precise diagnostic mechanisms is not merely a clin-
ical preference but a vital necessity to reduce mortality rates and
improve patient outcomes (Gloster Jr and Brodland 1996).

Traditionally, the diagnosis of pigmented skin lesions relies on
visual examination followed by dermoscopy, a non-invasive imag-
ing technique that visualizes subsurface skin structures. While der-
moscopy significantly enhances diagnostic sensitivity compared
to naked-eye examination, its efficacy remains heavily dependent
on the clinician’s experience and training (Siegel et al. 2024; Jerant
et al. 2000). The visual similarity between benign lesions (e.g., nevi,
benign keratosis) and malignant tumors (e.g., melanoma, basal cell
carcinoma) often leads to diagnostic ambiguity, resulting in either
unnecessary biopsies or missed malignancies. Factors such as clin-
ician fatigue, inter-observer variability, and the sheer volume of
patients further complicate the manual diagnostic process. These
limitations have necessitated the integration of Computer-Aided
Diagnosis (CAD) systems to provide objective, consistent, and
"second opinion" support for dermatologists.

In the last decade, the landscape of medical image analysis
has been revolutionized by Deep Learning (DL), particularly Con-
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volutional Neural Networks (CNNs) (ThangaPurni and Braveen
2025; Ozdemir and Pacal 2025; Çakmak and Pacal 2025; Cakmak
and Maman 2025). Architectures such as ResNet, DenseNet, and
EfficientNet have established themselves as the gold standard in
skin lesion classification, demonstrating the ability to learn hierar-
chical feature representations directly from raw images (Karthik
et al. 2024; Cakmak and Pacal 2025; Pacal and Cakmak 2025a,b).
Despite their success, traditional CNNs primarily focus on local
features due to their receptive field limitations, potentially missing
long-range dependencies and global contextual information cru-
cial for differentiating complex lesions. This limitation has paved
the way for the adoption of Vision Transformers (ViTs) and hybrid
architecture. Unlike CNNs, ViTs utilize self-attention mechanisms
to capture global relationships across the entire image, offering a
robust alternative for capturing fine-grained morphological details.

However, the rapid evolution of DL has precipitated a shift
from pure convolutional networks to sophisticated attention-based
paradigms. Consequently, there remains a critical need to rigor-
ously evaluate how these distinct architectural strategies perform
within the specific domain of skin cancer classification. In this
study, we propose a comprehensive comparative analysis of ad-
vanced ViT architectures to identify the most effective mechanisms
for skin lesion diagnosis. Rather than employing a broad spec-
trum of legacy models, our experimental framework rigorously
benchmarks four distinct transformer-based methodologies that
represent the state-of-the-art in attention mechanisms: the Data-
efficient Image Transformer (DeiT III-Base), the standard ViT-Base,
the hierarchical Swin Transformer (Swin-Base), and the Pooling-
based Vision Transformer (PiT-B). Through this targeted evalua-
tion, we aim to assess these architectures under unified conditions,
providing critical insights into their generalization capabilities and
clinical applicability for early skin cancer detection.

RELATED WORK

To overcome the locality bias of CNNs, researchers have increas-
ingly adopted ViTs to model global context within dermoscopic
images. Aruk et al. (2026) conducted a comprehensive compara-
tive study evaluating 15 different CNNs against 15 ViT variants,
including Swin and BeiT architectures, under identical training
conditions. Their extensive analysis revealed that ViT models, par-
ticularly the Swin Transformer, consistently outperformed CNNs
in classification accuracy, albeit at the cost of higher parameter
counts and computational demands. Addressing the data-hungry
nature of transformers, novel training paradigms have been intro-
duced to improve robustness. Chaurasia et al. (2025) developed
a multi-resolution model utilizing the DINOv2 self-supervised
learning method to classify skin cancer subtypes from whole slide
images (WSIs). By training on histological patches at various mag-
nifications (10x to 400x), their model effectively captured multi-
scale features, achieving an F1-score of 0.898 on external validation
datasets.

Furthermore, specific architectural modifications have been pro-
posed to tailor ViTs for the nuances of skin lesion analysis. Manju
et al. (2025) proposed a preprocessing-optimized ViT model that
integrates contrast enhancement and lesion segmentation directly
into the workflow to remove artifacts before tokenization. This
attention-enhanced model achieved an AUC-ROC score of 0.97,
proving that feeding cleaner, segmented data into self-attention
mechanisms significantly boosts diagnostic performance. Finally,
the challenge of class imbalance in transformer training has been
rigorously addressed. Sakib et al. (2025) introduced "LEVit," a
framework that combines a hybrid ViT with extensive data aug-

mentation and oversampling techniques to ensure uniform class
distribution. Their approach not only achieved an F1 score of
98.11% on the ISIC 2019 dataset but also integrated Grad-CAM to
generate class-specific heatmaps, ensuring the model’s decisions
were interpretable.

Building on the theme of architectural refinement for dermato-
logical assessment, the literature has further evolved to address the
synergy between localized features and global spatial reasoning.
Pacal et al. (2024) advanced this structural capacity by propos-
ing a Swin Transformer model that incorporates hybrid shifted
window-based multi-head self-attention. Their methodology uti-
lizes SwiGLU-based MLP layers to more effectively synchronize
localized texture orientations with global spatial cues, thereby en-
hancing the network’s sensitivity to minute malignant patterns
that often elude standard convolutional filters. Beyond individual
architectural optimizations, the focus has shifted toward improv-
ing decision robustness through multi-model integration. Bruno
et al. (2025) expanded upon these gains by introducing a multi-
scale attention and ensemble framework designed to aggregate
features from diverse transformer-based learners. Their research
demonstrates that combining multiple attention mechanisms effec-
tively overcomes the inherent biases of single-architecture systems,
leading to superior classification stability even in the presence of
noisy or heterogeneous dermatoscopic data.

Finally, ensuring that these sophisticated models are both trust-
worthy and clinically viable has become a primary objective. Dag-
naw et al. (2024) addressed this by integrating ViTs with Explain-
able Artificial Intelligence (XAI) to bridge the gap between high-
performance computing and clinical transparency. By providing
dermatologists with interpretable saliency maps, their framework
ensures that the diagnostic logic of the transformer is both visible
and verifiable, fostering the necessary confidence for the adoption
of automated screening tools in high-stakes medical environments.

MATERIALS AND METHODS

Dataset and Data Preprocessing

In this research, we worked with the HAM10000 dataset, which
is essentially the gold standard collection used in the ISIC 2018
challenge (HAM 2025). It contains 10,011 dermoscopic photos
covering seven different types of skin conditions, ranging from
harmless moles to dangerous cancers like melanoma. If you look
at Figure 1, you can see why this is such a difficult task: many of
these lesions look incredibly similar to the untrained eye, making
manual diagnosis a real challenge.

When setting up our experiments, we didn’t just split the data
randomly. We used a stratified split to make sure the balance of
diseases remained consistent across our training and testing sets.
We settled on a 70-15-15 distribution, which gave us 7,005 images
to train our models, 1,498 to fine-tune them, and a final 1,508 to
test how well they actually perform on "unseen" cases. You can see
the exact breakdown of these numbers in Table 1.

To get the images ready for the AI, we resized everything to
224×224 pixels. We also normalized the colors based on ImageNet
standards. This step is vital because it helps the model ignore
background "noise" like lighting differences and instead focus
strictly on the textures and patterns that actually matter for a
correct diagnosis.

Vision Transformers (ViTs)

To address the inherent limitations of local receptive fields in convo-
lutional networks, this study leverages ViTs to model long-range
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Figure 1 Representative dermoscopic samples from the HAM10000 dataset illustrating the seven skin lesion classes used in this study (AKIEC,
BCC, BKL, DF, MEL, NV, and VASC).

■ Table 1 Distribution of the HAM10000 dataset across the seven diagnostic categories for training, validation, and testing subsets.

Class Name Total Train Val Test

BKL 1099 769 164 166

DF 115 80 17 18

VASC 142 99 21 22

AKIEC 323 226 48 49

MEL 1113 779 166 168

BCC 514 359 77 78

NV 6705 4693 1005 1007

Grand Total 10011 7005 1498 1508

dependencies and global semantic context, which are essential
for distinguishing the subtle morphological variations in skin le-
sions. Our methodological framework rigorously benchmarks four
distinct attention-based paradigms to evaluate their efficacy in
dermoscopic analysis: the standard ViT-Base (Dosovitskiy et al.
2020), serving as a pure self-attention anchor; the DeiT III-Base
(Touvron et al. 2022), selected for its superior data efficiency and
refined training strategies suitable for medical datasets; the Swin
Transformer (Swin-Base) (Liu et al. 2021), which introduces a hier-
archical architecture with shifted windows to capture multi-scale
features; and the Pooling-based Vision Transformer (PiT-B) (Ren
et al. 2024), which incorporates spatial dimension reduction to
bridge the gap between transformer flexibility and the structural
abstraction of CNNs. By deploying this diverse set of architectures,
we aim to dissect how specific structural innovations, ranging from
hierarchical attention to pooling mechanisms, impact diagnostic
precision in skin cancer classification.

Transfer Learning

Training high-capacity DL architectures, particularly Vision Trans-
formers, from scratch necessitates massive volumes of annotated
data to overcome the lack of inherent inductive biases found in
convolutional networks. Given the intrinsic scarcity of labeled
medical imaging datasets compared to general-domain reposito-
ries, initializing models with random weights often leads to poor
convergence and significant overfitting. To mitigate this challenge,
we adopted a transfer learning strategy by leveraging models
pre-trained on the ImageNet-1K dataset. This approach allows
our network to inherit robust hierarchical feature representations,
ranging from low-level edge detection to high-level semantic ab-
stractions, learned from millions of natural images. By transferring
this prior knowledge to the dermatological domain, we effectively
bypass the computational burden of learning fundamental visual
patterns de novo, thereby accelerating training stability and en-
hancing generalization performance on dermoscopic images (Ren
et al. 2022).
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In the implementation phase, the architectural adaptation in-
volved replacing the original classification head, designed for the
1,000 distinct classes of ImageNet, with a task-specific Multi-Layer
Perceptron (MLP) tailored to our seven diagnostic categories. We
employed an end-to-end fine-tuning protocol rather than merely
using the backbone as a fixed feature extractor. This allowed the
pre-trained weights to be subtly adjusted via backpropagation,
facilitating the domain adaptation process. By doing so, the mod-
els could recalibrate their attention mechanisms to focus on the
specific, fine-grained morphological details pertinent to skin le-
sions, such as pigment networks and vascular structures, while
retaining the robust generalization capabilities acquired during
the pre-training phase (Bengio 2012).

Experimental Design and Training Protocol

To ensure the reproducibility and rigor of our comparative anal-
ysis, all DL architectures were implemented using the PyTorch
framework on a high-performance workstation equipped with an
NVIDIA GPU. The dataset was partitioned using a stratified sam-
pling strategy to maintain the inherent class distribution across sub-
sets, resulting in a split of approximately 70% for training (n=7,005),
15% for validation (n=1,498), and 15% for testing (n=1,508). Prior
to feeding the networks, all images underwent standardization,
including resizing to uniform dimensions compatible with the
pre-trained transformer backbones (typically 224×224) and normal-
ization using ImageNet mean and standard deviation parameters.
This rigorous preprocessing pipeline was essential to stabilize the
training dynamics and ensure that the attention mechanisms could
effectively attend to lesion-specific features without being swayed
by lighting or resolution inconsistencies.

The training phase was conducted using the Cross-Entropy
Loss function to penalize classification errors across the seven
diagnostic categories. To optimize the network weights, we em-
ployed the AdamW optimizer, widely recognized for its efficacy
in training transformer models, initialized with an empirically
tuned learning rate and weight decay to prevent overfitting. We
utilized a dynamic learning rate scheduler (Cosine Annealing) to
progressively reduce the learning rate, allowing the model to settle
into sharper minima as training converged. The best-performing
model weights were saved based on the validation loss metric to
avoid the pitfalls of overfitting during extended epochs. Finally,
the quantitative evaluation was performed on the unseen test set
using standard metrics, including Accuracy, Precision, Recall, and
F1-Score, to provide a holistic view of each model’s diagnostic
capability.

Performance Evaluation Metrics

To truly understand how these models hold up, we didn’t just look
at their accuracy. We used a multi-layered approach to evaluate
them, looking at how well they handle different skin diseases and
how they would actually run in a real-world clinic. We tracked
standard scores like Accuracy, Precision, Recall, and the F1-Score
to see how reliable the diagnoses are. However, for a model to be
useful in a hospital, it also needs to be efficient. That’s why we
also measured "Params" to see how much memory the model takes
up, "GFLOPs" to calculate the raw processing power required,
and "Inference Time" to see how many milliseconds it takes for a
doctor to get a result. You can see how all these factors compare
for each model in Table 2. The formulas we used to calculate these
results are shown above. Accuracy (Eq. 1) gives us the big picture
of correct guesses, while Precision (Eq. 2) tells us how often the
model is right when it flags a lesion as concerning. Recall (Eq. 3) is

perhaps the most important for patients because it measures how
many actual cancer cases the model caught without missing any.
Finally, the F1-Score (Eq. 4) helps us find the sweet spot between
being precise and being thorough, which is vital since some types
of skin cancer in our dataset are much rarer than others.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-Score = 2 × Precision × Recall
Precision + Recall

(4)

RESULTS

Quantitative Performance and Comparative Analysis

The empirical evaluation of the four benchmarked ViT architec-
tures reveals distinct trade-offs between diagnostic precision and
computational efficiency. As summarized in Table 2, the DeiT III-
Base model achieved the highest overall performance, reaching
an accuracy of 92.04% and an F1-score of 85.44%. This superior
performance suggests that the data-efficient training strategies and
refined attention mechanisms of DeiT III are particularly effective
for capturing the fine-grained morphological features necessary for
skin lesion classification. Swin-Base followed closely with an accu-
racy of 91.64%, demonstrating the benefit of hierarchical feature
extraction in dermoscopic analysis.

In terms of computational complexity, PiT-B exhibited the high-
est efficiency regarding memory footprint and processing work-
load, utilizing only 72.75M parameters and 21.1067 GFLOPs. How-
ever, this reduction in GFLOPs did not translate to the fastest
execution; PiT-B recorded the highest Inference Time (1.5418 ms),
likely due to its unique pooling-based architecture which may hin-
der parallelization compared to the standard transformer blocks.
Conversely, ViT-Base and DeiT III-Base provided the most rapid
predictions with inference times of 0.5459 ms and 0.5674 ms, re-
spectively, making them the most suitable candidates for high-
throughput clinical screening.

Analysis of Model Predictions and Error Patterns

To dissect the model’s decision-making process, we analyzed the
confusion matrix for the top-performing DeiT III-Base model, as
shown in Figure 2. The diagonal elements indicate high sensitivity
for the most prevalent class, Melanocytic Nevi (NV), with 977
correct predictions. However, notable confusion exists between
Actinic Keratoses (AKIEC) and Benign Keratosis (BKL), as well
as between Melanoma (MEL) and NV. This reflects the inherent
"visual mimicry" described in clinical literature, where benign and
malignant lesions share overlapping pigment patterns.

A qualitative assessment of these results is provided in Figure 3,
which visualizes both successful and erroneous predictions along-
side their confidence scores. True predictions often correspond to
lesions with clear, well-defined diagnostic structures, such as the
distinct vascular patterns in VASC or the characteristic symmetry
in NV. In contrast, misclassified cases, such as a MEL predicted as
AKIEC with 49.3% confidence, often involve ambiguous textures
or peripheral artifacts that challenge the self-attention mechanism.
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■ Table 2 Performance comparison of the benchmarked ViT architectures on the HAM10000 test set, evaluated by predictive metrics and
computational efficiency.

Models Accuracy Precision Recall F1 Score Params (M) Gflops Inference Time
(Ms)

DeiT III-Base 0.9204 0.8794 0.8348 0.8544 85.82 33.6955 0.5674

ViT-Base 0.8952 0.8508 0.7704 0.8060 85.80 33.6955 0.5459

Swin-Base 0.9164 0.8703 0.8356 0.8508 86.75 30.3375 0.7927

PiT-B 0.9072 0.8677 0.8599 0.8606 72.75 21.1067 1.5418

Figure 2 Confusion matrix for the top-performing DeiT III-Base
model, illustrating class-specific diagnostic performance and inter-
class misclassification patterns.

Figure 3 Qualitative analysis of model predictions showing rep-
resentative examples of successful classifications and erroneous
predictions with their corresponding confidence scores.

DISCUSSION

Interpretation of Key Findings
The results of this study underscore the effectiveness of ViTs in
overcoming the locality bias of traditional CNNs. The top per-
formance of DeiT III-Base and Swin-Base confirms that modeling
global contextual relationships is vital for differentiating complex
lesions. Specifically, the self-attention mechanism allows these

models to attend to subtle, long-range dependencies across the
lesion surface, which are often missed by the localized receptive
fields of standard convolutional filters. Furthermore, the use of
Transfer Learning from ImageNet-1K was essential in stabilizing
training and achieving high accuracy despite the limited size of
medical datasets compared to natural image repositories.

Clinical Implications, Limitations, and Future Directions
From a clinical perspective, the high accuracy and sub-millisecond
inference times of models like DeiT III-Base suggest their viability
as real-time CAD tools. Such systems could provide a critical "sec-
ond opinion," potentially reducing the rate of unnecessary biop-
sies for benign lesions while ensuring that early-stage melanomas
are not overlooked. However, this study has limitations. The
HAM10000 dataset is significantly imbalanced, with NV account-
ing for over 60% of the samples. As seen in the confusion matrix
(Figure 2), this imbalance can bias models toward predicting the
majority class. Future research should focus on incorporating
multi-modal data, such as patient age, anatomical location, and
clinical history, to further refine diagnostic precision. Addition-
ally, exploring Explainable AI (XAI) techniques, beyond the visual
samples in Figure 3, will be crucial for building clinician trust and
ensuring the transparency of DL models in high-stakes medical
environments.

CONCLUSION

This study demonstrates the efficacy of advanced ViT architec-
tures in the automated classification of pigmented skin lesions
using the HAM10000 dataset. By leveraging global self-attention
mechanisms to model long-range dependencies, our framework
successfully overcame the locality limitations of traditional CNNs,
with the DeiT III-Base architecture emerging as the superior model,
achieving a peak accuracy of 92.04% and an F1-score of 85.44%.
The comparative analysis revealed that while hierarchical struc-
tures like Swin-Base offer competitive diagnostic precision, the
data-efficient strategies of DeiT III provide an optimal balance be-
tween predictive sensitivity and computational throughput, char-
acterized by sub-millisecond inference times suitable for real-time
clinical screening. Furthermore, the integration of transfer learning
from large-scale natural image repositories was essential for stabi-
lizing training and achieving high performance despite the inher-
ent class imbalances within the dermoscopic data. Ultimately, these
findings underscore the potential of transformer-based paradigms
as robust CAD tools in dermatology. Future research will focus on
the integration of multi-modal data, such as patient history and
anatomical location, alongside XAI techniques to ensure the trans-
parency and clinical reliability of DL deployments in high-stakes
healthcare environments.
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EMG-Controlled Prosthetic Hand
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ABSTRACT This study focuses on the design, development, and enhancement of a cost-effective myoelectric prosthetic arm
intended for daily functional use. The initial prototype was fabricated using Fused Deposition Modeling (FDM) 3D printing technology with
acrylonitrile butadiene styrene (ABS) as the base material. This approach enabled the creation of a lightweight, portable prosthetic arm
with a human-like appearance and six degrees of freedom, allowing for the execution of essential daily activities. The actuation mechanism
is based on an artificial tendon-driven system inspired by prior works such as the Vanderbilt Hand and the prosthetic hand developed at
Hitit University. The tendon-driven structure allows for coordinated finger movement while preserving mechanical simplicity. Actuation is
achieved using standard servo motors, controlled by surface electromyography (sEMG) signals acquired from the user’s forearm muscles.
The initial version of the device was constructed with a material cost of approximately 250, achieving a grip force of around 3 N per
finger and a complete actuation cycle time of approximately 0.4 s. Despite demonstrating satisfactory functional performance, early user
evaluations revealed challenges related to control intuitiveness and system integration, as reflected in user feedback surveys. To address
these limitations and enhance usability, several technological upgrades were implemented. The original microcontroller was replaced with
an Arduino Mega, and an ESP8266-07 Wi-Fi module was integrated to enable wireless communication. These enhancements significantly
improved data transmission, real-time signal processing, and remote monitoring capabilities.
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Electromyography
(EMG)
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INTRODUCTION

The loss of an arm can be one of the most devastating events
in a person’s life, deeply affecting their dependence on others,
mental health, and work capacity. Although advanced myoelectric
prostheses provide very comfortable control for the user, their very
high price, often over $20,000, makes them inaccessible for most
people in the world (Belter et al. 2013). This financial obstacle
causes a strong necessity for cheap but still functional alternatives.

Step by step, additive manufacturing technology has made it
possible for individuals to create complex mechanical structures
by themselves. This is evident in the example of the open-source
InMoov humanoid project (Langevin 2014). At the same time, the
growing availability of open-source microcontroller and sensor
platforms has made it easier to develop complicated electronic
systems for control. The current work took advantage of the com-
bination of these two trends to build a fully functional myoelectric
prosthetic arm at a low cost from scratch. The work was divided
into two major stages: 1) initial design and demonstration of a
fully functional 3D-printed arm, and 2) a major upgrade with a
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focus on the modernization of the control system through wireless
communication. Mechanical design, component testing, and the
application of a wireless control system were parts of the whole
development process detailed in the present paper, which also
discusses the advantages of the system and offers a platform for
further studies in the field of advanced bio-mechatronics (Brooker
2012).

The primary objective of this study was to design and fabri-
cate a fully functional, portable myoelectric prosthetic arm from
scratch, while maintaining a total material cost below 500. This
goal was set in contrast to commercially available devices such
as the Bebionic 3 (RSL Steeper 2014) and i-Limb (Touch Bionics
2014), which are significantly more expensive. The developed pro-
totype was evaluated in terms of grip strength, actuation speed,
weight, durability, and control reliability. The performance metrics
obtained were benchmarked against both commercial and research-
grade prosthetic systems, based on values reported in the literature
(Belter et al. 2013; exrx.net 2023). Furthermore, key limitations of
the initial prototype were identified particularly those related to
control intuitiveness and system expandability both of which are
commonly reported challenges in myoelectric prosthetic systems
(Pylatiuk et al. 2007; Lake 2010). In response, a systematic upgrade
process was implemented, which included replacing the original
microcontroller with an Arduino-based platform and integrating a
Wi-Fi module (ESP8266-07). These improvements enabled wireless
control and data telemetry, laying the groundwork for advanced,
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cloud-based signal processing techniques beyond conventional
EMG algorithms (Hudgins et al. 1993).

MATERIALS AND METHODS

The methodology for this particular project proceeded through two
comprehensive phases: first, the initial construction of a functional
prosthetic arm that was low-cost, and then a massive upgrade to
the control technology. This encompassed mechanical drawing,
3D printing, electronic parts integration, firmware development,
and system validation.

Data Acquisition and Signal Processing
The research utilized two disposable Ag/AgCl electrodes
(Kendall™ MediTrace™ ECG electrodes), which were arranged in
a bipolar montage to record surface electromyography (EMG) sig-
nals. The first electrode pair was positioned on the biceps brachii
muscle belly, while the second pair extended across the forearm
flexor group, with their midpoint located at one-third the distance
between the elbow and wrist. A common ground electrode was
attached to the olecranon process to reduce common-mode inter-
ference. The inter-electrode distance was maintained at 20 mm
(center-to-center). The Muscle Sensor V3 modules from Advancer
Technologies served as raw myoelectric signal conditioning de-
vices, providing on-board amplification (approximately 1000 gain),
band-pass filtering (20–450 Hz using 2nd-order Butterworth), and
full-wave rectification with a smoothing RC circuit (τ = 50 ms).

The PIC18F25K22 microcontroller sampled the conditioned ana-
log signals (ranging from 0 to 3 V) using its built-in 10-bit Analog-
to-Digital Converter (ADC) at a constant sampling frequency of
1 kHz. The firmware applied a moving-average filter with a win-
dow length of 5 samples to reduce high-frequency noise, while a
software-based 50 Hz notch filter eliminated mains interference.
The system was powered by a 2-cell Lithium Polymer battery (7.4 V,
1600 mAh), and two low-dropout linear regulators (AP1117 series)
provided stable 5 V and 3.3 V outputs to protect the sensitive
analog front-end from switching noise and voltage fluctuations
caused by servo motor loads. The complete acquisition system
operated under typical daily conditions, including motion artifacts
and electromagnetic interference, to ensure signal integrity.

Design and Fabrication of the Core Prosthetic Arm
Mechanical Design and Additive Manufacturing: The mechanical
design was determined by the low cost, human-like shape, and
basic functionality aims. A modular architecture was formed of a
hand/wrist module and a separable forearm/elbow module that
allowed for different levels of amputation and application (Lake
2010). The prosthetic hand offers six degrees of freedom (DOF):
independent bending of the thumb, index, and middle fingers;
combined bending of the ring and pinky fingers; 180° wrist ro-
tation; and 110° elbow bending. It uses five TowerPro MG996R
standard hobby servo motors, each providing a stall torque of 10
kg-cm at 6 V. Finger bending is powered by a tendon-based mecha-
nism, which uses high-strength, low-stretch braided polyethylene
fishing line (approx. 50 lb test). This line runs through internal
channels in the 3D-printed phalanges and is secured at the tips.
The tendons come together at a narrow opening in the wrist. This
design allows for palm rotation but causes some cable overlap
during extreme rotation movements.

Tendon tension comes from the servos located in the forearm.
Custom 3D-printed servo horns serve as winches. To maintain
the strength of the printed ABS parts especially in stressed ar-
eas like the wrist pivot and finger joints the firmware limits the

servo command range. By restricting the pulse width modulation
(PWM) signal for each servo (usually between 1000–2000 µs), the
movement of each servo horn is capped. This limits the maximum
force the tendons can apply. This software-based mechanical stop
ensures that the grip strength at each fingertip remains around 3
N (approx. 300 g). This safe limit was determined through testing
to prevent permanent damage or breakage.

Hand and Finger Assembly: A tendon-driven actuation mech-
anism was chosen because of its benefits in joint congruity and
easy mechanical design compared to complicated linkage systems
(Wiste et al. 2009; Melchiorri et al. 2013). Each finger was designed
in SolidWorks with three phalanges, closely resembling human
anatomy (ElKoura & Singh 2003). 3D printing was done using
a fused deposition modeling (FDM) printer and ABS plastic fila-
ment. Finger segments were fastened with 3 mm polypropylene
pin joints. The high-strength, non-stretch braided fishing line was
passed through internal channels and secured at the distal pha-
lanx, creating the artificial tendon. Each joint was provided with a
passive extension spring that would return the finger to its open
position once relaxation of the tendon occurred.

Actuation and Drive Train: The pathways of the tendons were
set through the palm and wrist, and then stopped at the palm
of the hand where custom 3D-printed servo horns were located.
Within the forearm were housed standard hobbyist servo motors
(TowerPro MG996R). The servos were assigned for the thumb,
index, and middle fingers while the ring and pinky fingers were
linked to minimize actuator count.

Wrist and Elbow Joints: The wrist joint allowed nearly 180◦ of
rotation by placing the palm structure directly on the servo output
shaft. The elbow joint was made to carry the weight of the forearm.
A bespoke 2.1:1 reduction gear train was created and 3D-printed
to increase the servo motor’s output torque, resulting in around
110◦ of flexion.

Post-Processing: All ABS parts that were 3D printed were
treated with acetone vapor as a post-processing step in order to
achieve better bonding of the layers and to improve the strength
of the structure overall (i.materialise 2014).

Electrical System and Initial Control Logic: The first electrical
layout was created to make myoelectric operation portable and
useable.

Power Management: The system was powered by one 7.4V,
1600mAh Lithium-Polymer (LiPo) battery. The voltage was stabi-
lized by several 5V and 3.3V low-dropout regulators, which fed the
servo motors and the microcontroller, respectively, thus ensuring
smooth and stable operation.

Signal Acquisition: Myoelectric control was achieved by two
commercial single-channel EMG sensor kits (e.g., Muscle Sensor
V3). These modules did the on-board amplification, rectification,
and smoothing of the raw bioelectric signals that were picked up
by the surface electrodes placed on the user’s residual limb (Day
2010; Cotton et al. 2014).

Microcontroller and Basic Firmware: The PIC18F25K22 mi-
crocontroller was the main processor. Firmware was written that
would read the analogue EMG signals through its analogue-to-
digital converter (ADC). A basic control algorithm was put in
place where one EMG signal would switch between preset device
"states" (e.g., hand open/close mode, wrist rotation mode) and
the second EMG signal would move the state that was selected.
This finite-state machine method is a typical simple strategy for
multifunctional control (Hudgins et al. 1993).

System Control Logic: The PIC18F25K22 microcontroller was
the main processor. Firmware was written that would read the
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Figure 1 Light flex output (200ms/div, 50mV/div) showing
EMG signal acquisition for low-intensity muscle contraction

Figure 2 Strong flex output (200ms/div, 50mV/div) showing
EMG signal acquisition for high-intensity muscle contraction

analogue EMG signals through its analogue-to-digital converter
(ADC). A basic control algorithm was put in place where one
EMG signal would switch between preset device "states" (e.g.,
hand open/close mode, wrist rotation mode) and the second EMG
signal would move the state that was selected. This finite-state
machine method is a typical simple strategy for multifunctional
control (Hudgins et al. 1993).

The device uses a hybrid control design that merges a
finite-state machine (FSM) for mode selection with proportional,
amplitude-based control for actuation within each mode. It con-
tinuously monitors surface EMG signals from two muscle sites,
usually the biceps and forearm extensors. The signal from the main
muscle site is rectified and averaged over a 200 ms window. When
this processed amplitude goes above a set threshold (determined
during a user-specific training session at about 20% of maximum
voluntary contraction), the system moves to the next grip state in
order: Rest, Precision Grip (e.g., pinch), Power Grip, Wrist Rota-
tion, Rest. This setup enables access to multiple functions using
just one control signal.

When a specific state is active, proportional control is activated
with the continuous amplitude of the secondary EMG signal. This
signal is normalized and mapped linearly to the servo command.
The relationship is defined by:

WPWM(t) = a + k · EMGnorm(t)

In this equation, WPWM represents the pulse width sent to the
servo (in microseconds), a is the baseline pulse width for the open-
hand position (typically 1000 µs), k is a gain constant that scales
the normalized EMG amplitude (EMGnorm ∈ [0, 1]) to a practical
pulse width range (e.g., 1000–2000 µs), and t indicates time. This

mapping allows users to easily control both the speed of finger
closure and the grip force by adjusting muscle contraction intensity.
For example, a gentle flexion leads to slow, light closure for delicate
items, while a strong contraction results in fast, strong grasping.
The combination of state-based selection and proportional control
offers a practical and intuitive way to perform sequential tasks
with different force needs.

The EMG signal acquisition quality, as demonstrated in Figures
1 and 2, shows effective signal capture for both light and strong
muscle contractions. The voltage levels recorded (22.0 mV peak-
to-peak for light flex and 14.6 mV for strong flex) fall within the
expected range for surface EMG signals (Day 2010). The ADC
sampling mechanism illustrated in Figure 3 effectively converts
analog EMG signals to digital control signals for servo positioning.

Figure 3 EMG signals (black) with ADC samples (blue). The
voltage level of these samples controls servo positions, demon-
strating the proportional control mechanism.

Wireless Control System Upgrade and Integration
In order to improve the limitations of control flexibility and system
isolation, strong upgrades were undertaken, aiming at modern
and accessible hardware with wireless connectivity.

Hardware Modernization: The core electronic backbone was re-
placed for more versatile and community-supported components.

Controller Replacement: Replacing the PIC microcontroller
was an Arduino Mega 2560 development board. This platform
was chosen due to its large I/O capability, easy C++ programming
environment, and enormously rich ecosystem of libraries to speed
the development and prototyping cycle.

Wireless Communication Module: An ESP8266-07 Wi-Fi
transceiver was incorporated with a serial UART interface con-
nection to the Arduino. This module permits the prosthesis to
connect to the local wireless network for data transfer.

Sensors and Actuators Interface: The old EMG sensor boards,
servo motors, and power system nicely interfaced with the new
Arduino controller, confirming backward compatibility of the up-
grade path.

Firmware Development and Network Architecture: New firmware
was developed for the Arduino to set up a bidirectional data
pipeline.

Sensor Firmware On the Device: The Arduino was pro-
grammed to continuously sample the analogue EMG signals pack-
etize this data along with system status parameters (e.g., battery
voltage), and send it to a specified network address via the ESP8266
module.

External processing and control server: To this end, a compan-
ion software application was developed in Python, which runs on
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a standard desktop computer or at a cloud server. This applica-
tion: (1) listened to and received the incoming wireless data stream
from the prosthesis; (2) allowed implementing advanced signal
processing techniques, filtering or machine learning algorithms on
the received EMG data (Shedeed et al. 2013; Hudgins et al. 1993);
and (3) correspondingly sent actuator control commands back to
the Arduino via the Wi-Fi link.

Control Interface Diversification: It decoupled control logic
from the physical hardware. Different control interfaces could be
created, for example, a simple graphics application on a paired
smartphone that allows touch-based control or visualization of
system sensor data in real-time.

System Integration and Functional Validation

Integration of the total systems occurred once both portions of
the development had been completed, followed by functional
validation.

Mechanical Assembly and Tuning: The assembly of 3D-
printed parts, tendon tensioning, and calibration of tuning ranges
for the servos were performed. Structural integrity of main joints,
particularly wrist joints, was tested under actual working loads.

Electrical Integration and Testing: All electronic subsystems
were coupled together and tested for power delivery, signal in-
tegrity, and for alignment with the defined communication proto-
col. Wireless characteristics of latency and reliability were tested.

Holistic Functionality Tests: Final integral prototypes (orig-
inal and upgraded) were activated and made to perform com-
manded gestures and grasping in sequences. Performance metrics
were noted and qualitatively evaluated, including response latency,
smoothness of motion, and wireless control stability, confirming
the operational success of both designs.

The entire work used an iterative design-build-test methodol-
ogy. Solidworks was used to design the initial concepts; 3D print-
ing was then used to test the design. After the initial test, mechan-
ical and electrical subsystems were designed. After this, system
integration and performance testing were done. This methodology
is in line with most other prosthetic device development (Weir
2003). Upgrading to wireless control also used the same iterative
methodology; this was done with a focus on firmware and network
integration.

Data Collection Methods

Data was collected via direct measurement and controlled testing:

• Grip Force: This was measured with prosthetic fingers fully
closed and the scales were used as a functional measure. This
is practical as the closing force is realistic.

• Actuation Speed: A crucial performance measure for user
acceptance (Lake 2010), this was measured by timing using a
high-speed camera to record the flexion and extension cycles
of the fingers.

• System Weight: The system was weighed on a precision scale.
Weight is an essential factor when considering the comfort of
the socket and the suspension (Brooker 2012).

• Battery Life: This was estimated using typical operating cy-
cles and measured as average current draw and the mAh of
the battery.

• Control Accuracy & Latency: For the wireless system, signal
transmission delay was measured from EMG input to actuator
response.

Figure 4 Performance comparison of the proposed prosthetic
arm with commercial and research arms, along with the human
hand and suggested practical minimums. Values taken from
Belter et al. (2013) and exrx.net (2023). The chart shows finger
actuation speed (deg/s), grip force (N), and degrees of freedom
for different categories.

FINDINGS AND RESULTS

The work proves that it is possible to create and construct an opera-
tional myoelectric prosthetic arm with multiple degrees of freedom
at a very low cost compared to commercial devices. The perfor-
mance, although not equal to that of the high-end commercial
products, confirms the core design principles and offers a consid-
erable baseline.

As shown in Figure 4, the proposed design achieves a balanced
compromise between cost and functionality. The grip force of
approximately 3 N per finger, while lower than commercial devices,
is sufficient for many activities of daily living. The actuation speed
of 0.4 s compares favorably with both commercial and research
prosthetics, addressing user concerns regarding responsiveness
(Lake 2010).

Quantitative performance evaluation focused on two main func-
tional metrics: actuation speed and reliable gripping capability.
The wrist rotation mechanism, powered by a dedicated servo,
completes a full 180° arc (from full pronation to full supination)
in 0.45 seconds. This results in an average rotational speed of
400°/s, which exceeds many commercial myoelectric prostheses
and approaches the reflexive movement of a biological wrist. We
characterized finger actuation performance through systematic
grasping tests with standardized objects, such as cylinders, blocks,
and various everyday items. When all fingers engaged in a full
power grip, the hand showed a static lifting capacity of about 600
g. This capacity comes from the combined strength of each finger
(around 300 g per fingertip), limited by the programmed servo
travel range to protect the integrity of the 3D-printed joints.

While the actuation speed of the system is a clear advantage,
its current open-loop control has a drawback: when encountering
an object, the servos keep applying tension until they hit their
pre-programmed endpoint. This can cause high internal stresses,
servo stall, and long-term component wear. To address this, future
versions are set to include fingertip pressure sensors, like force-
sensitive resistors or piezoresistive films. This feedback will create
a closed-loop grip-force control system, where servo motion can be
dynamically stopped or adjusted upon reaching a specific contact
pressure. This improvement would protect the mechanical struc-
ture and save battery power while giving the user better control
over grip strength, enabling safe handling of fragile or compliant
objects. This is a vital step toward more natural and adaptive
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prosthetic manipulation.

■ Table 1 System Specifications and Performance Parameters

Parameter Value Description

Electronics

Microcontroller PIC18F25K22
Arduino Mega

8-bit / 16MHz processing core

ADC Resolution 10-bit 1024 discrete sensitivity levels

Sampling Frequency 500 Hz EMG data capture rate

Communication Wi-Fi/Serial Telemetry and logic interface

Mechanical

Degrees of Freedom 6 DOFs 5 fingers + wrist rotation

Actuator Type TowerPro
MG996R

Metal gear servos

Stall Torque 10 kg-cm Maximum rotational force

Wrist Rotation 180° in 0.45s Travel speed (400°/s)

Performance

Grip Force (Max) 600g Combined power grasp force

Total Weight 480g With motors and 3D frame

Material ABS
Thermoplastic

FDM 3D printed

■ Table 2 Quantitative Performance Metrics Comparison

Parameter Measured Benchmark Ref.

Material Cost $250 $20,000+ Belter et al. (2013)

Grip Force (per finger) 3 N 10 N to 15 N exrx.net (2023)

Actuation Speed 0.4 s 0.5 s to 0.8 s Lake (2010)

System Weight 950 g 800 g to 1200 g Belter et al. (2013)

Degrees of Freedom 6 6–24 Belter et al. (2013)

Table 1 and Table 2 provide a detailed comparison of the pro-
totype’s performance against commercial benchmarks. The cost
reduction by a factor of 100 represents a significant achievement in
making prosthetic technology more accessible.

The prosthetic hand demonstrated versatile grasping capabili-
ties as shown in Figure 5. The four grasping patterns pinch grip,
two variations of power grip, and handle grip enable the user to
perform a wide range of daily activities. The pinch grip (Figure
5a) allows for precise manipulation of small objects such as pens,
coins, or keys. The power grips (Figures 5c and 5b) provide stable
holding of variously sized objects like water bottles, books, or tools.
The handle grip (Figure 5d) is particularly useful for cylindrical
objects such as cups, mugs, or door handles.

CONCLUSION

The successful integration of an Arduino-based controller with
an ESP8266 Wi-Fi module represents a significant evolutionary
milestone in the development of the proposed prosthetic system,
effectively transforming the device into an open and connected
platform. This architectural shift addresses several inherent limita-
tions of traditional standalone myoelectric prostheses by enabling
remote monitoring, improved computational offloading, and the
development of personalized user interfaces. Through wireless
connectivity, the system gains flexibility, scalability, and adapt-

(a) Pinch Grip (b) Power Grip

(c) Before the final wiring (d) Project Final Form

Figure 5 Demonstration of various grasping patterns achieved
by the prosthetic hand: (a) Pinch Grip for precision tasks, (b)
Power Grip for medium objects, (c) the Project before connect-
ing the Battery and finishing the wiring for larger objects, and
(d) Represents The project’s Final Form . These patterns demon-
strate the hand’s versatility in activities of daily living.

ability, which are essential characteristics for modern assistive
technologies.

Building upon this foundation, future research efforts will fo-
cus on the implementation of machine learning algorithms for
real-time gesture classification using streaming EMG data, thereby
enhancing control accuracy and user intuitiveness. In addition,
the integration of fingertip pressure sensors is planned to enable
closed-loop grip force regulation, which is expected to improve
object manipulation safety and reliability (Dhillon & Horch 2005).
Further work will also include the design and fabrication of a more
robust, custom-printed circuit board (PCB) to improve system
durability, compactness, and long-term operational stability. This
study provides a comprehensive and easily replicable blueprint for
the development of low-cost myoelectric prosthetic systems, while
also offering a forward-looking framework that supports future en-
hancements in intelligence, connectivity, and user-centered design.
By bridging affordability with advanced control and communica-
tion capabilities, the proposed approach contributes meaningfully
to the ongoing advancement of biomechatronics and supports the
development of the next generation of economical, smart, and
user-friendly assistive devices (Brooker 2012).
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ABSTRACT Breast cancer is one of the greatest global health burdens today and demands accurate diagnosis because of the vast
histological variety. CNN-based systems had been the dominant technology in Digital Pathology, but with their inability to create a global
representation has allowed other technologies such as Vision Transformers to compete. This paper evaluate the performance of three
different transformer-based backbone architectures (DeiT Base, Swin Base, and ViT Base) for classifying breast histopathological images
into eight granular classes using the BreaKHis database. To facilitate this comparison, we utilize transfer learning and distinct data
augmentation methods. Each architecture was fine-tuned to classify four benign and four malignant subtypes with a minimum reported
accuracy of 94%, with Swin Base performing more optimally than either of the other two approaches, obtaining highest reported accuracy
of 0.9511 and an F1 score of 0.9434. The unique design and shifted windowing processes of Swin Base have allowed this architecture
to capture detailed nuclear information as well as the larger context regarding breast cancers, to an extent greater than the other two
architectures. Additionally, we provide an in-depth study of confusion matrices in conjunction with high classification accuracy, even when
dealing with minor morphological overlap, to further support their claim regarding the ability of Swin Base and the remaining transformer
architectures to successfully differentiate between histologically similar classes.

KEYWORDS

Breast cancer
Histopathology
images
Multi-class classi-
fication
Computer-aided
diagnosis
Digital pathology

INTRODUCTION

Breast cancer remains one of the most formidable challenges in
global healthcare, consistently ranking as a leading cause of on-
cological mortality among women worldwide (Getu et al. 2025;
Chikkala et al. 2025). The complexity of the disease, characterized
by its high histological heterogeneity, demands diagnostic preci-
sion that is both rapid and highly accurate. In recent years, the
field of pathology has undergone a significant paradigm shift with
the advent of Digital Pathology (DP) and Whole Slide Imaging
(WSI) (Karthiga et al. 2025; Hayat et al. 2024). This transition from
traditional glass slides to high-resolution digital patches has paved
the way for Computer-Aided Diagnosis (CAD) systems to assist
pathologists in navigating the immense workload and reducing the
inherent subjectivity of manual assessments (Murphy and Singh
2024; Logu and Thangaraj 2024; Asha 2025).

Deep learning and convolutional neural networks (CNNs) are
transforming the way Computer-aided design (CAD) systems op-
erate (Singh and Kaswan 2024; Alshehri 2025). Early CAD systems
relied very heavily on the handcrafted features created by DLT
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and modified by the CAD software (Abdulaal et al. 2024b; Be-
hzadpour et al. 2024). CNV models are designed specifically to
recognize and represent locality patterns at a small scale (in a local-
neighborhood context) within an image, constraining their ability
to relate and connect long-range or distant regional features to each
other and to map across an image with respect to the overall con-
text (Ramamoorthy et al. 2024; Ukwuoma et al. 2025; Jackson et al.
2025). This limitation has led researchers to the Vision Transform
is (ViT) architecture, in which all patches of an image processed
sequentially to incorporate their information into a complete im-
age representation (Kansal et al. 2025; Chitta et al. 2025; Jakkaladiki
and Maly 2024). However, before ViTs can be routinely used in
clinical practice, the full measure of robustness, computational
efficiency, and classification accuracy across the full spectrum of
breast cancer subtypes must be assessed and validated (Akshaya
et al. 2024; Abdulaal et al. 2024a; Simonyan et al. 2024).

The primary objective of this study is to evaluate the efficacy of
transformer-based backbones, specifically DeiT Base, Swin Base,
and ViT Base, in the multi-class classification of breast histopathol-
ogy images. Unlike binary classification tasks that merely distin-
guish between benign and malignant tissue, our work tackles an
8-class challenge involving specific subtypes: Adenosis, Ductal
Carcinoma, Fibroadenoma, Lobular Carcinoma, Mucinous Carci-
noma, Papillary Carcinoma, Phyllodes Tumor, and Tubular Ade-
noma. This granular approach is essential for providing clinicians
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with the detailed diagnostic insights necessary for personalized
treatment planning.

RELATED WORKS

The clinical management of breast cancer has been fundamentally
reshaped by the transition to DP and the subsequent integration of
CAD systems. Historically, pathologists relied on manual micro-
scopic examination, a process prone to inter-observer variability
and high cognitive load. Recent advancements in DL have mit-
igated these challenges by enabling the automated extraction of
high-level features that capture the complex morphological hetero-
geneity of breast tissue. Current research in this domain focuses on
enhancing diagnostic reliability through hybrid architectures, en-
semble strategies, and novel feature descriptors, particularly when
dealing with the granular multi-class classification of histological
subtypes.

Ogundokun et al. (2024) proposed a robust hybrid DL frame-
work that integrates CNN with Artificial Neural Networks (ANN)
specifically for 400x magnification images. By utilizing a dual-
pathway approach for feature processing, their model achieves
exceptional diagnostic precision, reaching a near-perfect accuracy
of 99.94%, which significantly reduces the margin for diagnostic
error in high-resolution histopathology. Gul (2025) introduced
an innovative textural analysis method termed Quad Star Local
Binary Pattern (QS-LBP) paired with a customized 20-layer CNN
architecture. This combination effectively encodes fine-grained
tissue textures, allowing the system to outperform existing method-
ologies in distinguishing subtle morphological differences between
benign and malignant growths, boasting a peak accuracy of 98.27

Rajaram et al. (2024) conducted a systematic evaluation of vari-
ous ResNet architectures to determine their effectiveness in clas-
sifying BreaKHis dataset samples. Their comparative study high-
lighted that deeper residual networks, when combined with trans-
fer learning, provide a highly scalable solution for multi-class
classification, successfully capturing the intrinsic hierarchical pat-
terns of cancerous cell structures. Balasubramanian et al. (2024)
developed an ensemble learning strategy that fuses the outputs
of VGG16, ResNet34, and ResNet50 models to tackle both cancer
subtyping and invasiveness. This multi-model approach increases
the overall stability of the CAD system and minimizes the risk
of misclassification by leveraging a diversified feature set from
multiple architectural families.

This work on the performance benchmarking of the BreaKHis
dataset through the application of SVM on the textural features as
proposed by Thakur et al. (2025) sets the standard for the BreaKHis
dataset. This work on the benchmarking of performance through
the experimental work on patients according to the patient-centric
benchmarking methodology of this work on the rigorous bench-
marking of patients helps to prevent data leakage. Aldakhil
et al. (2025) provided a comprehensive review and performance
assessment of transfer learning-based architectures, specifically
ResNet18, Inception-V3, and ShuffleNet. Their findings emphasize
that fine-tuned pre-trained models offer a computationally efficient
path toward autonomous breast cancer detection, achieving high
accuracy rates while significantly reducing the training time and
data requirements typically associated with training from scratch.

MATERIALS AND METHODS

Dataset and Data Preprocessing
The BreaKHis (Breast Cancer Histopathological Image Classifica-
tion) dataset (Dataset 2025), which is widely used as a benchmark

in the field of digital pathology (DP), was used to conduct experi-
ments and evaluate the proposed transformer-based architectures.
This dataset contains a complete set of all types of Normal Breast
Tissue (eight types), and there are two distinct classes of breast tis-
sue; four (four types) benign, and four (four types) malignant. The
dataset consists of 1995 high resolution images. The training and
test sets were created by utilizing a structured data split, where
70% of the datasets is used to train the models (1393 samples), 15%
is used for validation (295 samples), and 15% is used for indepen-
dent testing (307 samples) in order to ensure that each model is
trained appropriately and evaluated fairly. The exact breakdown
of the samples across the eight types of breast tissue is provided
in Table 1 and depicts the inherent imbalances found in clinical
datasets.

The visual complexity and histological diversity of the samples
are demonstrated in Figure 1, where some sample images of the
eight histopathological classes are shown. These sample images
demonstrate the level of cellular architecture similarity between
the different classes, an issue that has often been known to make
the task of pathological evaluation challenging when performed
on a slide by slide basis. To eventually preprocess the visual data
in a form conducive to the transformers chosen in this work as
their base models, namely DeiT, Swin, and ViT, some image pro-
cessing operations such as resizing and normalization have been
performed on the sample images. Moreover, in order to help the
transformers attain the required level of generalizability and avoid
the problems of a small number of samples in classes such as
Adenosis, a data augmentation process has been followed.

Figure 1 Sample images from the breast histopathology classes in
the dataset.

Vision Transformers (ViTs)

The advent of ViTs marks the beginning of an important shift
in the paradigm of medical image processing, diverging from
the local receptive field requirement imposed by conventional
CNNs. Although CNNs excel in local texture description, their ef-
ficacy in describing global dependencies in the image is inherently
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■ Table 1 Dataset Distribution by Class.

Class Original Dataset Train Set (70%) Validation Set (15%) Test Set (15%)

Adenosis (ADE) 114 79 17 18

Ductal Carcinoma (DC) 864 604 129 131

Fibroadenoma (FIB) 253 177 37 39

Lobular Carcinoma (LC) 156 109 23 24

Mucinous Carcinoma (MC) 205 143 30 32

Papillary Carcinoma (PC) 145 101 21 23

Phyllodes Tumor (PT) 109 76 16 17

Tubular Adenoma (TA) 149 104 22 23

Total 1995 1393 295 307

limited, making it difficult to capture the essence of complicated
histopathological patterns without considering the whole image
in the process. This is where ViTs accentuate the advantage with
their patch-based division of the image into a series of discrete seg-
ments and self-attention techniques, which help the model extract
correlations even in the far-off regions of cells right from the begin-
ning, opposed to CNNs, which tend to concentrate on local cell
morphologies without emphasis on global architecture in digital
pathology, where the difference in tissue might be quite subtle and
relied on entirely on the global pattern.

In this study, we evaluate three distinct transformer-based ar-
chitectures, ViT Base (Dosovitskiy et al. 2025), DeiT Base (Touvron
et al. 2025), and Swin Base (Liu et al. 2025), to determine their effec-
tiveness in classifying eight specific breast cancer subtypes. While
the standard ViT Base provides a robust foundation for learning
global representations, the Data-efficient Image Transformer (DeiT
Base) is specifically designed to perform effectively on smaller
datasets through a teacher-student distillation strategy, making it
highly relevant for specialized medical imaging tasks where data
can be scarce. Furthermore, we investigate the Swin Transformer
(Swin Base), which introduces a hierarchical structure and shifted
windowing scheme. This approach allows the model to process
images at multiple scales, effectively capturing both fine-grained
nuclear details and broader tissue patterns, which is vital for the
granular 8-class classification challenge involving diverse benign
and malignant subtypes.

Transfer Learning and Data Augmentation Strategy

The size and variability of the BreaKHis dataset and the depth
of the deep transformer models make deep learning converge
inefficiently. To counter these issues, we employed the concept of
transfer learning. As ViTs are huge and demand the availability
of vast amounts of data to train and converge properly, doing so
on the relatively small number of images in the histopathology
domain would be inefficient and would indulge the model into
the problem of overfitting. To overcome this problem, we made
use of the PyTorch Image Models library to load the pre-trained
models of DeiT Base, Swin Base, and ViT Base pre-trained models
on the ImageNet-1k dataset. The use of these models enables
them to focus and work on the high-level visual representations
right from the start, which would be further tuned to focus on the
complexities of the eight sub-types of breast cancer.

As a way of compensating for the natural imbalance between
classes in the dataset and to ultimately strengthen our model’s per-
formance, we created a highly effective method of augmenting our
images through the use of a complete set of augmentation strate-
gies provided by the timm library. Examples of these strategies
include random resizing, random cropping, and random horizon-
tal mirroring. The application of these augmentation techniques in
the field of digital pathology represents a novel approach because
they replicate the variations that occur naturally in a tissue’s orien-
tation and staining intensity during slide processing. By exposing
our transformer models to the diverse range of visual challenges
that arise from these augmentation methods during training, our
models were trained to learn the underlying pattern of abnormal-
ity rather than simply learning specific signs of pathology through
visual memorization (Wang et al. 2024; Mumuni et al. 2024).

Performance Evaluation Metrics
In this paper, we have conducted a rigorous quantification of the
diagnostic efficacy of the transformer-based backbones that were
studied using a comprehensive set of performance evaluation met-
rics derived from the confusion matrix. Overall, classification
performance was primarily conducted with Accuracy, represent-
ing the ratio of correctly identified benign and malignant samples
out of all total predictions defined in Equation (1). Given the clin-
ical need to minimize both false positives and false negatives in
breast cancer screening, Precision and Recall (Sensitivity) were
calculated. Precision, defined in Equation (2), reflects the model’s
ability not to label a negative sample as positive. On the other
hand, Recall, defined in Equation (3), characterizes the ability to
detect all positive examples within the dataset. Since there are se-
vere class imbalances within our histological subtypes, we present
the F1-Score as the single, balanced metric that considers the possi-
ble trade-offs between those two measures, which is the harmonic
mean of Precision and Recall, and defined in Equation (4). The
virtues of such multi-faceted performance metrics ensure a robust
evaluation of the models’ reliability in high-stakes computer-aided
diagnosis.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

56 | Koyuncu et al. Computers and Electronics in Medicine



■ Table 2 Comparison of Performance Metrics and Computational Complexity of the Models.

Models Accuracy Precision Recall F1-score Params GFLOPs

DeiT Base 0.9446 0.9466 0.9192 0.9308 85.80M 336.955

Swin Base 0.9511 0.9548 0.9332 0.9434 86.75M 303.375

ViT Base 0.9414 0.9353 0.9319 0.9323 85.80M 33.6955

Recall =
TP

TP + FN
(3)

F1-score = 2 · Precision · Recall
Precision + Recall

(4)

RESULTS AND DISCUSSION

The experimental results obtained in this study underscore the
remarkable potential of ViTs in navigating the complex histolog-
ical landscape of breast cancer. Our comprehensive evaluation
across eight distinct tissue subtypes reveals that transformer-based
architectures can effectively learn the subtle, high-dimensional
features required for precise computer-aided diagnosis. As sum-
marized in Table 2, all three evaluated models, DeiT Base, Swin
Base, and ViT Base, exhibited robust performance, with accuracy
scores consistently exceeding 94%. This high baseline suggests that
the self-attention mechanism is inherently well-suited for captur-
ing the structural variations present in BreaKHis histopathology
images.

The Swin Base model outperformed all other backbones tested
in this experiment, reaching a peak accuracy of 0.9511 and an
F1-score of 0.9434. The Swin architecture has a hierarchical de-
sign along with a shifted windowing method; this allows the Swin
model to handle tissue slides at multiple scales. The ability to work
at various scales is critical when detecting small nuclear atypia and
more general architectural distortions. The second and third most
successful backbones in accuracy were the DeiT Base model with
an accuracy of 0.9446 and the ViT Base model with an accuracy of
0.9414. Despite being the least computationally intensive backbone
(GFLOPs of 33.69), the ViT Base model still demonstrated a high
recall value of 0.9319, indicating that standard transformer-based
models can also have excellent detection sensitivity to malignant
cells. However, the Swin Base model’s high levels of precision
(0.9548) and recall (0.9332) make it the most suitable choice for clin-
ical use, where the prevention of false positives and false negatives
is critical.

The diagnostic reliability of our leading machine learning (ML)
model can be evaluated using the confusion matrix in Figure 2.
Based on the confusion matrix, the Swin Base model demonstrated
considerable accuracy for high-frequency immortalized (cancer-
ous) classes, such as Ductal Carcinoma (DC), which correctly clas-
sified 128 out of 131 cases of Ductal Carcinoma (DC). Addition-
ally, the Swin Base model exhibited strong predictive ability for
Fibroadenomas (FIB); there was only one case in which Fibroade-
nomas (FIB) were incorrectly classified. The Swin Base model
encountered minor confusion regarding histologically similar sub-
types: four out of four Lobular Carcinomas (LC) were misclassified
as Ductal Carcinomas (DC). As can be expected from a biologi-
cal standpoint, Ductal Carcinomas (DC) and Lobular Carcinomas
(LC) are both malignant carcinomas that may show overlap in
morphology, depending on their magnification level. Additionally,

the Swin Base model had slightly more difficulty with Tubular
Adenomas (TA) than with Fibroadenomas (Fib), and there were
occasions in which Tubular Adenomas (TA) were misclassified as
Fibroadenomas (Fib). Nevertheless, the relatively high diagonal
values for all classes in the Swin Base model (Figure 2) indicate
that it has successfully generalized to the considerable histologic
heterogeneity present in the dataset.

Figure 2 Confusion Matrix of the Swin Base Model.

The findings of this study indicate that transitioning away
from utilizing convolutional filters to employing hierarchical trans-
former systems can enhance the overall experience one has with
viewing digital slides. In particular, the excellent performance
of the Swin Transformer shows the value of being able to extract
features at multiple scales in digital pathology. Thus, capturing
long-range spatial relationships between various features in con-
junction with maintaining local texture analysis allows for the
development of a strong base for future CAD systems that are
designed to help pathologists throughout their highly complicated
workflows related to diagnosing patients.

CONCLUSION

This study has systematically assessed how effective ViTs are
as a new model for multi-class classification of breast cancer
histopathology. Results indicate that the ability of the self-attention
mechanism to manage multiple structural complexities of digital
slides allows for a broader understanding of tissue architecture
than the limited local receptive field of Classic CNNs. Of the
models tested, the Swin Base was determined to provide the most
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reliable performance, achieving an ideal balance of precision and
recall, while also successfully addressing the inherent imbalances
among the eight class categories present in the BreaKHis dataset.
Transfer learning combined with extensive data augmentation was
critical to mitigate the impact of infrequent impressions typically
seen in this type of medical imaging task and ensure the models
created general representations of pathology and did not rely on
representations of image artifacts. Mismatches did occur within
histologically similar subtypes (e.g., Lobular and Ductal Carci-
noma), but the very high diagonal values achieved within the
performance evaluation indicate the strong capacity of hierarchical
transformers to differentiate between the eight tissue categories.
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ABSTRACT Demand forecasting for medical and consumable supplies in healthcare institutions is a challenging
problem due to irregular usage patterns, seasonality, sudden demand spikes, and data sparsity, and inaccurate
forecasts may lead to stock-outs, excessive inventory costs, and disruptions in patient care. This study
proposes an anomaly-aware, hybrid and ensemble-based forecasting and decision support framework for
short-term hospital inventory demand prediction using real-world operational data obtained from a hospital
inventory management system. The proposed approach integrates density-based anomaly detection, material-
level behavioral feature extraction, supervised time series transformation, and a multi-model ensemble
architecture combining linear models, tree-based methods, and boosting-based learners, with model selection
and weighting performed via time-series cross-validation. To ensure operational robustness, a multi-layer
fallback strategy incorporating classical exponential smoothing and conservative heuristics is employed for
data-scarce scenarios, and an interpretable rule-based forecast confidence score together with an integrated
ABC–XYZ segmentation scheme is used to directly link forecasts with inventory control policies. Experimental
results on real hospital inventory data demonstrate that the proposed framework significantly improves
forecasting stability and accuracy compared to single-model approaches, particularly for heterogeneous and
irregular consumption patterns, while providing a practical, explainable, and operationally actionable solution
for hospital inventory management.
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INTRODUCTION

The effective and efficient operation of healthcare delivery systems
plays a critical role in today’s complex and dynamic healthcare
environment. In hospitals, having the right amount of medical and
consumable supplies in the right place at the right time is essential
for the uninterrupted delivery of patient care services (Joshi et al.
2025). Inventory management is an important component not only
in terms of operational efficiency, but also in terms of financial
performance, the quality of hospital services, and human health.
Incorrectly estimating the demand for medical and consumable
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supplies can have very serious consequences for hospitals. Exces-
sive stockpiling leads to increased storage costs, deterioration of
material quality, and significant financial losses, while insufficient
stock levels cause disruptions in patient care, reduced treatment
quality, and, in some cases, pose a threat to patient safety. There-
fore, demand forecast accuracy is a fundamental requirement for
optimizing hospital resources and delivering sustainable health-
care services (Umoren et al. 2025).

In previous years, traditional statistical methods and simple
heuristic rules were used in hospital inventory management. These
methods often produced inaccurate forecasts because they did not
adequately account for complex factors such as seasonal changes,
emergencies, disease outbreaks, and sudden fluctuations in de-
mand (Adedunjoye and Enyejo 2024). Over the past twenty years,
the rapid development of machine learning and time series analy-
sis methods has opened up new opportunities in medical demand
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forecasting. Algorithms such as tree-based methods (Random For-
est, Gradient Boosting, XGBoost, LightGBM), linear regression
approaches (Ridge, Lasso), and time series models (ARIMA, Ex-
ponential Smoothing) yield good results when used individually
(Darshan et al. 2025). Academic research and practical applications
have shown that a single model does not always deliver optimal
performance and may be insufficient in adapting to different data
patterns and changing conditions (Punnahitanond et al. 2025).

In recent years, hybrid and ensemble model combinations
have emerged as innovative solutions to the demand forecast-
ing problem, both in academic settings and industrial applications
(Mbonyinshuti et al. 2024). Hybrid models combine machine learn-
ing and time series methods, leveraging the strengths of each
technique, while ensemble approaches systematically combine the
forecasts of different models to obtain more stable and reliable
results (Vignesh and Vijayalakshmi 2025). Such combination meth-
ods capture non-linear relationships that cannot be addressed by
individual models, reveal hidden patterns in the data, and signifi-
cantly reduce prediction errors (Jahin et al. 2024). Particularly in
the healthcare sector, the use of hybrid and ensemble methods for
demand forecasting of hospital supplies has been limited, repre-
senting an important area that still needs to be researched (Donkor
et al. 2024).

The research problem of this study is whether the demand for
medical and consumable supplies in hospitals can be predicted
more accurately and reliably using hybrid and ensemble model
combinations under complex and variable conditions where single
prediction models fall short. The main objective of this study is to
demonstrate how hybrid and ensemble model combinations can
be effectively applied in the demand forecasting of medical and
consumable supplies used in hospitals, instead of single models.
In this study, historical inventory inflow and outflow data, time
series structure, and material usage patterns will be analyzed in
detail, and various combinations of tree-based machine learning
models, linear regression methods, and time series techniques
will be tested. This integrated approach is designed to overcome
the limitations of individual models and provide a more reliable,
sustainable, and successful forecasting framework for hospital
inventory management.

Research Objectives

The main objectives of this research are defined as follows:

• To individually evaluate the success of different machine
learning (Random Forest, Gradient Boosting, XGBoost, Light-
GBM, Ridge, Lasso) and time series models (ARIMA, Expo-
nential Smoothing) in forecasting hospital medical supply
demand and to perform a comparative analysis based on per-
formance metrics (MAE, RMSE, MAPE, R²).

• To design hybrid and ensemble model combinations that com-
bine different machine learning and time series methods in
order to overcome the limitations of single model approaches,
and to evaluate the prediction success of these combinations.

• Systematically analyze whether the proposed hybrid and en-
semble model combinations improve demand forecast accu-
racy compared to single models, and how they affect model
stability and forecast variance.

• To propose a more reliable, economical, and sustainable fore-
casting framework for inventory management applications
in hospitals; to provide recommendations on how this frame-
work can be integrated into practical applications.

Primary Contributions

The main contributions of this study can be summarized as follows:

• Tree-based machine learning models, linear regression meth-
ods, and classical time series techniques were comprehen-
sively compared in hospital supply demand forecasting. The
performance of each technique was evaluated using standard-
ized metrics.

• Innovative hybrid model combinations integrating machine
learning and time series methods have been developed. These
hybrid structures overcome the limitations of individual mod-
els, providing higher prediction accuracy.

• Various ensemble techniques (bagging, boosting, stacking,
weighted averaging) have been systematically applied to op-
timally combine the predictions of different models. These
strategies reduce prediction error and increase system stabil-
ity.

• Factors specific to the hospital environment, such as seasonal
changes, emergencies, and sudden fluctuations in demand,
were taken into account in model design. Thus, solutions
adapted to the healthcare sector were presented, unlike gen-
eral industry applications.

• Detailed recommendations regarding model selection criteria,
data preprocessing procedures, hyperparameter tuning, and
system integration enhance the practical applicability of the
study.

• The proposed hybrid and ensemble combinations significantly
improve prediction accuracy compared to individual mod-
els, thereby contributing to reduced inventory costs and opti-
mized hospital operations.

Structure of the Article

The structure followed in the article begins with the Related Work
section, which addresses existing academic studies on demand
forecasting techniques, their applications in hospital settings, and
the effectiveness of machine learning and ensemble methods. Sub-
sequently, the Materials and Methods section detail the dataset
used, data preprocessing steps, and the applied methodology, intro-
ducing tree-based models, linear regression methods, time series
techniques, and ensemble strategies. In the Hybrid Model De-
sign and Ensemble Strategies sections, combinations of different
techniques are systematically created and integrated, and the de-
sign principles of each hybrid architecture are compared with the
advantages and disadvantages of various ensemble combination
methods. In the Results and Discussion section, the performance of
all models is compared using standardized metrics (MAE, RMSE,
MAPE, etc.), performance improvements of hybrid and ensemble
models compared to individual models are presented, detailed
comparisons between different model categories are made, and the
implications of the findings for hospital operations are outlined
by explaining their meaning in the context of the healthcare sector.
Finally, the Conclusion section summarizes the main findings of
the research, highlights the contributions of the study, provides
practical recommendations for hospital managers and operational
staff, and outlines guidelines for future research.

RELATED WORK

The healthcare sector faces unique challenges in inventory man-
agement and demand forecasting due to its complex structure and
critical outcomes. The availability of medical supplies and consum-
ables has a direct impact on the quality and safety of patient care.
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Insufficient stock levels can lead to operational disruptions, ser-
vice interruptions, and even situations that threaten patient safety.
Excessive inventory, on the other hand, causes financial problems
such as expired shelf life, storage costs, and insufficient capital. In
this context, accurately forecasting the demand for medical and
consumable supplies in healthcare institutions is of critical strate-
gic importance for cost optimization, operational efficiency, and,
most importantly, the provision of uninterrupted, high-quality
patient care. In this context, recent literature has been reviewed
thematically.

Traditional Time Series Approaches and Their Limitations

Among the classical time series methods commonly used in the
literature for forecasting demand for medical and consumable
supplies in the healthcare sector are Moving Average (MA), Ex-
ponential Smoothing (ES), and Autoregressive Integrated Moving
Average (ARIMA) models (Shih and Rajendran 2019; Khalid 2024).
While these methods demonstrate a certain degree of success in
forecasting future demand based on historical data (Luo et al. 2017),
they fail to adequately model external factors arising from the dy-
namic nature of the healthcare sector (Khalid 2024). Particularly
in demand series with non-linear relationships and high volatility,
the forecasting performance of these models may decline and they
may be insufficient in capturing complex patterns (Kolambe 2024;
Dachepalli 2025).

In a study predicting hospital admissions during the COVID-
19 pandemic, ARIMA and Exponential Smoothing models were
used, but limitations in their performance were observed due
to the dynamic and non-linear nature of the pandemic (Perone
2021). Similarly, despite the use of models such as ARIMA in
forecasting demand in the blood product supply chain, difficulties
are encountered in managing the uncertainties arising from the
short shelf life and highly variable usage rates of these products
(Motamedi et al. 2024). Although traditional time series methods
have advantages such as usability and low computational cost,
especially in short-term forecasting, their inability to fully grasp the
complex structure of demand in healthcare services is a significant
limitation (Luo et al. 2017; Fatima and Rahimi 2024).

These studies demonstrate that classical time series methods
have certain advantages in demand forecasting in the healthcare
sector; however, they also reveal that nonlinear structures, sudden
demand spikes, and material-based heterogeneous usage patterns
cannot be adequately captured. In this study, in order to overcome
these limitations, a hybrid and ensemble approach integrating ma-
chine learning-based models was adopted instead of using classical
time series models alone. The goal was to produce more flexible
and reliable forecasts for complex demand structures where tradi-
tional methods fall short.

The Rise of Machine Learning-Based Approaches

In recent years, machine learning (ML) algorithms have emerged
as a powerful alternative for time series forecasting problems and,
in particular, demand forecasting in the healthcare sector (Kon-
topoulou et al. 2023). Ensemble learning models such as Random
Forest (RF), Gradient Boosting (GBM), XGBoost, and LightGBM
stand out for their ability to model complex and non-linear rela-
tionships (Qiu et al. 2019; Erdebilli and Devrim-Tenba 2022). These
models can provide higher prediction accuracy compared to tra-
ditional methods and can include a large number of explanatory
variables, such as hospital capacity, patient numbers, and seasonal
indices, in the analysis (Shern et al. 2024).

In predicting peak demand days for cardiovascular diseases,

the LightGBM model stood out with a higher AUC value (0.940)
compared to other ML models such as logistic regression and SVM
(Qiu et al. 2019). Similarly, in a study on medical waste prediction,
an ensemble consensus regression model using algorithms such as
Random Forest, Gradient Boosting, and AdaBoost demonstrated
superior performance with a lower RMSE value compared to sin-
gle models (Erdebilli and Devrim-Tenba 2022). Such tree-based
models generally demonstrate strong capabilities in analyzing and
predicting complex data structures (Gldoan et al. 2023).

Studies using linear models such as Ridge and Lasso also offer
limited but valuable contributions, particularly in the context of
feature selection and preventing overfitting (Abdul-Rahman et al.
2021). The literature emphasizes that machine learning methods
are more flexible and adaptable than traditional statistical methods,
especially when dealing with complex and high-dimensional data
(Fatima and Rahimi 2024). These developments support more
accurate decision-making and increased operational efficiency in
demand management in the healthcare sector.

Hybrid and Ensemble Models: Potential and Gaps in the Litera-
ture

In order to overcome the limitations of single models, hybrid and
ensemble modeling approaches have recently gained attention.
Combining the strengths of different model families, these ap-
proaches generally exhibit superior forecasting performance com-
pared to models used alone (Perone 2021). Ensemble models offer
the potential to reduce forecast variance, correct bias, and create
more generalizable models by bringing together multiple base
learners (Fatima and Rahimi 2024). Such model combinations are
particularly promising for demand series in the healthcare sector,
which often involve heterogeneous data structures. For example,
in a study on energy demand forecasting, hybrid combinations
of different time series and machine learning models significantly
outperformed individual models.

While much of the existing literature focuses on optimizing
the performance of a single model, studies that systematically
combine multiple models and comprehensively evaluate their fore-
casting success are limited (Kontopoulou et al. 2023). Particularly
in the healthcare sector, there is a need for in-depth analysis of
the effectiveness of combinations using different model families
in forecasting medical and consumable demand. This points to a
significant gap in the literature, as the complex and highly variable
demand structures in the healthcare sector suggest that a single
model may not always provide the best solution (Qiu et al. 2019).

This study aims to fill this gap in the literature by focusing on
medical and consumable supply demand forecasting in the health-
care sector. Rather than demonstrating the superiority of a single
model, it will compare the forecasting performance of different
combinations of classical time series, machine learning, and hybrid
approaches. This approach has the potential to contribute to the
development of stronger and more consistent forecasting models
in healthcare supply chain management, thereby increasing opera-
tional efficiency and minimizing costs (Aifuwa et al. 2020). Thus, it
is assumed that by bringing together complementary information
obtained from different model families, more robust and reliable
forecasting systems that better adapt to the unique dynamics of
the healthcare sector can be created.

Although these machine learning-based studies have made sig-
nificant progress in capturing non-linear relationships in demand
forecasting in the healthcare sector, they mostly focus on individual
model performance and address the potential for using different
model families together to a limited extent. Unlike the existing
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literature, this study aims to provide an integrated forecasting
framework by systematically combining tree-based methods with
linear models, complementing the strengths and weaknesses of
individual models.

METHODOLOGY

This section details the methodological framework of the fore-
casting and decision support system used in hospital inventory
management. The primary objective of the study is to generate
short-term (three-month) demand forecasts for the future by utiliz-
ing historical consumption records on a material-warehouse basis
and to convert these forecasts into outputs that can be directly inte-
grated into operational decision-making processes. In this context,
all steps, from raw data processing to the creation of monthly time
series, from multi-model forecasting approaches to reliability as-
sessment, and from ABC-XYZ segmentation to optimal stock level
calculations, are addressed under a comprehensive methodology.
The method followed aims to reduce model fragility in healthcare
inventories with different consumption regimes, ensure the physi-
cal and operational suitability of forecasts, and make the results
suitable for internal auditing and reporting (Silva-Aravena et al.
2020; Karamshetty et al. 2022; Subramanian 2021).

Problem Definition and Notation
The fundamental problem addressed in this study is the accurate
and reliable prediction of future short-term consumption behavior
for each material based on hospital warehouses. Specifically, the
objective is to estimate consumption (output) quantities for the
next three months for each material-warehouse combination and
to use these estimates to generate decision support outputs for
inventory management. The generated forecasts are not merely nu-
merical predictions; they also form the basis for advanced analyses
such as ABC-XYZ segmentation, optimal stock level calculation,
and automatic identification of problematic materials. This ap-
proach directly links the forecasting process to operational policy
generation (Balkhi et al. 2022; Feibert et al. 2019; Polater and Demir-
dogen 2018).

The system generates monthly consumption time series from
raw material movement records and analyzes these time series
using an ensemble forecaster. Only physically meaningful move-
ment types are considered in the forecasting process; in this context,
transactions in the raw data set are filtered only as G (input) and C
(output). Thus, the model operates on a data structure that repre-
sents the actual effect of stock movements on inventory levels.

The mathematical notation used throughout this section is de-
fined as follows. Here, m represents the material ID and corre-
sponds to the HASTANE_MALZEME_ID field in the application. Simi-
larly, d represents the warehouse ID and is represented by the AD

field. The time dimension t is defined in terms of the timestamp
corresponding to the beginning of the month. The expression ym,d,t
used in Equation (1) indicates the output, i.e., the consumption
quantity of material m in warehouse d in month t. The forecast
horizon is expressed by the parameter h, which in this study covers
three-month forward forecasts with h = 1, 2, 3.

Data Source and Transformation
The raw dataset used in this study consists of detailed material
movement records obtained from a real-world hospital inventory
management system through an institutional collaboration. The
dataset was provided under a confidentiality agreement. Due to
data security and institutional privacy policies, the identity of the
data-providing institution and the raw dataset itself cannot be

publicly disclosed. The dataset includes fields such as material ID,
receipt date, transaction type (inbound or outbound), transaction
quantity, and warehouse information.

In order to obtain consistent and reproducible results in fore-
casting and decision support processes, the raw data was first
subjected to a systematic transformation process. In this process,
fields unnecessary for analysis were eliminated, numerical vari-
ables were converted to appropriate data types, and date fields
were converted to timestamp format to ensure temporal consis-
tency (Merkuryeva et al. 2019; Subramanian 2021).

To create monthly consumption time series, the exit transactions
for each material-warehouse combination were aggregated on a
monthly basis. As shown in Equation (1), the consumption quan-
tity for a given month t for a specific material m and warehouse d
is defined as the sum of all exit transactions occurring within that
month (Mbonyinshuti et al. 2022):

ym,d,t = ∑
i∈I(m,d,t)

MIKTARi (only ISLEM_TUR = C) (1)

The time series created using the monthly consumption values
obtained in Equation (1) were converted to a fixed monthly fre-
quency to make them suitable for the analysis and forecasting pro-
cess. During this conversion process, the time axis was reindexed
in monthly periods for each material-warehouse combination, and
it was checked whether there were any outflow transactions in
specific months.

This process was carried out as shown in Equation (2). Accord-
ingly, if a consumption observation exists for the relevant month,
the time series value is retained as is; if there is no discharge oper-
ation in the relevant month, the consumption quantity is assigned
a value of zero:

yt ← asfreq(MS), yt =

yt, if there is consumption

0, otherwise
(2)

In Equation (2), the expression asfreq(MS) represents the re-
sampling of the time series to a monthly start frequency. As a result
of this process, the time series is converted into a regular monthly
structure, and missing months are explicitly identified. Assign-
ing a value of zero when there is no consumption in the relevant
month prevents “no usage” situations from being implicitly lost
in the data and allows the model to learn irregular or infrequent
usage patterns.

Thanks to this approach, continuous, regular, and comparable
monthly time series are obtained for each material-warehouse com-
bination; at the same time, zero consumption periods are preserved
as a meaningful signal in statistical and behavioral analyses. Thus,
the time series created provide a suitable input structure for both
classical time series methods and feature-based machine learning
models.

Data Cleaning and Outlier Management
This subsection details how data quality issues that could affect
the reliability of forecasting and inventory decisions are addressed.
Health inventory data, being derived from operational processes,
may contain missing records, incorrect date information, and con-
sumption values that are statistically extreme. Since such problems
can lead to misleading patterns and unstable model behavior, es-
pecially in time series-based forecasting models, a systematic data
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cleaning and outlier management process was applied prior to
analysis (Karamshetty et al. 2022; Gurumurthy et al. 2021).

During the preprocessing stage, records with missing informa-
tion in fields required for analysis were first removed from the
dataset. These fields include basic variables such as material ID,
warehouse information, transaction date, and transaction amount.
Subsequently, quantity fields were converted to appropriate nu-
merical data types, and values with logical inconsistencies were
checked. Finally, date fields were parsed into timestamp format,
and records with invalid or incorrect date information were elimi-
nated from the dataset, thus ensuring the chronological integrity
of the time series.

During the outlier management phase, a top-end trimming
(minorize-like) approach was adopted to prevent records with ex-
tremely high values, which are rarely observed in consumption
amounts, from disproportionately affecting the modeling process.
In this approach, the distribution of raw consumption quantities
was considered, and the 99.9th percentile value was set as the
threshold. As shown in Equation (3), this threshold value is repre-
sented by τ, and only observations below this value are retained
in the analysis:

τ = Q0.999(x), x∗i =

xi, xi ≤ τ

remove, xi > τ
(3)

In Equation (3), xi represents the raw consumption (transac-
tion amount) value, while Q0.999(x) represents the upper 99.9th
percentile of the entire consumption distribution. According to
this definition, observations satisfying the condition xi ≤ τ are
retained in the data set, while extreme outliers above the thresh-
old value are excluded from the analysis. This method aims to
prevent the model from developing excessive sensitivity without
completely suppressing the effect of outliers, while preserving the
overall structure of the distribution.

This outlier cleaning strategy offers a balanced solution that
maintains both statistical robustness and operational realism, par-
ticularly in healthcare inventory data where high-volume outputs
are rarely used but occasionally observed. Thus, the resulting time
series achieve a more stable and reliable input structure for both
classical statistical analyses and machine learning-based forecast-
ing models (Ingle et al. 2021; Kim et al. 2023).

Material-Based Statistical and Behavioral Feature Extraction
This subsection explains how statistical and behavioral features
that quantitatively summarize the past consumption behavior of
each material are extracted. The aim is to improve prediction per-
formance and generalizability by including attributes that reflect
the general usage character of the material in the model, rather
than using only the past values of the time series. This approach
enables the differentiation of materials that have the same lagged
values but exhibit different usage patterns (Kim et al. 2023; Subra-
manian 2021).

For each material–storage combination, basic descriptive statis-
tics such as total number of entries and exits, average consumption
amount, maximum and minimum values, and standard deviation
were calculated. However, the coefficient of variation (CV) was
used to evaluate consumption behavior independently of scale.
As shown in Equation (4), CV is defined as the ratio of the stan-
dard deviation to the mean and measures the relative variability
in consumption:

CV =
σ(y)
µ(y)

(µ(y) > 0) (4)

In Equation (4), σ represents the standard deviation of monthly
output quantities, while µ represents the mean value of the same
series. The CV metric prevents absolute variance from being mis-
leading in materials with low averages, enabling a comparative
assessment of consumption stability.

Seasonality strength is defined to quantitatively express the
degree of seasonal fluctuation in consumption throughout the year.
In this context, the seasonality indicator is obtained by normalizing
the variability of average consumption values by month. As shown
in Equation (5), this metric is calculated based on the ratio of the
variation between monthly averages to the overall average:

S =
σ(ȳay)

µ(ȳay)
(µ > 0) (5)

Here, ȳay represents the average consumption calculated for
each month, while ȳ represents the overall average obtained
throughout the entire period. Higher S values indicate strong
seasonal fluctuations and show that the forecasting process is rela-
tively more complex.

The trend slope was obtained by applying linear regression to
the monthly total consumption values in order to determine the
general upward or downward direction of the consumption series
over time. As shown in Equation (6), the slope of the consumption
values against the time variable is used as a trend indicator:

yt = β0 + β1t + εt (6)

In this equation, the coefficient β1 represents the trend slope, in-
dicating whether consumption shows an increasing or decreasing
trend over time.

Finally, the regularity score is defined to measure the degree to
which a material is used regularly. As shown in Equation (7), regu-
larity is calculated as the ratio of the months in which consumption
occurred to the total number of months:

R =
Number of months consumption was observed

Total number of months
(7)

This metric plays a critical role in both prediction reliability and
inventory policy design by enabling the differentiation of irregular
and infrequently used materials.

Time Series Feature Engineering
This subsection details the feature engineering process applied to
transform monthly consumption time series into an input space
suitable for supervised learning models. In time series forecasting
problems, the direct use of past observations is often insufficient; in-
stead, derived features representing temporal dependencies, short-
term trends, and calendar effects must be included in the model.
Within the scope of this study, a comprehensive feature vector
consisting of lagged values, rolling statistics, short window trends,
and calendar variables was created for each month (Kim et al. 2023;
Ingle et al. 2021).

The feature vector created for each time step primarily includes
calendar components. In this context, the variables “month(t)”,
“year(t)”, and “quarter(t)” are used to enable the model to learn
monthly, yearly, and quarterly seasonal effects. Additionally, the
variable k, an increasing index starting from the beginning of the
time series, is defined to represent long-term trends through a
linear time indicator.

To capture temporal dependencies, lagged values of past con-
sumption for each month are added to the feature vector. In this
study, consumption amounts from one-, two-, and three-months
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prior were defined as yt−1, yt−2, and yt−3, respectively, and the
short-term autocorrelation structure was targeted for transfer to
the model.

Rolling statistics were calculated to represent the short-term
consumption level and volatility. As shown in Equation (8), the
three-month rolling average RM3(t) is defined as the arithmetic
mean of the previous three observations, including the relevant
month:

RM3(t) =
1
3

2

∑
i=0

yt−i (8)

In Equation (8), yt−i represents the consumption amount i
months prior to time t. This metric represents the short-term
consumption level in a smoothed form, reducing the impact of
sudden spikes.

Additionally, a three-month rolling standard deviation was
calculated to measure short-term consumption volatility. As shown
in Equation (9), the RS3(t) value is defined as the square root of the
average of the squares of deviations around the rolling average:

RS3(t) =

√√√√1
3

2

∑
i=0

(yt−i − RM3(t))
2 (9)

Equation (9) quantitatively expresses the magnitude of short-
term consumption fluctuations and enables the model to distin-
guish between stable and volatile periods.

The short window trend is defined to capture the direction of
increase or decrease in the recent past. In this context, the slope
value obtained by applying a linear regression on the last three
observations is expressed as Trend3(t) as shown in Equation (10):

Trend3(t) = slope(yt, yt−1, yt−2) (10)

This slope value represents the recent consumption direction
independently of long-term trends and ensures that short-term
changes are incorporated into the forecasting process.

All features defined in this subsection are explicitly generated
within the system and are perfectly aligned with the feature space
used during the training phase. The same feature generation
scheme is maintained for forecasts covering the next three months;
feature vectors for future periods are created using lagged values
derived from the latest observations, rolling statistics, and trend
components. This ensures structural consistency between the train-
ing and forecasting phases, enhancing the model’s stability and
generalizability.

Multi-Model Forecasting and Ensemble Combination
This subsection details how monthly consumption time series are
handled within a multi-model forecasting framework and how
models with different learning biases are combined to obtain more
stable forecasts. Health inventory consumption data can exhibit
heterogeneous behaviors such as high variation, irregular usage,
sudden spikes, and regime shifts, making a forecasting approach
based on a single model family often insufficient. Therefore, the
study adopts an ensemble structure that combines linear, tree-
based, and boosting-based models (Chien et al. 2023; Sina et al.
2023).

The system uses XGBoost and LightGBM models when appro-
priate libraries are available in the working environment; if these
libraries are not available, it constructs an equivalent ensemble
space using Random Forest and Gradient Boosting algorithms rep-
resenting the same model class. Additionally, linear-regularized

models such as Ridge and Lasso are included in the ensemble
to capture linear components in consumption behavior. This ap-
proach aims to achieve more balanced prediction performance
across different consumption regimes through model diversity.

Converting Time Series to Regression (Supervised TS Formula-
tion): This subsection explains the process of converting monthly
consumption time series into a structure that can be processed by
supervised learning algorithms. In time series forecasting prob-
lems, it is known that each observation is not solely based on past
values; it must also be considered alongside calendar effects, short-
term statistics, and local trend information. Therefore, in this study,
the time series problem is transferred to a regression framework
by defining a comprehensive feature vector for each time step.

For the monthly consumption series yt, the feature vector cre-
ated at each time step t is defined as shown in Equation (11):

xt =
[

month(t), year(t), quarter(t), k︸ ︷︷ ︸
calendar + index

, yt−1, yt−2, yt−3︸ ︷︷ ︸
delays

, µt(3), σt(3)︸ ︷︷ ︸
rolling

, st(3)︸︷︷︸
short trend

]
(11)

The variables month(t), year(t), and quarter(t) in Equation
(11) ensure that the monthly, annual, and quarterly seasonal effects
on consumption are incorporated into the model. The k variable
represents the increasing time index from the beginning of the
time series and allows long-term trends to be learned through
a linear time indicator. The lagged variables yt−1, yt−2, yt−3 re-
flect the short-term autocorrelation structure, ensuring that past
consumption information is directly included in the model.

Short-term statistical properties are calculated based on the last
three observations. The three-month moving average µt(3) and
moving standard deviation σt(3) are defined as shown in Equation
(12):

µt(3) =
1
3

2

∑
i=0

yt−i, σt(3) =

√√√√1
3

2

∑
i=0

(yt−i − µt(3))
2 (12)

These metrics represent the short-term level and volatility of
consumption, ensuring that sudden spikes and temporary fluctua-
tions are incorporated into the model in a balanced manner.

The short-window trend is defined by the slope value obtained
by applying a linear fit to the last three observations. This process
is performed as shown in Equation (13):

yt−i ≈ ai + b (i = 0, 1, 2), st(3) = a (13)

Equation (13), where a represents the trend coefficient reflecting
the short-term consumption trend. This value ensures that the
recent upward or downward direction is incorporated into the
model independently of long-term trends.

In practice, this structure was implemented through the vari-
ables lag_1�3, rolling_mean_3, rolling_std_3, and trend_3. In
addition, attributes such as the coefficient of variation (CV) repre-
senting material behavior, seasonality score, long-term trend slope,
and regularity were also added numerically to the feature vector.
In this way, the consumption context of different materials with
the same lag values is clearly presented to the model, enabling the
model to learn material-specific behaviors (Kim et al. 2023).

Mathematical Foundations of the Models Used
This subsection presents the mathematical foundations of the pre-
diction models used in the study. The models were selected to
have different learning biases and positioned within the ensemble
structure to complement each other.
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In linear regression models, the objective is to estimate the
coefficients representing the linear relationship between the input
features and the target variable. This fundamental relationship can
be expressed as shown in Equation (14):

ŷ = XT β (14)

In this model, β represents the coefficient vector to be estimated.
In high-dimensional and correlated feature spaces, the classical
least squares approach can lead to overfitting. Ridge and Lasso
regularizations have been used to mitigate this problem.

Ridge regression adds a penalty term based on the L2 norm to
limit the magnitude of the coefficients. As shown in Equation (15):

min
β

n

∑
i=1

(yi − xT
i β)2 + λ∥β∥2

2 (15)

This approach reduces the model’s variance by bringing the
coefficients closer to zero, thereby producing more stable estimates.

Lasso regression, on the other hand, produces sparse solutions
using a penalty term based on the L1 norm. This indirectly pro-
vides a feature selection mechanism by setting the coefficients of
unimportant features to zero. Equation (16) illustrates this struc-
ture:

min
β

n

∑
i=1

(yi − xT
i β)2 + λ∥β∥1 (16)

Ridge and Lasso models form a strong baseline, particularly
in feature spaces containing partially linear relationships such as
calendar variables, lagged consumption values, and rolling statis-
tics. Using these models in conjunction with tree-based methods
allows the balanced capture of linear and nonlinear components
in the ensemble structure (Kim et al. 2023).

Random Forest, one of the tree-based methods used in this
study, has been included in the ensemble structure to obtain stable
estimates, especially for high-variance and noisy consumption
time series. Since health inventory consumption data can contain
sudden usage spikes and irregular usage periods, models based
on a single decision tree often face high variance problems. The
Random Forest approach aims to mitigate this limitation through
bootstrap sampling and averaging mechanisms (Mbonyinshuti
et al. 2022; Kim et al. 2023).

The Random Forest model produces the final output by averag-
ing the predictions of numerous decision trees trained on different
subsets of data created using the bootstrap method. This structure
is expressed as follows, as shown in Equation (17):

ŷRF(x) =
1
T

T

∑
t=1

ft(x) (17)

Equation (17) shows that ft(x) represents the prediction gener-
ated by the t-th decision tree for the input feature vector x, while
T denotes the total number of trees in the ensemble. Each decision
tree is trained on a different subset of the original dataset, sam-
pled using the bootstrap method; additionally, randomly selected
feature subsets are used in the splitting operations at tree nodes.
These two randomness mechanisms significantly reduce the vari-
ance of the ensemble average by lowering the correlation between
trees.

While a single decision tree typically exhibits low bias but high
variance, the Random Forest ensemble suppresses this high vari-
ance through averaging. This feature enables more stable and reli-
able predictions, especially in health inventory time series where
consumption amounts fluctuate irregularly, very high values are

rarely observed, and the noise level is high. Therefore, the Random
Forest model plays a critical role as a variance-reducing component
within the ensemble structure.

Gradient Boosting, another tree-based method used in this
study, was included in the ensemble structure to gradually cor-
rect systematic errors that arise in consumption estimation. While
the Random Forest approach focuses on reducing variance, the
Gradient Boosting model primarily aims to reduce bias and gradu-
ally learns the error components that previous models could not
explain. This feature provides a significant advantage, especially
in complex consumption patterns where trends, seasonality, and
lagged interactions are observed together (Sina et al. 2023; Kim et al.
2023).

The Gradient Boosting approach builds the model incremen-
tally. In the first step, an initial model that minimizes the loss
between observed values and predictions is defined. This process
is expressed as shown in Equation (18):

L(yi, c) (18)

In Equation (18), L(yi, c) represents the loss between the actual
consumption value yi and the constant estimate c. Following the
initial model, the model is updated incrementally. At each step, a
new weak learner is added that attempts to explain the residuals
(negative gradients) of the previous model. This update process is
shown in Equation (19):

Fm(x) = Fm−1(x) + νhm(x) (19)

Here, hm(x) represents the new weak learner attempting to
explain the error component that the previous model could not
predict, while ν represents the learning rate. The learning rate
reduces the risk of overfitting by controlling the extent to which
each new model contributes to the ensemble output. Thanks to
this stepwise structure, the Gradient Boosting model gradually
captures components that could not be explained in previous steps
and systematically improves prediction accuracy.

Due to these characteristics, Gradient Boosting plays an im-
portant role as a bias-reducing component within the ensemble
structure.

XGBoost and LightGBM are enhanced versions of the Gradient
Boosting approach in terms of regularization and computational
efficiency. These models are designed to offer stronger generaliza-
tion performance, particularly in high-dimensional feature spaces
and complex interaction structures. In this study, these models
were included in the ensemble structure to more effectively capture
nonlinear and interactive consumption dynamics (Cao and Gui
2019; Kim et al. 2023).

The optimization process in XGBoost and LightGBM is based
on jointly minimizing the loss function, which measures data fit,
and a regularization term that penalizes model complexity. This
objective function is generally defined as shown in Equation (20):

L = ∑
i

L(yi, ŷi) + ∑
k

Ω( fk) (20)

In Equation (20), L(yi, ŷi) represents the loss between the actual
consumption value and the model estimate, while the term Ω( fk)
represents the model complexity of the k-th tree. A typical regu-
larization function used for tree complexity is given in Equation
(21):

Ω( f ) = γT +
1
2

λ∥w∥2 (21)
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In this expression, T represents the number of leaves in the
tree, w represents the weights associated with leaf nodes, and γ
and λ represent the regularization coefficients that penalize model
complexity. These penalties imposed on the number of leaves
and weights prevent the model from learning overly complex
structures, thereby improving its generalization ability.

Thanks to this regularization mechanism, XGBoost and Light-
GBM can effectively model complex consumption dynamics such
as interactions between consumption values, seasonal effects, and
irregular usage patterns. On the code side, if these libraries are
not available in the working environment, the model is preserved
by substituting Random Forest or classic Gradient Boosting algo-
rithms representing the same model class.

Time Series Cross-Validation (TS-CV) and Model Selection with
MAE
This subsection explains how the performance of prediction mod-
els is evaluated in a manner appropriate to the nature of time
series. In time series problems, classical shuffled cross-validation
approaches can cause information about the future to influence
past model parameters, a situation referred to in the literature as
“data leakage”. Since such leakage can cause model performance
to appear more optimistic than it actually is, this study adopts
a time-axis-sensitive validation strategy (Shaub 2020; Kim et al.
2023).

In this context, the system gradually expands the training win-
dow along the time axis using the TimeSeriesSplit approach and
positions the validation set chronologically ahead of the training
set at each fold. Thus, observations after time t are not used in
learning the model’s parameters at time t, and the forward predic-
tion scenario is simulated realistically.

Mean Absolute Error (MAE) was chosen as the error metric
for evaluating model performance. Equation (22) provides the
mathematical definition of MAE:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (22)

In Equation (22), yi represents the observed actual consumption
value, while ŷi represents the estimate generated by the model.
The MAE metric provides a more robust measure than MSE against
singular jumps in time series that may contain extreme values, such
as stock consumption, because it does not involve squaring. This
feature makes MAE a suitable performance criterion, especially for
healthcare inventory data where both high-volume consumption
and zero consumption can occur.

Selecting the Top 3 Models and Weighted Ensemble
As a result of the time series cross-validation process, MAE-based
performance scores were obtained for each candidate model. Using
these scores, the models with the lowest error values were selected
and used to create the ensemble structure. Specifically, as shown in
Equation (23), the first three models with the smallest MAE values
were determined:

B = Top3
(

arg min
j

MAEj

)
(23)

In Equation (23), B represents the set of models that will be
included in the ensemble, while MAEj denotes the error score
obtained from the cross-validation of the j-th model.

The predictions of the selected models are combined using a
performance-based weighting approach. The weights are defined

as inversely proportional to the error, as shown in Equation (24)
(Pawlikowski and Chorowska 2020; Shaub 2020):

wj =
1

MAEj + ε
(24)

Here, ε represents a small constant value added to ensure nu-
merical stability and prevent division by zero. The obtained
weights are normalized, and the final ensemble estimate is cal-
culated as shown in Equation (25):

ŷ(x) =
∑j∈B wj ŷj(x)

∑j∈B wj
(25)

The statistical interpretation of this approach is that models
with low MAE values have smaller overall error levels and are
therefore targeted to reduce the expected absolute error by receiv-
ing higher weights in the combination process.

Constraining Negative Predictions (Physical Feasibility)

Since consumption quantities cannot take negative values by na-
ture, a one-sided constraint has been applied to all model predic-
tions to preserve the physical meaningfulness of the prediction
outputs. This constraint ensures that predicted values below zero
are clipped to zero, as shown in Equation (26):

ŷ← max(ŷ, 0) (26)

This process can be interpreted as a non-negativity constraint
applied in the output space and is applied both in individual
model forecasts and in the ensemble output vector. This ensures
that stock and consumption forecasts are consistent with physical
reality.

Multi-Step (H = 3) Forecast Generation

In this study, the forecast horizon is set to H = 3 months. To
generate forecasts for future periods, feature vectors for future
periods are constructed using lagged values derived from the
latest observations, rolling statistics, and trend components. These
feature vectors are defined as xt+1, xt+2, xt+3, respectively (Cao
and Gui 2019).

The selected ensemble model directly produces multi-step fore-
casts based on these feature vectors. This process can be expressed
as shown in Equation (27):

[ŷt+1, ŷt+2, ŷt+3] = Ensemble(xt+1, xt+2, xt+3) (27)

The code creates a future_df for the next three months
and aligns it with the training feature space using X_test =

future_df[X_train.columns].

Robust Fallback Strategies

Health inventory consumption series can exhibit heterogeneous
behaviors such as sparse usage, sudden spikes, institution/clinic-
driven regimen changes, and seasonal fluctuations. Therefore,
relying on a single model family increases the risk of “single-model
fragility” (the model becoming fragile under certain data regimes).
In this study, the prediction engine is designed with a multi-layered
fallback architecture (Sina et al. 2023; Kim et al. 2023).
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Primary Layer: Ensemble Learning: When the length of the time
series created at monthly frequency is T ≥ 6 months, the system
primarily performs prediction through a feature-based ensemble
learning architecture. At this stage, the time series is modeled
not directly from raw values but through an explanatory feature
space representing the series’ temporal structure and short-term
dynamics. The feature vector created for each time step includes
calendar information (month, year, and quarter), the time index,
lagged variables representing past consumption (values from the
last one, two, and three months), local statistics such as the rolling
average and standard deviation for the last three months, and the
local trend slope calculated over a short window. Additionally,
statistical measures summarizing the historical usage behavior
of the relevant material, such as the coefficient of variation (CV),
regularity of usage, and seasonality indicator, are also included in
this feature space as numerical attributes. This ensures the model
is sensitive not only to the latest values in the time series but also
to the material’s long-term behavioral characteristics.

Multiple learners are trained in parallel on this expanded fea-
ture space. Gradient-boosted tree-based methods such as XGBoost
and LightGBM are used in the application environment whenever
possible; when these libraries are not available, Random Forest and
Gradient Boosting algorithms, which represent the same model
family, are used as backups. The fundamental purpose of this
model diversity is to capture nonlinear interactions, sudden jumps,
or smoother trend structures that may arise in different consump-
tion regimes using models with different biases.

Model selection and performance evaluation are performed us-
ing a TimeSeriesSplit-based cross-validation approach to prevent
information leakage in time series. In this method, the training
window is gradually expanded along the time axis, and each val-
idation step is performed using only historical data. The Mean
Absolute Error (MAE) is preferred as the error metric, and the most
successful models are determined based on the average validation
error obtained for each model. The predictions of the models with
the lowest error are combined using weights inversely propor-
tional to the corresponding error values, thus yielding the final
ensemble prediction. This weighted combination strategy aims
to reduce the impact of systematic errors that a single model may
make under certain data regimes and to increase overall general-
ization capability by allowing more reliable models to contribute
more to the prediction.

Secondary Layer: Exponential Smoothing Backup: The ensemble
learning layer may fail in practice due to unexpected numerical
or structural errors during feature extraction, model training, or
prediction generation. In such cases, a complete halt in the pre-
diction process is unacceptable for operational decision support
systems. Therefore, the system incorporates the Holt–Winters Ex-
ponential Smoothing approach from classical time series methods
as a backup mechanism in the second layer. This method tends
to produce stable and interpretable results, especially for medium
and long-length series, thanks to its fewer parameters and its abil-
ity to directly model the level, trend, and, if necessary, seasonality
of the time series.

Whether or not the seasonality component is included in the
model is determined conditionally. If the time series is of sufficient
length (at least T ≥ 24 months in practice) and the seasonality
indicator, which shows a meaningful seasonal fluctuation in the
historical behavior of the series, is above a certain threshold value,
the seasonal component is added to the model. Otherwise, a
simpler structure working only with level and trend components
is preferred. The main objective of this approach is to ensure the

continuity of the system’s forecasting by compensating for the
breaks that may occur in machine learning-based methods when
the data is of medium or long length with a more classical and
stable time series model.

Third Layer: Simple Scaled Average / Last-Value Heuristic: When
the time series length is very short, i.e., especially in cases where
T < 6 months, the risk of both machine learning-based meth-
ods and parametric time series models overfitting or producing
unreasonably volatile predictions increases significantly. In such
data-starved scenarios, the system consciously adopts the prin-
ciple of “safe heuristics over complex modeling.” If at least a
few observations are available for the relevant material, the last
observed consumption value is scaled by a specific coefficient (ap-
proximately 50% in practice) to produce a fixed projection. If the
time series is effectively empty or there is no meaningful historical
data, the estimates are fixed to zero, and these outputs are also
reported with a very low confidence label.

While not numerically perfect, this approach ensures that the
system exhibits a more cautious operational behavior by prevent-
ing it from producing random or overly confident but unfounded
estimates in the absence of data.

When considered together, this three-layered structure presents
a robust prediction architecture that enables the system to behave
in an adaptable manner to data length and data quality without
being dependent on a single model family. Thus, the goal is for the
prediction pipeline to operate seamlessly and reliably in healthcare
inventories with heterogeneous consumption patterns.

Prediction Confidence Score:
Simply producing point estimates is not sufficient for prediction
outputs to be used in real-world inventory management and sup-
ply planning processes. It is also necessary to quantitatively ex-
press the conditions under which these predictions are made and
the degree to which they are based on reliable information. Espe-
cially in critical areas with high operational risk, such as healthcare
inventory, ignoring forecast uncertainty can lead directly to costly
outcomes such as stock-outs or excess inventory. Therefore, this
study defines a rule-based and explainable forecast confidence
score accompanying the forecasts generated for each material.

This score is not a machine learning output; it is designed as
an interpretable quality measure obtained by jointly evaluating a
set of statistical indicators that reflect the amount of data, behav-
ioral stability, timeliness, and seasonal complexity. Thus, decision-
makers can obtain a quantitative answer not only to the question
“How much will we consume?” but also to the question “How
much can I trust this forecast?”

Components and Normalization: In order to make the different
indicators calculated for each material comparable, the system first
reduces all components to the range [0, 1] and then calculates the
average of these values to produce the overall confidence score.
This approach allows criteria with different scales and meanings
to be combined under a single unified quality metric.

The first component of the confidence score is the data quantity
factor, which represents the amount of data on which the predic-
tion is based. This factor is defined in Equation (28) below, using T
to denote the length of the time series:

fdata = min
(

T
24

, 1
)

(28)

In this formula, T represents the number of monthly observa-
tions available for the relevant material. The value of 24 used in
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the denominator was chosen as an intuitive reference, assuming
that at least two years of observation history is a reasonable “suf-
ficiency threshold” to capture annual seasonal cycles. If the time
series length is 24 months or longer, this factor takes the value
1, and the data quantity is considered sufficient. Conversely, for
shorter series, this ratio remains below 1, and the confidence score
is suppressed downward due to data scarcity.

The second component represents regularity of use. This mea-
sure is derived from the “proportion of months with zero consump-
tion” in the monthly consumption series for the relevant material
and is used directly as a normalized value between 0 and 1. A high
regularity value indicates that the material is consumed regularly
in most months and therefore exhibits predictable behavior. Con-
versely, low regularity indicates that the series has infrequent and
irregular usage and that prediction uncertainty should naturally
be higher.

The third component is a measure representing the stability of
variation in the series and is based on the coefficient of variation
(CV). CV is a dimensionless statistic defined as the ratio of the
standard deviation to the mean, measuring the relative volatility of
the series. In this study, CV was converted into a confidence score
using a three-interval interval scoring method to enhance practical
interpretability, rather than being used directly as a continuous
function. If the CV value is below 0.5, the series is considered
relatively stable, and in this case, a score of 0.8 is assigned to this
component. If the CV is between 0.5 and 1.0, it is assumed to indi-
cate moderate volatility, and the component score is taken as 0.6.
In high volatility regimes where the CV is 1.0 or above, the series
is considered highly irregular, and this factor contributes only a
lower score of 0.3. This threshold directly reflects the assumption
that point estimates are naturally less reliable in high-variance
series.

The fourth component represents the recency of the data. The
magnitude ∆ used here indicates the number of days between the
last output process for the relevant material and the current date. If
a material has not been used for a very long time, predictions based
on its past behavior are less likely to reflect current operational
reality. Therefore, materials with a small ∆ value, i.e., those used
recently, receive a higher score. In practice, this factor is taken
as 1.0 for ∆ ≤ 90 days, reduced to 0.7 for values between 90 and
365 days, to 0.4 for values between 365 and 730 days, and to 0.1
for materials that have not been used for more than two years.
This gradual decrease directly integrates the concept of “temporal
decay” of information into the confidence score.

The fifth and final component is the indicator representing sea-
sonal complexity, denoted by S. This magnitude is a normalized
measure summarizing the relative intensity of seasonal fluctua-
tions in the series. In series with a weak seasonal effect, i.e., S < 0.3,
this factor takes a high value such as 0.8; in series with moderate
seasonality (0.3 ≤ S < 0.6), it drops to 0.6; and in series with
strong seasonal fluctuations (S ≥ 0.6), it is taken as 0.4. The basic
assumption here is that as seasonality increases, the behavior of the
series becomes more complex and, consequently, the uncertainty
of short-term forecasts rises.

Overall Score and Verb Levels: All of the components defined
above are combined to calculate a single composite confidence
score for each material. The overall confidence score C is defined
as the arithmetic mean of the total K components in Equation (29):

C =
1
K

K

∑
k=1

fk (29)

This expression defines fk as the normalized sub-scores corre-
sponding to data quantity, regularity, variation stability, timeliness,
and seasonal complexity, respectively, and K = 5 was used in this
study. The reason for choosing the arithmetic mean is to prevent
any single factor from overly dominating the score by giving equal
weight to all components and to obtain a more balanced reliability
assessment.

This calculated continuous value is then converted into four
ordinal confidence levels (e.g., “very high”, “high”, “medium”,
“low”, “very low”) for easier interpretation by decision-makers.
This conversion ensures that the system outputs are directly us-
able not only numerically but also in managerial and operational
reporting contexts (Subramanian 2021).

ABC–XYZ Segmentation

The outputs of the forecasting module are not limited to producing
total future consumption quantities; they also reveal a rich set of
information reflecting the extent to which the demand behavior of
each material is predictable. From an operational inventory man-
agement perspective, the question “how much of which material
will be consumed?” is not sufficient; it is also necessary to answer
the questions “which materials have more stable demand, and
which are more volatile and uncertain?” In order to address these
two dimensions together in this study, the ABC classification, com-
monly used in classical inventory literature, was combined with
the XYZ classification, which is based on demand predictability, to
create a combined ABC–XYZ segmentation for each material. The
application aims to ensure that the results obtained are transpar-
ent and reproducible in internal auditing, reporting, and decision
support processes, thanks to the “rule-based” and deterministic
definition of classification thresholds.

ABC: For each material in the ABC dimension, the sum of the esti-
mated consumption quantities for the next three months is used
as a proxy variable representing the relative “value” or “intensity”
of the relevant item in the inventory system. This total value, Vm,
is obtained by summing the three-month forecasts generated for
material m, and all materials are ranked from largest to smallest
according to this magnitude. Subsequently, the cumulative share
of each material in the total forecast is calculated, and the classifi-
cation is performed based on the position of this share within the
total.

In this approach, materials in the top group with a cumulative
share up to 80% of the total are labeled as Class A because they
represent a large portion of the total consumption volume. Materi-
als with a cumulative share between 80% and 95% form the Class
B group, which has a medium consumption profile. Materials
in the bottom 5% of the total, with a relatively low consumption
volume, are classified as Class C. The selection of these thresholds
is consistent with the classical ABC approach, which is based on
the Pareto principle, providing a prioritization logic that directs
resources and attention primarily to Class A items in inventory
management.

XYZ: The XYZ dimension aims to measure the stability and pre-
dictability of demand behavior rather than the consumption quan-
tity of materials. To this end, the coefficient of variation (CV)
calculated for each material and the regularity indicator represent-
ing usage regularity are used together. CV measures the relative
volatility of the series, while regularity reflects the degree of conti-
nuity in consumption over months. Evaluating these two metrics
together provides a more balanced classification that accounts not
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only for the magnitude of fluctuations but also for the structural
continuity of the series.

Within this framework, materials with a CV value below 0.5
and a regularity value above 0.7 are classified as Class X, as they
exhibit both low volatility and high usage continuity. This group
represents the most predictable demand and the most reliable
items for inventory planning. Materials with a CV value below 1.0
but a regularity value above 0.4 are labeled as Class Y, assuming
they have medium volatility and partial regularity. This group
represents a transition zone with medium uncertainty in terms
of predictability. Materials that do not meet these conditions, i.e.,
those with irregular and complex behavior due to high variation
or low regularity, are classified as Class Z and constitute the most
problematic group in terms of demand forecasting.

Calculating the Optimal Stock Level

ABC–XYZ segmentation is used in this study not only to classify
materials but also to systematically determine the stock manage-
ment policy to be applied for each segment. In other words, the
segment label obtained is treated directly as a “decision parame-
ter,” and different safety stock ratios, maximum stock levels, and
control frequencies are defined for each segment. This approach
ensures the establishment of an adaptable and risk-sensitive struc-
ture that takes into account both consumption volume and the
predictability of demand behavior, rather than applying a uniform
policy in inventory management. In practice, the matching be-
tween the segment and the inventory policy is defined through
a clear and deterministic dictionary structure, ensuring that the
results produced by the system are verifiable and easily integrated
into corporate procedures (Goncalves et al. 2020).

Demand Representation: The base demand level used in inventory
planning calculations for each material is obtained by taking the av-
erage of three-month forecasts representing the short-term forecast
horizon. This approach aims to mitigate the impact of short-term
volatility and produce a more balanced representation of “typical
monthly demand” by preventing excessive reliance on a single
month’s forecast value. Thus, both sudden spikes and temporary
declines do not disproportionately affect inventory level decisions;
instead, calculations are based on a more stable reference level.

Safety Stock, Maximum Stock and Reorder Point: The safety stock
and maximum stock level to be determined for each material are
calculated based on policy coefficients defined according to the
ABC–XYZ segment to which it directly belongs. In this context,
the segment label represents a kind of “risk profile”; for example,
higher safety margins are anticipated for segments that are both
high-volume and low-predictability, while more limited buffer
levels are considered sufficient for low-volume and more stable
segments.

The safety stock can be interpreted as a buffer level obtained
by applying a segment-based safety factor to the typical monthly
demand for the relevant material, while the maximum stock level
represents the upper limit that the stock is allowed to reach, ob-
tained by scaling the same reference demand size with a wider
multiplier.

The reorder point is defined in the system based on a rule that
is practical and operationally easy to implement. In this study,
the reorder threshold is considered as a fixed percentage of the
maximum stock level, and this percentage is directly applied as a
safety percent in practice. This choice aims to balance both the risk
of excessive stock accumulation and the risk of stock depletion by

automatically triggering an order when the stock level falls below
a certain safe margin.

Seasonality Adjustment: The consumption behavior of some ma-
terials involves significant seasonal fluctuations. In such cases,
stock levels determined by fixed coefficients may be insufficient
to meet seasonal demand peaks. Therefore, for materials with a
high seasonal effect, the safety stock and maximum stock levels
are adjusted upward by an additional multiplier. This adjustment
aims to reduce the risk of stock depletion, particularly in clinical
usage scenarios where sudden and intense demand spikes occur
during specific periods. Thus, the system indirectly reflects not
only the average demand level but also the structural fluctuations
in the temporal distribution of demand in its stock policies.

Problem Material Identification and Intervention Strategies
A critical step in operational decision support is to automatically
flag risky or problematic materials on the same line where forecasts
are generated. The system labels a material as “problematic” when
any of the following conditions are met ?:

• Low or very low reliability level
• Forecast quantity is zero
• CV > 1.5 (highly variable)
• Last use > 365 days (long period of non-use)

Behavioral Problem Groups: Problem materials are divided into
subgroups based on their typical behaviors to facilitate interven-
tion design:

• OLD_USE: Materials that have not been used for a very long
time.

• HIGH_VARIATION: Materials exhibiting very high con-
sumption volatility.

• IRREGULAR_USE: Materials with low regularity of usage.
• INSUFFICIENT_DATA: Materials with very few historical

outputs.
• COMPLEX_PATTERN: Materials that do not fit into the above

categories and exhibit complex or mixed behavior.

Action Recommendations and Prioritization: This subsection ex-
plains how actionable recommendations and priority levels are
generated for each problem group, going beyond the identifica-
tion of problematic materials. The goal is to transform forecasting
and classification outputs from merely descriptive reports into a
decision support layer that directly supports operational decision-
making processes. This approach elevates the system from a “pas-
sive reporting” level to an “active and directive decision support”
level.

The system determines the problem type by jointly evaluating
the forecast results, uncertainty indicators, behavioral character-
istics (variation, regularity, trend), and inventory classifications
(ABC–XYZ) obtained for each material–warehouse combination.
As a result of this comprehensive evaluation, predefined but data-
triggered action templates are activated for each problem type.

For example, for materials that exhibit long-term low or zero
consumption and whose predicted future consumption is also
negligible, removal from stock or evaluation of alternative uses
is recommended. Such materials, especially if they are in the C
or Z class, can negatively impact warehouse space efficiency and
inventory carrying costs. Therefore, the system flags this group
as a low operational priority but strategically important problem
requiring cleanup.
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In contrast, for materials exhibiting high variation and irregular
consumption behavior, action recommendations are generated to
increase safety stock (buffer levels) or re-adjust reorder points. In
such cases, the system proposes a more protective policy aimed
at minimizing stock-out risk, taking into account prediction error
and uncertainty levels.

When data length is insufficient or consumption patterns cannot
be modeled statistically reliably, the system flags these materials as
“high uncertainty” and adopts an approach that prioritizes expert
evaluation over automatic decision-making. The recommended
action plan for such materials is to initiate a manual review process
alongside temporary conservative stock policies.

Each generated action recommendation is labeled with a prior-
ity score, taking into account the operational impact of the relevant
problem, the expected risk level, and the potential cost outcome.
This prioritization enables managers to focus limited resources on
the most critical materials and systematizes the decision-making
process. Thus, the outputs obtained from the forecasting module
are transformed into actionable, traceable, and justifiable decision
recommendations.

RESULTS AND DISCUSSION

Medical supply demand forecasting in healthcare institutions is a
decision problem characterized by high uncertainty, dynamism,
and multiple factors. Sudden changes in patient numbers, emer-
gency department workloads, epidemic periods, updates to clinical
protocols, and administrative decisions directly and often unpre-
dictably affect consumption patterns. Therefore, healthcare inven-
tory data are often described in the literature as irregular, sparse,
highly variable, and prone to anomalies (Merkuryeva et al. 2019;
Subramanian 2021; Feibert et al. 2019; Silva-Aravena et al. 2020;
Balkhi et al. 2022)

The anomaly-aware and ensemble-based demand forecasting
architecture developed in this study aims to directly address these
structural challenges. The results obtained are interpreted by
jointly evaluating anomaly detection outputs, comparisons of para-
metric and non-parametric methods, time series structural analysis,
and operational impacts.

Forecast Model Types Distribution

In this study, the demand forecasting process was evaluated not
only based on forecast accuracy but also on which model types can
be preferred under which data conditions. Health inventory con-
sumption series exhibit a highly heterogeneous structure in terms
of frequency of use, continuity, variability, and clinical dependency.
This situation makes it difficult to apply a uniform forecasting ap-
proach for all materials and makes data adequacy a critical factor
in model selection (Subramanian 2021; Balkhi et al. 2022).

The model type distribution results obtained in this context
reveal that a significant portion of health inventory data lacks suf-
ficient and continuous data for model training. Particularly for
infrequently used, procedure-specific, or seasonally active medical
consumables, the short length of the historical observation win-
dow limits the ability of forecasting models to learn meaningful
patterns. The literature indicates that such irregular and intermit-
tent demand series specific to the health sector pose a significant
challenge for both statistical time series methods and machine
learning-based approaches (Silva-Aravena et al. 2020; Subrama-
nian 2021).

When examining cases where data adequacy is ensured, en-
semble approaches are seen to be more prominent than individual

models. Linear models (ridge, lasso) offer advantages in captur-
ing low-variance and more regular components; while tree-based
methods (gradient boosting, random forest, XGBoost) can more
effectively model non-linear relationships, sudden demand spikes,
and complex interactions. Bringing these different model families
together contributes to balancing prediction errors and obtaining
more generalizable results (Shaub 2020; Kim et al. 2023; Chien et al.
2023).

These findings show that, rather than searching for the “best
single model” in healthcare inventory demand forecasting, a flex-
ible, multi-model approach that can adapt to the data structure
is more rational. The model type distribution reveals that the
ensemble-based strategy adopted in the study is supported not
only theoretically but also by the data.

Figure 1 Distribution of the most commonly used prediction
model types (Top 10).

As shown in Figure 1, one of the first outputs of the applied es-
timation process is the model distribution, which indicates which
model types stand out in different material–unit pairs. Figure 1
presents the frequencies of the most commonly used estimation
model types. The clear dominance of the “Insufficient Data” cate-
gory in the graph indicates that a significant portion of the health
inventory consumption data lacks sufficient and continuous ob-
servations for model training. In a hospital setting, some medical
consumables are used infrequently, only in connection with spe-
cific clinical procedures, while others may be completely out of
use during certain periods. This situation leads to short, irregular,
and intermittent demand series, limiting the learning capacity of
both statistical and machine learning-based models (Subramanian
2021; Balkhi et al. 2022).

When examining results outside the Insufficient Data category,
it is observed that the most frequently preferred approaches are
predominantly ensemble model combinations. This finding in-
dicates that a single model family is insufficient to capture all
behavioral patterns in health inventory demand series. Linear
models (ridge, lasso) offer advantages in capturing regular and
low-variance components, while tree-based methods (gradient
boosting, random forest, XGBoost) can more effectively model
non-linear relationships, sudden jumps, and interactions. Ensem-
ble approaches, which combine these different strengths, produce
more stable and generalizable predictions by balancing errors (Kim
et al. 2023; Chien et al. 2023; Shaub 2020). Therefore, Figure 1 shows
that the multi-model and flexible prediction strategy adopted in
this study is also supported by the data.
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Forecast Reliability Levels
Another factor as important as error metrics in evaluating fore-
cast performance is the reliability level of the generated forecasts.
Since forecast results directly influence operational decisions in
healthcare inventory management, the question of how reliable the
forecasts are is of critical importance. Particularly in demand series
with high uncertainty, careful consideration should be given to
how forecast outputs can be used for decision support (Goncalves
et al. 2020). In this study, forecasts were classified under Very Low,
Low, Medium, High, and Very High Reliability levels. The dis-
tribution obtained indicates that forecast uncertainty is high in
a significant portion of healthcare inventory consumption data.
Short data windows, high variance, sudden demand spikes, and
irregular usage patterns widen the uncertainty intervals of forecast
models, thereby reducing their reliability. The literature empha-
sizes that demand forecasting in the healthcare sector inherently
involves high uncertainty and that this uncertainty must be explic-
itly managed (Subramanian 2021; Balkhi et al. 2022).

However, the presence of significant density in the Medium,
High, and Very High Reliability categories indicates that some ma-
terials exhibit more regular and predictable consumption behavior.
It has been observed that prediction reliability increases in series
with more pronounced trend and seasonality components, lower
coefficient of variation (CV), and higher observation continuity. In
such series, ensemble approaches in particular are seen to produce
more stable and reliable forecasts (Shaub 2020; Kim et al. 2023).This
differentiation in forecast reliability levels reveals that a uniform
forecasting strategy is not appropriate for all materials. While
prediction outputs for materials in the Very Low Reliability group
should be used only to a limited extent for decision support pur-
poses, greater weight can be given to prediction-based automatic
stock decisions for materials in the High and Very High Reliability
groups. This approach is consistent with the literature arguing that
prediction results in healthcare inventory management should be
differentiated based on reliability (Goncalves et al. 2020).

Figure 2 Distribution of prediction reliability levels.

Forecast performance has been evaluated not only through er-
ror metrics but also through the reliability levels of the forecasts.
Figure 2 shows the distribution of the generated forecasts accord-
ing to Very Low, Low, Medium, High, and Very High Reliability
levels. The dominance of the Very Low Reliability category in the
graph reveals that uncertainty is quite high in health inventory
consumption series. Short data windows, high variance, sudden
demand spikes, and irregular usage patterns widen the uncertainty
intervals of prediction models, thereby reducing reliability (Sub-

ramanian 2021).Nevertheless, a significant concentration is also
observed in the Medium, High, and Very High Reliability cate-
gories. This indicates that some materials have more regular con-
sumption behaviour and that prediction models can produce more
reliable outputs for these series. Prediction reliability increases
in series where trend and seasonality components are more pro-
nounced, the coefficient of variation (CV) is lower, and observation
continuity is higher. The fact that ensemble approaches produce
more successful results for materials in this group is consistent
with the properties of reducing error variance and increasing gen-
eralisability emphasised in the literature (Shaub 2020; Kim et al.
2023).

One of the most important contributions of Figure 2 is that it
shows that a single prediction strategy is not suitable for all mate-
rials. It is understood that prediction outputs should be used for
decision support purposes only to a limited extent for materials
in the Very Low Reliability group, whereas more weight should
be given to prediction-based automatic stock decisions for materi-
als in the High and Very High Reliability groups. This finding is
consistent with studies arguing that prediction results should be
differentiated based on reliability in healthcare inventory manage-
ment (Goncalves et al. 2020; Balkhi et al. 2022).

Anomaly Detection Findings and Their Effects on the Health
Inventory
The anomaly detection step applied prior to the forecasting pro-
cess is a critical pre-processing stage in health inventory demand
forecasting. The literature clearly states that feeding outliers and
irregular observations directly into the model increases estima-
tion errors, reduces model stability, and can lead to incorrect stock
decisions (Ingle et al. 2021; Kim et al. 2023; Subramanian 2021;
Merkuryeva et al. 2019).In this study, the DBSCAN algorithm is
preferred for anomaly detection. Thanks to its density-based struc-
ture, DBSCAN can produce effective results in complex and het-
erogeneous data sets without the need for predefined threshold
values or distribution assumptions.

Figure 3 Singular and high-impact anomaly detected in the
ADSH -1 Ground Floor Inventory and Biomedical Storage con-
sumption series using the DBSCAN algorithm.

As observed in Figure 3, the DBSCAN algorithm clearly de-
tected a high-volume singular anomaly in the consumption series
belonging to the central storage facility. It can be seen that the
consumption amount during the relevant period was significantly
above the historical average. Such sudden and sharp consumption
spikes are generally associated with urgent clinical needs, unex-
pected patient surges, or operational planning-out usage scenarios
in the context of healthcare inventory (Feibert et al. 2019; Subra-
manian 2021).The literature emphasises that such singular but
highly impactful anomalies create a disproportionate disruptive
effect on prediction models. Particularly when error metrics have

72 | Özkurt et al. Computers and Electronics in Medicine



a squared structure (e.g., RMSE), such outliers can significantly
degrade model performance (Merkuryeva et al. 2019; Ingle et al.
2021).Therefore, identifying and separating these anomalies prior
to the prediction process facilitates the model’s learning of the
overall behaviour.

The most significant contribution of the DBSCAN algorithm
in this example is its ability to successfully distinguish sudden
changes in consumption intensity without relying on distribution
assumptions or using fixed threshold values. This clearly demon-
strates why density-based approaches are more suitable for hetero-
geneous and irregular data structures such as health inventories
(Balkhi et al. 2022).

Figure 4 Multiple and irregular anomalies detected in the con-
sumption series of the Güzeloba ADSP Laboratory unit using the
DBSCAN algorithm

As shown in Figure 4, the consumption series of the laboratory
unit contains multiple and irregular anomalies. Such consumption
patterns are frequently observed in healthcare institutions because
laboratory services are directly linked to patient profiles and clini-
cal demand. Fluctuations in diagnostic and examination processes,
in particular, can cause changes in consumption series intensity
(Polater and Demirdogen 2018; Feibert et al. 2019).

The most important point to note in Figure 4 is that anomalies
appear not only at a single point but at different time intervals and
at different density levels. This explains why parametric methods
based on fixed thresholds can be inadequate. The DBSCAN algo-
rithm has successfully modelled this complex structure thanks to
its ability to distinguish between different density regions. The lit-
erature indicates that consumption series for laboratory and imag-
ing units in healthcare supply chains are typically multimodal and
irregular (Balkhi et al. 2022; Subramanian 2021). In this context, Fig-
ure 4 visually supports why the DBSCAN-based approach should
be preferred in complex systems such as healthcare inventory.

Comparative Evaluation of Parametric and Non-Parametric
Anomaly Approaches
In order to evaluate the effectiveness of the DBSCAN-based ap-
proach more comprehensively, a comparative analysis was per-
formed with the Z-Score, a classical parametric method. The Z-
Score method is based on the assumption that the data follows
an approximate normal distribution and identifies outliers using
fixed threshold values.

Figure 5 shows the anomaly detection results obtained using
the Z-Score method for the same central storage facility. Although

Figure 5 Anomalies detected in the ADSH -1 Ground Floor In-
ventory and Biomedical Storage consumption series using the
Z-Score method.

the Z-Score method was able to detect significant outliers, it could
only capture structural fluctuations and intensity changes in the
consumption series to a limited extent. This situation stems from
the Z-Score’s dependence on the distribution assumption. Health
inventory consumption data often do not satisfy the normal dis-
tribution assumption; instead, they exhibit skewed, multimodal,
and seasonally varying structures (Merkuryeva et al. 2019; Sub-
ramanian 2021).It is frequently emphasised in the literature that
methods based on fixed thresholds in such data structures can
only detect extreme observations but may overlook more complex
anomalies (Ingle et al. 2021; Kim et al. 2023).

In this context, Figure 5 clearly illustrates the limitations of the
Z-Score method in the health inventory context and supports why
non-parametric approaches such as DBSCAN offer more flexible
solutions (Silva-Aravena et al. 2020).

Figure 6 Results of anomaly detection performed on the con-
sumption series of the ADSM A17 X-ray unit using the Z-Score
method.

Figure 6 clearly shows that the Z-Score method can completely
miss anomalies in some periods. The consumption series for the
X-ray unit exhibits structural breaks over time due to changing
clinical demands and patient profiles. The performance of methods
based on fixed thresholds is significantly reduced in such series.

The literature indicates that consumption series for imaging
and diagnostic units typically contain seasonality, trends, and sud-
den increases in demand (Feibert et al. 2019; Balkhi et al. 2022).
In this context, Figure 4 illustrates why parametric methods are
limited in the healthcare inventory context and why approaches
based on distribution assumptions do not always produce reli-
able results. This finding directly aligns with studies explaining
why non-parametric methods and density-based approaches are
increasingly preferred in the healthcare supply chain literature
(Merkuryeva et al. 2019; Subramanian 2021).

Following anomaly cleaning, the time series decomposition
method was applied to enable a more in-depth analysis of the
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fundamental behavioural characteristics of the consumption series.
This analysis allows for the separate examination of the trend,
seasonality, and residual components.

Figure 7 Time series decomposition analysis for material 17380:
trend, seasonality and residual components.

Figure 7 shows the time series decomposition results obtained
for material 17380. While a long-term increasing structure is ob-
served in the trend component, pronounced fluctuations are no-
ticeable in the seasonal component. This indicates that the con-
sumption of the relevant material exhibits both an increasing trend
over time and is influenced by seasonal factors. The irregularities
observed in the residual components reveal that this series has
a structure susceptible to anomalies. The literature emphasises
that single forecasting models are generally inadequate for such
complex time series, and that ensemble approaches produce more
successful results (Kim et al. 2023; Chien et al. 2023; Sina et al. 2023;
Shaub 2020).

In this context, Figure 5 is one of the key figures that visually
supports why ensemble and hybrid forecasting approaches are
necessary.

Figure 8 Time series decomposition analysis for material 17305:
trend, seasonality and residual components.

Figure 8 presents the decomposition results obtained for a ma-
terial with a high-volume and complex consumption structure. In
addition to the trend and seasonality components, the high vari-
ance observed in the residual components indicates that this series
is both prone to anomalies and difficult to forecast. The literature
indicates that such high-volume and irregular series cannot be
effectively predicted using simple statistical models; instead, mul-
tiple model combinations provide more stable results (Sharma et al.
2021; Sina et al. 2023). Therefore, Figure 6 is of critical importance
in justifying the proposed ensemble-based approach.

CONCLUSION

The findings obtained within the scope of this study not only
present results related to statistical prediction accuracy but also
demonstrate that the developed anomaly-aware and ensemble-
based prediction architecture produces outputs that can be directly
integrated into the operational and strategic decision-making pro-
cesses of healthcare institutions. As frequently emphasised in the
literature, healthcare inventory data has an irregular, sparse, highly
variable, and anomaly-prone structure necessitated the design of
the developed system to directly address these structural chal-
lenges (Merkuryeva et al. 2019; Subramanian 2021; Feibert et al.
2019; Silva-Aravena et al. 2020; Balkhi et al. 2022).The anomaly-
aware forecasting process enables unexpected demand spikes to
be detected at an early stage, contributing to reducing the risk
of stock depletion, preventing excessive inventory costs, and en-
suring service continuity (Karamshetty et al. 2022; Goncalves et al.
2020). The generated forecasts are not only reported as point values
but are also presented with an explainable reliability score calcu-
lated based on indicators such as the amount of data, behavioural
stability, timeliness, and seasonal complexity for each material.
Thus, decision-makers can obtain a quantitative answer not only
to the question ‘how much will we consume?’ but also to the
question ‘to what extent can I trust this forecast?’ (Subramanian
2021).

Situation indicates that a uniform stock and forecasting policy
for all materials will not be effective and necessitates the integrated
use of ABC classification, commonly used in classical inventory
literature, and XYZ classification, which is based on demand pre-
dictability (Aktunc et al. 2019; Babai et al. 2015; Demiray Kirmizi
et al. 2024).Thanks to the combined ABC–XYZ segmentation devel-
oped within the scope of the study, while stock removal or alterna-
tive usage evaluations are recommended for materials exhibiting
low and irregular consumption, more protective policies such as
increasing safety stock and redefining reorder points are system-
atically developed for critical materials exhibiting high variation.
In cases where the data length is insufficient or the consumption
pattern cannot be modelled in a statistically reliable manner, a
conservative approach prioritising expert assessment is adopted
instead of automatic decision-making. This holistic structure en-
ables the evolution of forecasting outputs into actionable, traceable,
and justifiable decision recommendations, demonstrating the prac-
tical application of integrated forecasting–classification approaches
advocated in the literature for healthcare inventory management
(Feibert et al. 2019; Subramanian 2021).
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ABSTRACT Brain tumors are among the diseases that can seriously threaten human life and can be fatal. Early diagnosis of brain
tumors plays a crucial role in the treatment process of the disease. However, accurately and quickly diagnosing this disease remains
one of the significant challenges of modern medical technologies. Currently, advanced imaging techniques such as magnetic resonance
imaging (MRI) are generally used for detecting brain tumors. This study proposes an artificial intelligence-based diagnostic approach
using MRI images that include brain tumor types and consist of four classes. The proposed approach includes preprocessing, model
training, feature fusion, and selection as final steps. In the preprocessing step, Grad-CAM and LBP techniques are applied to the original
dataset, resulting in a total of three datasets, including the original one. These datasets are then trained with the DeiT3 model to obtain
three separate feature sets (original, Grad-CAM-based, LBP-based). The feature sets are fused using a feature fusion technique, and
the performance of the combined sets is evaluated using SVM methods. Feature selection methods (Chi2, Relief) are applied to the
best-performing Grad-CAM & LBP-based feature set to highlight the most efficient features. Experimental analysis results show that a
success rate of 99.5% was achieved using the SVM method.

KEYWORDS

Brain tumor
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model
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ing
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INTRODUCTION

A brain tumor is a mass formed by the abnormal growth of cells
located in the brain. The brain is the control center of the body, en-
abling humans to perform their basic life functions. Therefore, the
detection and treatment of brain tumors are also very important
for human life. It has been observed that brain tumor disease sig-
nificantly affects mortality rates (Yılmaz 2023). It has been reported
that the number of people dying from brain tumor disease in China
is between 50,000 and 100,000 per year, and that approximately
80,000 people are diagnosed with brain tumors in the United States
each year (Taşdemir and Barışçı 2024). When looking at causes of
death, brain tumors rank tenth worldwide and eighth in Türkiye
(Erçelik and Hanbay 2023b).

Medical imaging techniques, which are also used in the diag-
nosis of many diseases, are used to detect brain tumors. Medical
imaging techniques include techniques such as computed tomogra-
phy, magnetic resonance imaging (MRI), mammography, etc. The
most preferred imaging technique for detecting brain tumors is
MRI. Erçelik et al. stated that it is difficult to detect brain tumors us-
ing only MRI images and that this is due to the complex structure
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of the brain. The difficulty doctors face in diagnosing diseases us-
ing such traditional methods and the advancement of technology
have led to the emergence of the concept of “Artificial Intelligence
in Health.” Today, approaches such as image processing and deep
learning are used for disease detection (Serttaş and Deniz 2023).
There are multiple types of brain tumors. Some studies extract
features for classification, while others incorporate deep learning
methods (Aslan 2022).

Numerous artificial intelligence-based studies have been con-
ducted on brain tumors in the literature. Examining some recent
studies, Aslan (2024) presents the LSTM-ESA model, which com-
bines LSTM (Long Short-Term Memory) and ESA (Convolutional
Neural Network Numerous artificial intelligence-based studies
have been conducted on brain tumors in the literature. E s). He
states that this model achieved a score of 98.1% in brain tumor
detection. He notes that this score is higher than the score achieved
by the ESA model. Demirel and Soylu (2024) aimed to compare
the performance of MobileNet, DenseNet-121, and DenseNet-201
models in terms of brain tumor detection in their study. It was
stated that all models achieved excellent accuracy rates during
the training phase, but the DenseNet-121 model showed the best
performance in terms of generalization. It was stated that an ac-
curacy rate of 98.81% was achieved with the DenseNet-121 model.
Erçelik and Hanbay (2023a) aimed to compare the Gaussian Fil-
tering and ResNet50 models and identify the model with the best
performance. Noise components in the images were cleaned us-
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ing the Gaussian function. It was determined that cleaning the
noise yielded better performance compared to ResNet50. Yenikaya
and Oktaysoy (2023) aimed to test the success of ResNet101 and
GoogLeNet models in brain tumor detection in their study. At
the end of model training, it was found that the ResNet101 model
achieved better success than the GoogLeNet model with 91.5%.
The ResNet model achieved 87.9% success. Das et al. (2025) de-
veloped a method using a VGG-16-based deep learning model to
accurately classify brain tumors in FLAIR MR images. The model
classified these images, which had three different tumor classes,
with 99% accuracy. In their study, Yang et al. (2025) developed an
artificial intelligence model called GMDNet to accurately classify
brain tumor MR images. With this model, they successfully classi-
fied the relationship between different MR images. The GMDNet
model also provided high accuracy in the presence of missing
data. To achieve this, a special method called reuse modality was
developed.

In this study, data diversity was increased and the model’s
learning capacity was enhanced by applying Grad-CAM and LBP
techniques to the original data set. The model was trained using
next-generation technology-based transformers. The features ex-
tracted from the model training offer an innovative approach that
is more powerful and contributes to performance thanks to the fea-
ture fusion technique. Feature selection was applied to the dataset
that yielded the best performance as a result of feature fusion, and
the most efficient features were obtained. Consequently, time and
cost savings were also achieved. This developed approach pro-
duces reliable outputs in the brain tumor detection process and
makes an important contribution to the early diagnosis of the dis-
ease. This will help in rapid detection and determining the correct
treatment methods. A brief summary of the other sections of the
article is as follows: Information about the data set and model
training is provided in the second section. Detailed information
about the analysis results is provided in the third section. The
fourth section contains the discussion. The final section, the fifth
section, contains the conclusions.

MATERIALS AND METHODS

In this study, a hybrid approach incorporating the DeiT3 model
and feature fusion is proposed for the automatic classification of
brain MRI images according to brain tumor types. The proposed
hybrid model consists of data set preparation, preprocessing steps,
model training, feature fusion, and feature selection steps.

Dataset
In this study, a new data set was used, created from a combination
of the Figshare (Cheng 2024), Sartaj dataset (Bhuvaji 2025), and
Br35H (Hamada 2020) data sets, which consist of brain MRI images.
This data set was obtained from the open-access Kaggle website
(Nickparvar 2021). The dataset contains 7,023 brain MRI images
in JPG format, divided into four classes. The class types consist
of glioma, meningioma, pituitary diseases, and non-tumor MRI
images. The non-tumor class of the Br35H dataset was not included
in the combined new dataset. By class type, there are 1,621 glioma,
1,645 meningioma, 1,757 pituitary, and 2,000 non-tumor images.
The class types are evenly distributed. The images in the dataset
have variable resolution. A sample subset of images from the
dataset is shown in Figure 1.

Image processing methods
Gradient-weighted class activation mapping (Grad-CAM) is a tech-
nique used to visualize the regions that a convolutional neural net-

Figure 1 Sample images of the class types in the dataset: (a)
glioma, (b) meningioma, (c) pituitary, and (d) non-tumor.

work (CNN) model considers most important when making pre-
dictions in the form of a heatmap (Senjoba et al. 2024). Grad-CAM
helps understand which regions influence an image processing
model to select a specific class during classification (Livieris et al.
2023). This method is also widely used in different fields such as
object detection and medical image analysis. It is a general and
flexible method that can be applied to different CNN architectures
(Ennab and Mcheick 2025). In this study, Grad-CAM was trained
using the DarkNet-19 model architecture. This facilitated the de-
tection of diseased regions in images and allowed Grad-CAM to
focus on these regions in the images. Sample images from the
new dataset obtained by applying the Grad-CAM technique to the
original dataset are shown in Figure 2.

Figure 2 Images from the original dataset and the dataset created
using Grad-CAM.

Local Binary Pattern (LBP) is a widely used method in image
processing and computer vision for extracting texture features from
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images (Almohamade et al. 2025). Its computational efficiency and
adaptability to different scenarios demonstrate its versatility. It
produces a binary code consisting of 0s and 1s by comparing the
intensity of each pixel in an image with its neighboring pixels. The
resulting binary codes describe the local textural structure of the
image. These codes are converted into a histogram, which is a
numerical representation summarizing the texture in the image
(Attallah 2025). This histogram provides features (Aydemir 2022).
The steps of the LBP method are shown in Figure 3. Sample images

Figure 3 Stages of the LBP method.

from the new dataset obtained by applying the LBP technique to
the original dataset are shown in Figure 4.

Figure 4 Images from the original dataset and the dataset created
by applying LBP.

New generation transformer model: DeiT3
Transformer models typically process data in six stages. Some-
times, additional layers may be included in this basic process due
to structural differences in these models. The first of these stages
involves dividing the received image into smaller pieces. The di-
vided image pieces are converted into vectors by passing through
an embedding layer. Location information is added to each piece
to ensure that the model preserves the spatial order. Subsequently,
information is processed in layers through encoder blocks, and
deep features are extracted. The Multi-Head Self-Attention mecha-
nism identifies relationships between image fragments and enables
the model to generate contextual meanings. The information ob-
tained in the final layer is processed using neural networks and
transmitted to the output layer for classification (Toğaçar 2025).

Figure 5 Stages of the LBP method.

Data-efficient image transformers (DeiT) are a transformer-
based deep learning architecture that aims for high performance
with minimal data. DeiT is derived from the vision transformer
(ViT) architecture. It reduces data requirements by utilizing the
knowledge distillation method. In this architecture, the input
image is typically resized to 224x224 pixels. The image is then
divided into small 16x16 pixel patches. Location information and
distillation tokens are added to each patch to preserve the struc-
tural features of the data. These patches are then converted into a

vector format that the transformer can process. The relationships
between the pieces are analyzed through the attention mechanism
and feedforward layers. The encoder block consists of three recur-
rent self-attention and feedforward neural network layers. In the
final stage, the image labels are determined through the classifica-
tion layer (Sevinc et al. 2025).

Feature selection methods
The chi-square (Chi2) test is a statistical method used for feature se-
lection. This test helps determine how one variable affects another.
Specifically, it examines the relationship between the target vari-
able and the features. Features that show a stronger relationship
with the target variable are selected, while independent feature
variables are removed. This ensures that only important features
are included in the model (Rahman et al. 2023). The Chi2 test works
by calculating the difference between expected and observed fre-
quencies. If there is independence between two features, the Chi2
value will be low. A high Chi2 value indicates a stronger rela-
tionship with the target variable. This feature selection method is
particularly effective in high-dimensional and complex data sets.
However, it can lead to erroneous results in low-frequency cells
and cause poor performance in data imbalance (Devi et al. 2023).

The RelieF method is an effective feature selection method com-
monly used in classification. This method aims to improve model
performance by analyzing the importance level of different features
in the data. For each data point, the nearest neighbors are ana-
lyzed; the weight score for each feature is determined using both
neighbors from the same class and neighbors from different classes.
In improving model performance, features with high weight val-
ues have a more significant impact than those with low weights.
Features with low weights may contain unnecessary or misleading
information. The greatest advantage of the RelieF method is its
ability to deliver successful results in high-dimensional, complex,
and large datasets (Gür et al. 2025).

Support vector machines method
Support vector machines (SVM) effectively perform both regres-
sion and classification operations on high-dimensional and com-
plex data sets. Data is transformed into a higher-dimensional space
using kernel functions. This makes it easier to capture non-linear
relationships between features. The model’s performance and
confusion are adjusted through the regularization parameter and
kernel coefficient (gamma) (Haldar et al. 2025). The SVM algorithm
is a powerful machine learning technique that works successfully
with both linear and non-linear data structures, providing high
accuracy by making clear distinctions between classes. It achieves
high accuracy by separating classes with the maximum margin
(Toğaçar 2025). It can classify with high accuracy despite complex
and noisy data (Tubog et al. 2025). The parameter information
and selected values of the SVM method used in the experimental
analyses of this study are given in Table 1.

Proposed Approach
The proposed approach consists of artificial intelligence-based
models that analyze CT images to detect brain tumors. In this
study, the DeiT3 model from the ViT family forms the basis of this
system to successfully detect the disease. This approach combines
the DeiT3 model with approaches such as Grad-CAM and LBP to
achieve more successful disease detection. The proposed approach
consists of preprocessing steps, model training, feature fusion, and
post-processing steps such as feature selection.

In the preprocessing step, image processing methods are ap-
plied. CT images collected in a hospital environment may have
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■ Table 1 Parameters of the SVM method used

Parameter Selection/Value

Function Cubic

Box Restriction Level 1

Core Scale Mode Automatic

Multi-Class Method One-on-One

different resolutions. In this step, all images are cropped to a fixed
resolution of 224 × 224 pixels. This resolution is chosen because
ViT-based models process images of this size as input. Then, new
image sets are created using image processing methods (Grad-
CAM and LBP) on the original data set. DeiT3, which stands
out among the new generation image transformers, is used in the
model training step. Feature extraction is applied to the data sets
trained with the DeiT3 model. In this step, 768 features are ob-
tained from each of the Grad-CAM (A), original (B), and LBP (C)
datasets. Feature fusion is then applied to the datasets, and the
best fusion set is selected from the resulting fusion sets. The goal
of this step is to determine the most efficient feature set for feature
selection in the next step.

In the final processing step, the most significant features are
selected from the 1536 features obtained from the best combina-
tion set (for this study, the combination of B and C is the best
combination set) using Chi2 and Relief techniques, respectively.
This approach assigns a score to each of the 1536 features accord-
ing to its own statistical methods and ranks them. The features
are ranked from highest to lowest according to their importance.
The most meaningful 1000 or 500 features are selected from this
ranking. They are then classified using the SVM method.

The design of the proposed model is shown in Figure 6.

Figure 6 Design of the proposed model.

EXPERIMENTAL RESULTS

During the experimental analyses, MATLAB 2024 software was
used to perform feature fusion, feature selection, and classification
stages (SVM method). The Python programming language was
used for the LBP and Grad-CAM methods, which are preprocess-
ing steps, and for training the DeiT3 model, and these codes were
run via the Jupyter Notebook interface. A computer with a 3.40
GHz Intel Core i7 processor, 32 GB RAM, and a 10 GB graphics
card was used to perform the experimental analyses. A confusion
matrix, which provides the number of correctly and incorrectly

classified data in the dataset, was used to evaluate the analysis
results (Çelik and Koç 2021). The metrics and formulas for the
confusion matrix are given below. There are four metrics: accu-
racy, f-score, precision, and sensitivity (Kuştaşı and Yağanoğlu
2024). The equations contained in the metrics have four basic clas-
sification elements: positive (P), negative (N), true (T), and false
(F).

Sensitivity (Se) =
TP

TP + FN
(1)

Precision (Pre) =
TP

TP + FP
(2)

F-score (f-scr) =
TP

TP + FN
(3)

Accuracy (Acc) =
TP + TN

FP + FN + TP + TN
(4)

The preferred parameters in the recommended approach are
given in Table 2. Default values have been selected for parameters
other than those listed.

■ Table 2 Parameters used in the proposed approach and se-
lected values

Model / Method Parameter Preference / Value

DeiT3 Classifier Linear

DeiT3 Epoch 11

DeiT3 Learning rate 10-4

DeiT3 Loss function CrossEntropyLoss

DeiT3 Mini-batch 32

DeiT3 Optimization SGD

DeiT3 Training & Test rate %80 – %20

SVM Preset Cubic

SVM Core scale Auto

SVM Box restriction level 1

SVM Multi-class method One-vs-One

The experimental analysis consists of three stages. The first
stage consists of the preprocessing process. In this step, Grad-CAM
and LBP methods were applied to the original data set, resulting
in three different image sets. The images belonging to these three
data sets are shown in Figure 7.

The second stage involves evaluating the performance of the
three datasets obtained in the first stage using a model. In this
stage, the new-generation DeiT3 model, developed to increase
the efficiency of transformation models in image processing, was
used. After the three data sets were trained by the model, the
training-test success graphs shown in Figure 8 were obtained. The
confusion matrices obtained at the end of the model training are
given in Figure 9. The overall success of the metric results obtained
from the analyses is shown in Table 3. According to the metric
values obtained as a result of model training, the original dataset
showed 89.75% overall accuracy, the dataset obtained with the
LBP method showed 83.27%, and the dataset obtained with the
Grad-CAM method showed 98.22%.
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Figure 7 Sample images obtained by applying LBP and Grad-CAM
methods to the original dataset.

Figure 8 Training-test success graphs of the DeiT3 model; a) Origi-
nal dataset, b) LBP dataset, c) Grad-CAM dataset.

The third stage involves applying feature fusion to the feature
sets extracted from each image set in the previous stage. The goal
of this stage is to determine the most efficient combination obtained
by applying feature fusion. A feature set of size [image count x
768] was extracted from the final layer of the DeiT3 model. This

Figure 9 Confusion matrix obtained from training the DeiT3 model;
a) Original dataset, b) LBP dataset, c) Grad-CAM dataset.

■ Table 3 Metric results obtained from the analyses of the DeiT3
model (%)

Dataset Se Pre f-scr Acc

Original 89.23 89.66 89.34 89.75

LBP 82.34 83.47 82.40 83.27

Grad-CAM 98.13 98.22 98.17 98.22

process was performed individually for all image sets (Original,
Grad-CAM, LBP). As a result of feature fusion; [image count x
1536] from the (Grad-CAM & Original) set, [image count x 1536]
from the (Original & LBP) set, (Grad-CAM & LBP) set [image
count x 1536], (Grad-CAM & Original & LBP) set [image count x
2304]. The SVM method was used to evaluate the performance
of the obtained feature sets. At this stage, the training and test
ratios were selected in the same proportion as the model training
(training data 80%, test data 20%). The confusion matrices obtained
from the classification of the feature sets obtained as a result of
feature fusion using the SVM method are given in Figure 10. The
confusion matrix results are given in Table 4.

Table 5 shows that the (Grad-CAM & LBP) set achieved a gen-
eral accuracy success rate of 99.42%, while the (Grad-CAM & Orig-
inal) set achieved a general accuracy success rate of 99.36%. There-
fore, it was determined that the (Grad-CAM & LBP) set provides
better performance than the (Grad-CAM & Original) set. It was
observed that the success of the new sets obtained with the feature
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■ Table 4 Metric results (%) of confusion matrices obtained after feature fusion

Set / Fusion Class Se Pre F-scr Acc

GC & LBP 0 97.84 99.69 99.76

GC & LBP 1 99.69 97.91 98.79

GC & LBP 2 100 100 100

GC & LBP 3 99.71 100 99.86

99.36

GC & ORJ 0 98.15 99.38 98.76

GC & ORJ 1 99.39 98.19 98.78

GC & ORJ 2 100 100 100

GC & ORJ 3 99.71 99.71 99.71

GC & ORJ 99.36

LBP & ORJ 0 95.68 99.04 96.91

LBP & ORJ 1 98.78 94.20 96.32

LBP & ORJ 2 99.75 99.75 99.75

LBP & ORJ 3 98.58 99.43 98.97

LBP & ORJ 98.15

GC & LBP & ORJ 0 97.84 99.37 98.37

GC & LBP & ORJ 1 99.39 97.90 98.48

GC & LBP & ORJ 2 99.75 100 99.87

GC & LBP & ORJ 3 99.71 99.71 99.71

GC & LBP & ORJ 99.22

■ Table 5 Metric results (%) of confusion matrices obtained after cross-validation

Set / Fusion Class Se Pre F-scr Acc

GC & LBP 0 99.07 99.69 99.38

GC & LBP 1 99.21 98.85 99.03

GC & LBP 2 99.80 99.65 99.72

GC & LBP 3 99.21 99.32 99.26

99.42

GC & ORJ 0 99.01 99.63 99.32

GC & ORJ 1 99.15 98.85 99.00

GC & ORJ 2 99.85 99.75 99.80

GC & ORJ 3 99.49 99.32 99.41

99.36

fusion approach was higher than that obtained from the DeiT3
model. The proposed approach had a positive impact on overall
performance with all steps in the process.
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Figure 10 Confusion matrices obtained after feature fusion; a) GC &
LBP, b) GC & ORJ, c) LBP & ORJ, d) GC & ORJ & LBP.

Figure 11 Confusion matrices obtained after cross-validation; a) GC
& LBP, b) GC & ORJ

CONCLUSION

In this study, the model’s effectiveness was enhanced by using the
Grad-CAM and LBP techniques in the preprocessing steps. The
regions of interest in the model’s decision-making process were
identified using the Grad-CAM-based visual interpretability ap-
proach. This step made the anatomical structures associated with
the tumor more prominent while reducing the impact of the back-
ground and clinically insignificant regions. Thus, the deep learning
model was directed to more meaningful regions in terms of classi-
fication, and the clinical consistency of the learned representations
was increased. In addition, tissue features were extracted using the
LBP method. LBP is an effective method, particularly for capturing
microstructural differences between tumorous and healthy tissue.
Thanks to this approach, local tissue variations specific to tumor
regions were quantitatively represented and used as a complement
to deep learning-based features. These different representations
obtained during the preprocessing stage were converted into high-
level features via the DeiT3 model. The combination of feature sets
obtained from different preprocessing methods (feature fusion) cre-
ated a richer and more discriminative feature structure compared
to representations obtained from a single source. This directly
contributed to strengthening the distinction between classes.

The preprocessing steps applied in the study played a critical
role in reducing noise, highlighting tumor-related tissue and struc-
tural information, and making the model’s learning process more
targeted. The experimental results obtained demonstrate that these
preprocessing strategies improve classification performance and
that the proposed approach offers an effective and reliable solu-
tion for the brain tumor detection problem. The main reason for
choosing the DeiT3 model in this study is that it can offer high
generalization performance even without a very large dataset and
provides stability during the training process. Although ViT ap-
proaches have the ability to effectively learn visual features, they
often require a large amount of labeled data and complex training
strategies. DeiT3, on the other hand, significantly alleviates these
structural constraints through methods that balance the training
process and limit the model’s tendency to overfit.

The reason for using SVM in the classification stage is based
on the method’s ability to create effective decision boundaries in
high-dimensional feature structures. Particularly when features
obtained from deep learning-based models exhibit non-linear dis-
tributions, SVM’s margin-based optimization approach offers more
stable and discriminative classification performance. In addition,
SVM has been preferred because it produces more consistent re-
sults by reducing the risk of overfitting under limited data con-
ditions. The proposed approach offers several advantages in the
analysis of brain tumor MRI images. Combining high-level fea-
tures derived from the deep learning-based DeiT3 architecture
with textural features extracted using the LBP method has created
a complementary representation structure that incorporates both
global and local information. This multi-feature representation
has contributed to strengthening the distinction between classes
and supported the improvement of the obtained classification per-
formance. Furthermore, the use of Grad-CAM has enabled the
visualization of the regions on which the model focuses during
the decision-making process, allowing for a clearer analysis of
tumor-related anatomical structures and increasing the clinical
interpretability of the method.

However, the proposed method also has limitations. Its multi-
stage structure, which includes preprocessing, feature extraction,
feature fusion, and classification steps, increases computational
cost and requires a more complex workflow compared to end-to-
end learning approaches. Furthermore, the method’s performance
is sensitive to the quality of the preprocessing steps and the se-
lected features, and parameter choices in these stages can influence
the results. Finally, while the results are promising, validating
the method’s generalizability on larger, multi-center datasets is
important for increasing its reliability for clinical applications. The
proposed approach can be considered as a decision support tool
that can assist the clinical diagnosis process through the automatic
analysis of brain tumor MRI images. Especially under heavy clin-
ical workload, it can contribute to accelerating the preliminary
evaluation phase, allowing specialist physicians to focus on more
complex cases. Furthermore, Grad-CAM-based visualizations en-
hance the clinical interpretability of the findings by making the
model’s decision-making process more understandable. In this
regard, the proposed method can be used in clinical practice as a
tool that supports the diagnostic process rather than replacing the
physician’s final decision.

The experimental results show that the proposed hybrid ap-
proach offers an effective method for the accurate and rapid diag-
nosis of brain tumor disease. The results of the study reveal that
new-generation ViT models such as Deit3 are much more effec-
tive than traditional diagnostic methods. During the analyses in
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■ Table 6 Comparison of studies using the same dataset

Research Number of Images Class Model/Method Değer (%)

(Gómez-Guzmán et al. 2023) 7.023 4 ResNet50, InceptionV3, In-
ceptionResNetV2, Xception,
MobileNetV2 and Efficient-
NetB0

%97.1

(Bayaral et al. 2025) 7.023 4 VGG16, VGG19, ResNet50,
MobileNetV2 and SVM / XG-
Boost

%97.8

This research 7.023 4 DeiT3 model, Grad-CAM and
LBP image processing tech-
niques, Cubic SVM method

%99.5

this study, Grad-CAM and LBP image processing techniques were
applied to the original dataset. The feature fusion resulted in the
best combination set not being the original dataset, but rather the
combination of Grad-CAM and LBP, demonstrating that the image
processing techniques used provided a meaningful contribution.
The use of the DeiT3 model in model training required powerful
hardware during training. Therefore, it may be difficult to apply
the proposed approach on low-performance systems. A compar-
ison of studies conducted with the same dataset is provided in
Table 6.
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TinyML-Based Machine Learning System for
Multi-Class Ear Condition Classification
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ABSTRACT This study presents a TinyML-based machine learning system for multi-class ear condition classification on an edge
device, designed to process images captured from a digital otoscope camera. Utilizing a dataset comprising five categories, Normal,
Acute Otitis Media (AOM), Cerumen Impaction (CI), Chronic Otitis Media (COM), and Myringosclerosis (MYS), the proposed system
performs near real-time classification directly on a resource-constrained microcontroller. The model was developed and optimized using
the Edge Impulse platform and deployed as a quantized TinyML library. The system architecture incorporates lightweight convolutional
neural networks (CNNs) and the EON™ Compiler to ensure efficient memory usage while maintaining high diagnostic performance.
Experimental results demonstrate a validation accuracy of 97.5% and a testing accuracy of 96.31%, with a peak RAM footprint of
only 240.3K and an inferencing latency of 1482 ms. These findings highlight the potential of TinyML for portable, low-power medical
applications, providing a foundation for privacy-preserving, GDPR-compliant, on-device diagnostics in auditory healthcare without reliance
on cloud infrastructure.
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INTRODUCTION

Ear diseases represent a significant clinical challenge due to their
high prevalence worldwide and the complexity of achieving ac-
curate diagnosis through visual examination. Common otoscopic
findings such as Acute Otitis Media (AOM), Chronic Otitis Media
(COM), Cerumen Impaction (CI), and Myringosclerosis (MYS) af-
fect diverse populations and may lead to pain, hearing loss, and
long-term complications if not diagnosed and treated promptly.
Traditional clinical diagnosis of these ear conditions primarily
relies on otoscopic examination performed by specialists, which in-
volves visual inspection of the tympanic membrane and ear canal.
Although this method is widely adopted in clinical practice, it
is inherently subjective and highly dependent on clinician exper-
tise, resulting in variability in diagnostic accuracy, particularly in
primary care settings where access to otolaryngology specialists
may be limited (Al-Rahim Habib et al. 2022; Livingstone and Chau
2020).

The limitations of traditional diagnostic procedures have mo-
tivated the exploration of advanced computational methods. In
particular, artificial intelligence (AI) and machine learning (ML)
approaches have shown promise in automating image based di-
agnosis of ear disorders. Systematic reviews indicate that AI al-
gorithms, especially convolutional neural networks (CNNs), can
achieve high classification accuracy for otoscopic images, often sur-
passing non expert human performance. For example, AI-based
methods have reported classification accuracies of up to 97.6% in

Manuscript received: 17 November 2025, 
Revised: 14 January 2026,
Accepted: 20 January 2026.

1serkandislitas@hitit.edu.tr (Corresponding author)

multiclass tasks distinguishing normal conditions, acute otitis me-
dia (AOM), and otitis media with effusion using otoscopic images
(Tatlı 2025; Song et al. 2022). Recent studies have begun exploring
transformer-inspired feature representations for otoscopic image
analysis, aiming to enhance global contextual understanding and
feature extraction beyond conventional convolutional architectures
(Demircan et al. 2025).

However, these AI-driven systems often rely on deep learn-
ing models executed on high-performance hardware or cloud ser-
vices, which introduces latency, dependency on network connec-
tivity, and privacy concerns, limiting their practicality in resource-
constrained or portable environments (Diez et al. 2024). Further-
more, while high-performance models like YOLOv10 are emerging
for real-time mobile endoscopy, they still demand substantial com-
putational overhead compared to ultra-low-power edge solutions
(Wang et al. 2024).

To overcome these limitations, Tiny Machine Learning (TinyML)
has emerged as a key technology for low-power, on-device AI
applications on embedded and edge devices. TinyML enables real-
time inference directly on microcontrollers and other embedded
hardware, reducing latency, preserving privacy, and operating
independently from external servers (Heydari and Mahmoud 2025;
Schizas et al. 2022). Platforms such as Edge Impulse facilitate the
design, training, optimization, and deployment of TinyML models
for embedded tasks, including image classification on resource-
constrained devices. Recent studies and platform evaluations
indicate that tools such as the EON Tuner allow these models to
maintain clinically relevant accuracy while fitting within the strict
memory limits of Cortex-M microcontrollers (Hymel et al. 2022).
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Despite these advances, the application of TinyML for multi-
class ear condition classification remains underexplored. While
prior studies demonstrate the potential of machine learning for
diagnosing ear disorders using deep learning, most focus on com-
putationally intensive models that require cloud or Graphics Pro-
cessing Unit (GPU) resources (Tatlı 2025; Song et al. 2022; Bingol
2022). Therefore, there is a clear need for research combining
lightweight ML models, edge computing, and embedded plat-
forms for real-time, on-device classification. In this study, we pro-
pose a TinyML-based machine learning system for multi-class ear
condition classification deployable on edge devices. Using a pub-
licly available dataset covering five categories, Normal, AOM, CI,
COM, and MYS this work demonstrates the design, training, opti-
mization, and deployment of TinyML models with Edge Impulse,
offering portable, low-power auditory diagnostics for clinical sup-
port.

RELATED WORKS

Automated diagnosis of ear diseases using machine learning has
rapidly expanded. Deep learning approaches, especially CNN-
based models, have demonstrated high performance for multi-
class otoscopic and tympanic membrane image classification, often
surpassing non-expert human performance (Tatlı 2025; Song et al.
2022; Bingol 2022). Advanced CNN pipelines with hyperparame-
ter optimization, data augmentation, and ensemble methods have
achieved accuracies above 98% across multiple ear disease cate-
gories (Bingol 2022; Mihigo et al. 2022). TinyML applications have
extended this capability to embedded edge devices. Visual TinyML
applications using Edge Impulse have successfully employed com-
pact cameras, such as otoscope modules, for real-time multi-class
classification tasks. For instance, hand posture recognition, finger
number detection, and tomato leaf disease identification illustrate
that highly constrained devices can perform accurate classification
(Heydari and Mahmoud 2025; Kwon 2023). These studies demon-
strate the feasibility of deploying TinyML models for real-time,
edge-based decision-making.

In healthcare, TinyML has been applied to both audio and visual
modalities. Cough detection systems and on-device speech recog-
nition employ lightweight feature extraction and optimized neural
networks trained on Edge Impulse, achieving real-time, low-power
inference without cloud dependency (Rana et al. 2022; Kwon 2023).
Specifically in otolaryngology, studies on otoscopic and tympanic
membrane images have explored anomaly detection and disease
classification using both deep learning and TinyML approaches
on otoscopic and endoscopic images (Tatlı 2025; Song et al. 2022;
Bingol 2022). To address the limitations of static models, adaptive
quantization strategies are now being developed specifically for
medical wearables to maintain accuracy under extreme energy
constraints (Xie and Fang 2025). Beyond medical applications,
TinyML has been used for IoT and time series tasks, including pre-
dictive maintenance and environmental monitoring. Lightweight
network architectures such as TinyLSTM and TinyModel have
been deployed on embedded devices via Edge Impulse, demon-
strating real-time inference and energy efficiency for sequential
data (Mihigo et al. 2022; Cioflan et al. 2025). These studies high-
light TinyML’s domain-agnostic capabilities, supporting visual,
auditory, and time series data on resource-constrained devices.

Despite these advances, several challenges remain in the deploy-
ment of TinyML systems. Existing literature identifies model opti-
mization, memory management, hardware compatibility, bench-
marking, and the lack of standardization as key areas requiring
further improvement (Heydari and Mahmoud 2025; Schizas et al.

2022). In real-time medical applications, maintaining high ac-
curacy, reliability, and low inference latency under strict energy
constraints is particularly critical (Bingol 2022). Furthermore, the
integration of Explainable Artificial Intelligence (XAI), including
both visual explanation techniques and medical-oriented inter-
pretability frameworks, is increasingly recognized as essential for
enhancing clinical interpretability and trust in automated otoscopic
diagnostic systems (Rehman et al. 2025; Özdilli et al. 2025; Tjoa and
Guan 2020).

In summary, existing literature confirms that TinyML is effective
for edge-based multi-class classification and anomaly detection,
particularly in healthcare. However, challenges related to data
diversity and model optimization remain in medical visual clas-
sification. Motivated by these gaps, the present study focuses on
multi-class classification of ear conditions using TinyML, leverag-
ing Edge Impulse optimized models deployed on microcontroller-
based edge devices, extending existing visual TinyML applications
to low-power medical classification on edge devices.

MATERIAL AND METHODS

The methodology of this study focuses on the design, training,
and deployment of a TinyML-based machine learning model for
multi-class classification of ear conditions, leveraging the Edge Im-
pulse platform. This approach integrates modern machine learning
techniques with embedded systems, enabling real-time, on-device
inference on an edge device.

Dataset

In this study, a publicly available otoscopic image dataset obtained
from the Kaggle (Uci Machine Learning Repository 2025) platform
was used for training and evaluating the proposed TinyML-based
inner ear condition classification system. The dataset consists of la-
beled otoscopic images representing five clinically relevant classes:
Normal, AOM, CI, COM, and MYS. These categories were selected
to cover a spectrum of otoscopic findings commonly encountered
in clinical practice. The dataset includes color images acquired
under varying illumination conditions and viewpoints, reflecting
real-world variability in otoscopic examinations. As the dataset is
publicly accessible and anonymized, no ethical approval or patient
consent was required. Prior to model training, the dataset was up-
loaded to the Edge Impulse platform, where it was automatically
partitioned into training and test subsets using an 80/20 split. This
partitioning strategy was specifically chosen because the dataset
maintains a balanced distribution across all five categories, ensur-
ing that the test results provide a statistically significant represen-
tation of the model’s generalizability. This randomized selection
process ensures an unbiased evaluation of model performance
and minimizes the risk of overfitting by validating the system on
previously unseen data that reflects the overall composition of the
dataset.

The dataset is balanced across the five categories, with approxi-
mately 600 images per class. In total, the dataset consists of 2978
images, of which 2391 were used for training and 597 for testing.
The balanced distribution reduces the risk of biased learning and
enhances classification performance. The detailed distribution of
images across classes and data splits is summarized in Table 1.
Representative sample images from each ear condition class are
illustrated in Figure 1, demonstrating the visual characteristics and
intra-class variability present in the dataset.
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■ Table 1 Distribution of otoscopic images in the Kaggle dataset for inner ear condition classification (Uci Machine Learning Repository 2025)

Class Label Inner Ear Condition Training Test Total

C1 / Normal Normal 480 120 600

C2 / AOM Acute Otitis Media (AOM) 463 115 578

C3 / CI Cerumen Impaction (CI) 480 120 600

C4 / COM Chronic Otitis Media (COM) 479 121 600

C5 / MYS Myringosclerosis (MYS) 479 121 600

Grand Total 2391 597 2978

Figure 1 Representative otoscopic images from the dataset illustrat-
ing the five ear condition classes: (a) Normal, (b) AOM, (c) CI, (d)
COM, and (e) MYS (Uci Machine Learning Repository 2025).

TinyML model design using Edge Impulse Platform

Edge Impulse is a comprehensive development platform specifi-
cally engineered for TinyML, providing a unified end-to-end work-
flow to design, optimize, and deploy machine learning models on
resource-constrained hardware (Edge Impulse 2025; Warden and
Situnayake 2019), with the complete cycle of model training and
edge device deployment depicted in Figure 2 (Rust 2020). This sys-
tematic approach allows developers to move seamlessly from raw
data acquisition to real-time inference on embedded devices. The
platform integrates advanced digital signal processing (DSP) for
automated feature extraction with support for optimized neural
network architectures, such as Convolutional Neural Networks
(CNNs) (Han et al. 2015). By utilizing sophisticated optimization
tools like quantization and the EON Compiler, Edge Impulse mini-
mizes the memory footprint and latency of models, enabling effi-
cient on-device inference (Moreau 2024). This framework ensures
high performance and data privacy, making it ideal for real-time
medical diagnostic systems on edge devices (Hizem et al. 2025).

Figure 2 The end-to-end TinyML development workflow in Edge
Impulse.

DESIGNED SYSTEM

Proposed Model

The systematic development of the classification system, as illus-
trated in the flowchart in Figure 3, follows a structured pipeline
within the platform. The process begins with the data acquisition
stage, which utilizes a publicly available Kaggle dataset compris-
ing 2,978 otoscopic images categorized into five clinically relevant
classes: Normal, AOM, CI, COM, and MYS. In the data prepro-
cessing stage, all images are resized to a standardized resolution of
96 × 96 pixels and normalized using Edge Impulse’s built-in DSP
blocks. This step ensures computational efficiency while preserv-
ing discriminative visual patterns. Additionally, to improve model
robustness and generalization, data augmentation techniques such
as rotation, flipping, and brightness adjustment are applied during
this phase.

Following the dataset upload and train-test splitting, the feature
extraction and neural network design stage employs a CNN-based
architecture optimized for microcontroller constraints. During
model training and optimization, hyperparameters are tuned on
Edge Impulse servers, and critical quantization techniques are ap-
plied to minimize the memory footprint. After rigorous validation
and testing via confusion matrices, precision, and recall, the opti-
mized model is exported as a standalone C++ library compatible
with the 32-bit microcontroller. The final stages involve the devel-
opment of edge device firmware and its deployment, enabling the
system to execute real-time inference and classification directly on
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the microcontroller.

Figure 3 Flowchart of the proposed TinyML model development for
ear condition classification on the Edge Impulse platform.

The structured pipeline for the diagnostic system is depicted in
Figure 4, showing the transition from raw otoscopic image input to
the final classification of five distinct ear conditions. The architec-
ture begins with an image data block where raw otoscopic images
are processed with a predefined 96x96 pixel resolution, a resizing
step crucial for balancing the extraction of clinical features with
the memory constraints of the 32-bit microcontroller hardware.
This is followed by an image processing block that transforms the
data into a feature set optimized for the subsequent learning phase.
Finally, a neural network classifier is utilized to categorize these
processed features into five diagnostic classes: AOM, CI, COM,
MYS, and Normal. By utilizing this modular Impulse Design, the
system ensures a streamlined data flow specifically optimized for
accurate, real-time diagnostic performance on edge devices.

The core of this project is the deployment of a robust diagnostic
system on a resource-constrained microcontroller. As shown in
Table 2, the training settings were specifically tuned for the 32-bit
microcontroller. By employing a 0.0005 learning rate and INT8
quantization, the system provides real-time, on-device classifica-
tion of ear conditions such as AOM, COM, CI, and MYS. This
optimization ensures that the final model maintains a minimal
memory footprint suitable for edge deployment while delivering
high diagnostic accuracy for clinical decision support.

Figure 4 The impulse design and processing pipeline for otoscopic
ear disease classification.

■ Table 2 Neural network training configuration and optimization
settings for the TinyML-based ear disease classification project

Training Setting Value/Status

Number of epochs 50

Learning Rate 0.0005

Training Processor CPU

Validation Set Size 20%

Batch Size 32

Profile int8 Model Active

The neural network architecture designed for the classification
task is illustrated in Figure 5, featuring a Convolutional Neural
Network (CNN) structure optimized for deployment on the 32-bit
microcontroller. The model begins with an input layer process-
ing 27648 features, derived from the 96 x 96 pixel input, which is
then organized by a reshape layer. Feature extraction is performed
through two successive stages of 2D convolutional and pooling
layers, utilizing 32 filters in the first stage and 64 filters in the sec-
ond, both with a 3 x 3 kernel size. To improve model generalization
and prevent overfitting, two dropout layers with a rate of 0.25 are
strategically integrated after the convolutional blocks. Finally, a
flatten layer converts the multidimensional feature maps into a 1D
vector to enable the final classification of ear conditions.

Designed Embedded System

The block diagram of the proposed TinyML-based ear condition
classification system is illustrated in Figure 6. The architecture
follows a sequential and modular pipeline, ensuring efficient real-
time diagnostics on resource-constrained hardware.

The process begins with the Input (Camera Module) block,
where an otoscope camera, supported by integrated LED illumi-
nation, captures images of the ear canal and tympanic membrane.
These captured otoscopic images are transmitted directly to the
Embedded Processing Unit (Edge Device / microcontroller), which
serves as the central hub for local data processing. Within this unit,
the Image Preprocessing stage executes resizing, noise reduction,
and normalization to optimize the visual data for neural network
analysis. Subsequently, the processed data is passed to the TinyML
Inference Engine, utilizing an optimized model trained via Edge
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Figure 5 The neural network architecture of the TinyML model for
otoscopic image classification.

Impulse.
The engine performs on-device classification, and the resulting

Classified Output is forwarded to the final Output (Interface) block.
This interface displays the identified class such as Normal, AOM,
CI, COM, or MYS and provides diagnostic decision support along
with confidence scores. By executing the entire pipeline locally, the
system eliminates the need for cloud-based computation, thereby
ensuring low latency and maintaining strict data privacy for point-
of-care medical applications.

Figure 6 The block diagram of the proposed TinyML-based ear
condition classification system.

As illustrated in Figure 7, the proposed TinyML-based inner
ear condition classification system operates using a sequential and
loop-based software flow. The process begins with system initial-
ization, during which the embedded controller, camera module,
and the pre-trained TinyML model generated using the Edge Im-
pulse platform are loaded and configured. At this stage, camera
illumination parameters are also initialized to ensure consistent
lighting conditions during image acquisition.

Following initialization, the system captures an otoscopic im-
age using the camera module under controlled illumination. The
acquired image is then forwarded to the Edge Impulse image pro-
cessing pipeline, where essential pre-processing operations such
as resizing and normalization are applied. These steps prepare the
image for efficient inference on resource-constrained embedded
hardware.

Subsequently, the pre-processed image is passed to the TinyML
inference engine, which classifies the image into one of the prede-
fined ear condition classes: Normal, AOM, CI, COM, and MYS.
The classification result is then presented to the user via an output
interface such as LEDs, a display module, or serial communica-

tion. After a predefined waiting period, the system either captures
the next image or returns to an idle state, enabling continuous or
on-demand operation of the diagnostic system.

Overall, the proposed software workflow enables a low-power,
real-time, and robust TinyML-based implementation on a micro-
controller, supporting portable and efficient classification of ear
conditions.

Figure 7 Software flowchart of the proposed TinyML-based ear
condition classification system incorporating controlled camera
illumination and Edge Impulse-based image processing.

RESULTS AND DISCUSSION

The performance of the proposed TinyML system for ear condition
classification was evaluated using a comprehensive set of metrics,
including accuracy, sensitivity, precision, and F1-score. These met-
rics, calculated from the validation set’s confusion matrix, serve as
a vital framework for assessing the model’s diagnostic reliability
in medical imaging. Accuracy measures the overall proportion
of correct classifications, while sensitivity determines the model’s
ability to correctly identify true positive cases. Precision assesses
the reliability of positive predictions, and the F1-score provides a
balanced evaluation by calculating the harmonic mean of precision
and sensitivity. The mathematical definitions for these metrics are
presented in Equations (1–4), forming the basis for the 97.5% accu-
racy achieved in this study. In these equations, TP (True Positives)
and TN (True Negatives) represent correctly classified instances,
while FP (False Positives) and FN (False Negatives) denote the
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■ Table 3 Performance metrics of the TinyML-based ear disease
classification system

Classes Accuracy (%) Precision Sensitivity F1-Score

AOM 97.5 1.00 1.00 1.00

CI 97.5 1.00 1.00 1.00

COM 97.5 0.97 0.98 0.98

MYS 97.5 0.96 0.93 0.94

Normal 97.5 0.95 0.97 0.96

Average 97.5 0.98 0.98 0.98

misclassified instances (Alaca and Akmeşe 2025; Fawcett 2006).

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F-score =
2 ∗ TP

2 ∗ TP + FP + FN
(4)

The diagnostic performance of the proposed TinyML system is
quantitatively summarized in Table 3, which highlights the model’s
high classification efficacy across five distinct ear conditions. Ac-
cording to the data, the system achieved a robust overall accuracy
of 97.5% with a consistent total precision, sensitivity, and F1-score
of 0.98. Specifically, the AOM and CI categories demonstrated
perfect classification performance with F1-scores of 1.00. While the
MYS class exhibited the lowest relative sensitivity at 0.93 due to mi-
nor inter-class confusion with the Normal category, the overall high
metrics across all labels validate the reliability of the optimized
neural network for near real-time, on-device medical diagnostics
as defined by Equations (1–4).

As illustrated in Figure 8, high values along the diagonal of
the confusion matrix indicate strong classification accuracy. The
on-device performance metrics, shown in Figure 9, demonstrate
the model’s efficiency on 32-bit microcontrollers. Utilizing the
EON™ Compiler, the system achieves an inference time of 1482
ms, with a peak RAM usage of 240.3K and a flash usage of 243.1K.

Figure 8 Confusion matrix calculated by Edge Impulse for inner ear
disease classification.

The spatial distribution is visualized in the Feature Explorer
(Figure 10). The clear grouping of data points indicates that the

Figure 9 On-device performance metrics for inner ear disease clas-
sification on 32-bit mcu, including inference time, peak RAM usage,
and flash memory usage.

Figure 10 Feature explorer visualization of the otoscopic image
dataset, illustrating the spatial separation of disease classes (AOM,
CI, COM, MYS, and Normal).

Figure 11 Model testing results showing the confusion matrix and
performance metrics for five-class otoscopic disease classification.

feature extraction layers effectively identified unique patterns. Fur-
thermore, the model achieved a perfect AUC of 1.00 as shown
in Table 4, demonstrating high consistency across all categories.
Finally, the model’s testing phase on a separate dataset yielded an
accuracy of 96.31% (Figure 11), confirming a robust and reliable
classification system for otoscopic ear disease detection.

■ Table 4 Validation metrics of the TinyML-based ear disease
classification system

Metrics Value

Area under ROC Curve 1.00

Weighted average Precision 0.97

Weighted average Recall 0.97

Weighted average F1 score 0.97

The proposed system enhances patient privacy by perform-
ing all inferences locally on the microcontroller, ensuring com-
pliance with data protection regulations (e.g., GDPR) as no raw
data is transmitted to the cloud. Designed as a rapid point-of-
care screening tool, the device provides immediate feedback in
resource-limited settings. While this proof-of-concept is promising,
future transition to clinical use will require formal certifications
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(e.g., FDA or CE MDR) and real-world clinical trials to validate its
diagnostic efficacy and workflow integration.

CONCLUSION

This study successfully demonstrated the implementation and
deployment of a TinyML-based diagnostic system for the multi-
class classification of ear diseases on resource-constrained 32-bit
microcontrollers. By leveraging the Edge Impulse platform and
lightweight convolutional neural networks, the proposed system
achieved a robust validation accuracy of 97.5% with a minimal loss
of 0.15. Final testing on a separate dataset further confirmed the
model’s reliability, yielding a performance accuracy of 96.31%. The
model exhibited exceptional precision in identifying AOM and CI
categories with perfect F1-scores of 1.00, proving its effectiveness in
distinguishing high-priority pathological conditions from normal
otoscopic findings.

The technical evaluation highlights the system’s high efficiency
for edge computing. Utilizing the EON™ Compiler, the architec-
ture was optimized to operate within the physical memory limits
of embedded hardware, maintaining a peak RAM usage of 240.3K
and a flash footprint of 243.1K. With an inference time of 1482
ms, the system enables near-instantaneous, on-device diagnostics
without the latency, network dependency, or privacy risks associ-
ated with cloud-based AI solutions. While minor misclassification
patterns were noted specifically where 5.1% of MYS cases were
identified as Normal the overall aggregate F1-score of 0.98 vali-
dates the system as a robust tool for clinical support in real-world
scenarios.

In conclusion, this research establishes a scalable and low-
power framework for auditory healthcare diagnostics. By enabling
automated and objective ear examinations directly on portable
devices, this TinyML approach offers a viable solution for primary
care settings and regions with limited access to otolaryngology
specialists. Future work will focus on expanding the dataset to
include a wider variety of pathological stages and further opti-
mizing the model to reduce inference time on even lower-power
32-bit hardware. This study bridges the gap between complex
deep learning models and practical, on-device intelligence, mark-
ing a significant step forward in the democratization of advanced
medical diagnostic tools.
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ABSTRACT Breast cancer is one of the most dangerous types of cancer, affecting many people long-term and leading to death.
For this reason, it has become a frequently studied and emphasized topic in the medical field. Furthermore, significant advances in
computer science have attracted the attention of the medical world, and computer science has also been incorporated into this challenging
disease process to address it. The rapid development of artificial intelligence in recent years has led to a rapid increase in research on
breast cancer. Numerous AI-based models have been developed to prevent human errors and to assist and support researchers in
decision-making. In this study, one of these models was developed, and three different deep learning (DL) models were proposed to
classify breast cancer as breast cancer-negative and breast cancer-positive. The study was adapted for computer vision (CV) using a
Kaggle dataset called Breast Cancer, consisting of 3,383 breast tumor mammography images; the labels are 0 and 1, respectively, and
the image dimensions are 640 x 640 pixels. In this study, three models were trained to classify breast cancer images: a Convolutional
Neural Network (CNN), VisionTransformers (ViT), and AlexNet, trained with 45, 75, and 50 epochs, respectively. HuggingFace Space was
used with these three models to classify breast cancer. The HuggingFace web application provided breast cancer classification based
on the three models. Performance metrics, accuracy, loss, and execution time outperformed the CNN model, achieving a more optimal
execution time (807.82 seconds), accuracy (0.9544), and loss (0.1078). The model has achieved significant success in breast cancer, and
with further refinements, it is anticipated that the model will be suitable for use as a decision support system.
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Vision transform-
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INTRODUCTION

Detection and Classification of breast cancer plays a vital role in
monitoring the health-condition of cancer-patients in early stages
of cancer. To monitor disease and flow, health-professionals keep
track of the breast cancer patients’ mammography x-ray images.
The study has been tailored to lead health-professionals with a
state-of-art solution to abstain from the wrong treatments and
classifying breast cancer from breast images in early stage via
classification of breast x-ray images via DL and CV. Their well-
known models’ and their implementations that are CNN, ViT
and AlexNet have been investigated in this study. The breast X-
ray image dataset have been utilized. Dataset comprises 3,383
mammogram images specifically highlighting breast tumors, or-
ganized within a structured folder format. Originally exported
from Roboflow, a platform dedicated to computer vision projects it
serves as a valuable resource for developing and evaluating deep
learning models for breast tumor detection in mammographic
images.
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Recent studies have demonstrated the effectiveness of deep
learning and machine learning techniques in breast cancer classifi-
cation, particularly in analyzing histopathological and radiological
images. Convolutional neural networks (CNNs) have been widely
applied to pathology and histology datasets, achieving high accu-
racy in both binary and multi-class classification tasks (Liu et al.
2022; Golatkar et al. 2018; Abunasser et al. 2023; Nguyen et al. 2019).
These models are capable of automatically learning hierarchical
features critical for distinguishing between malignant and benign
cases. Hybrid approaches that integrate handcrafted features with
dense neural layers have also shown promising results, improv-
ing model robustness and interpretability (Joseph et al. 2022). In
addition, several studies have utilized patch-based strategies to
capture localized tissue structures, enhancing classification accu-
racy through multi-size and discriminative input representations
(Li et al. 2019). Transfer learning techniques have been employed
to leverage pre-trained models and improve generalization in set-
tings with limited labeled data (Saber et al. 2021).

Classical machine learning algorithms, such as Bayes classifiers
and support vector machines, continue to be explored for their
simplicity and effectiveness in structured data contexts (Bazila and
Thirumalaikolundusubramanian 2018; Chen et al. 2023; Wu and
Hicks 2021; Ara et al. 2021). Furthermore, recent work has pro-
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posed fully automated deep learning pipelines for breast cancer
detection (Ghrabat et al. 2022), and efforts to detect metastatic can-
cer using large-scale deep models have demonstrated the clinical
relevance of AI-based solutions (Wang et al. 2016). These collective
advancements provide a solid foundation for developing and eval-
uating diverse architectures such as CNNs, Vision Transformers
(ViTs), and adapted AlexNet models within the scope of breast
cancer classification, as investigated in this study.

The study is divided into four parts. In Section II, the proposed
method and three deep learning (DL) models used to effectively
address breast cancer classification through three different model
architectures are discussed. In Section III, the results and discus-
sion are presented based on the performance of the three models,
including outcomes obtained via Hugging Face Spaces. Finally,
Section IV concludes the study, demonstrating the effectiveness
of the proposed approach and providing suggestions for future
work.

PROPOSED METHOD

It is known that medical professionals have investigate breast x-ray
images to effectively keep track of the health-monitoring of pa-
tients that have signs of breast cancers. The study has been tailored
via provide comparative analysis to the medical professionals in
breast cancer treatment domain with the classification models that
they have been carried out. The comparative study has been di-
vided into three models that are CNN, ViT and AlexNet to provide
the most successful model to abstain from the faulty treatments
to the health-professionals. In this study three DL models have
been trained to obtain the most successful model on classification
of breast cancer-domain.

Three DL models CNN, ViT and AlexNet have been trained
in this manner with different hyperparameters. The images that
exist on the dataset are images with the 640x640 pixel size that
are each Breast X-ray images which those datasets are generally
known as mammography data. Since 224x224 pixel size images
have been used on classification in health-care domain; the images
have been resized to the intended pixel size. Three models CNN,
ViT and AlexNet will be investigated in a comparative manner,
and they will provide the most optimal model to successfully
classification of breast cancer patients via negative and positive
that the classes of dataset have been spitted into two parts that
are 0 and 1 respectively. To comparison of performances on each
model, metrics that are accuracy, loss and time comparison has
been investigated and based on those metrics; models’ have been
deployed on HuggingFace space via option of selection of model.
Via HuggingFace space, health professionals will be uploading
their breast x-ray images and they will be monitoring the health-
condition of their patients effectively and the results they will
obtain will be successfully classified images which will be breast
cancer negative and breast cancer positive respectively.

The first architecture used in this study is a lightweight Custom
Convolutional Neural Network (CNN), built from scratch for bi-
nary classification of breast X-ray images. It processes 224×224×3
input images through three convolutional blocks, each comprising
a Conv2D layer with ReLU activation and a max-pooling layer. The
blocks use 32, 64, and 32 filters respectively, all with 3×3 kernels.
After the final block, the feature maps are flattened into an 86528-
dimensional vector, followed by a dense layer with 128 ReLU units.
A final sigmoid-activated neuron outputs the binary classification,
cancerous or non-cancerous. This model offers an efficient and
interpretable design suitable for real-time or resource-constrained
clinical applications.

The second model employs a Vision Transformer (ViT), intro-
ducing attention-based mechanisms for classifying 224×224×3
breast X-ray images. The image is divided into 196 non-
overlapping 16×16 patches, each flattened and embedded into
a 64-dimensional space with positional encoding. These embed-
dings pass through two Transformer Encoder blocks containing
LayerNorm, Multi-Head Self-Attention, and Feed Forward Net-
works with residual connections. A global average pooling layer
aggregates the information, followed by a dense layer (128 units,
ReLU) and a final sigmoid-activated neuron for binary cancer pre-
diction. ViT enables the model to capture global context and subtle
spatial patterns beyond the reach of traditional CNNs.

The third model adapts AlexNet, a classical deep CNN, for
breast cancer classification. It processes 224×224×3 images through
five convolutional layers with filters ranging from 96 to 384, us-
ing 11×11, 5×5, and 3×3 kernels, followed by max-pooling. The
extracted features are flattened into a 9216-dimensional vector and
passed through two fully connected layers with 4096 ReLU units
and dropout (0.5). A final sigmoid-activated layer provides binary
output. This adaptation highlights the effectiveness of traditional
deep networks in medical imaging tasks when domain-optimized
(Figure 1).

RESULTS AND DISCUSSION

Carrying out three (DL) models provide health-professionals to
choose to compare the results with three models’ outcomes and
their sight. Furtherly study has been conducted with the results
of breast cancer negative and positive respectively on Hugging-
Face space on a use of medical professionals. Both breast cancer
negative and positive images have been investigated, and their
potential results’ have been analyzed in a comparative manner
to provide valuable insight into medical and computer science
integrated domain which solely focusses on cancer detection. In
Study results’ that have been observed that some results’ have
been classified as faulty even though high accuracy metrics’ that
have been employed. To abstain from the wrong classification,
the corresponding output images as breast cancer negative and
positive will be carried out with even the sight of the medical pro-
fessionals for the most correct outcome that will be derived from
the study which will be in use of medical professionals that the
breast x-ray images that they have in their hand and patients’.

In this study for provide an example two breast x-ray images
from the dataset have been selected to compare the performances
of classification that one of the images are selected from breast can-
cer negative and that the other image has been selected from breast
cancer positive and their classification performance on Hugging-
Face space have been investigated. According to the HuggingFace
results that they have been obtained in positive breast-cancer re-
sults based on breast x-ray images there are no misclassification
on models CNN, ViT and AlexNet respectively. However, there
is a minor fault classification in negative breast-cancer result in
the AlexNet model; even though high classification accuracy that
has been obtained in Training set. In that circumstance the sight of
medical professional in chest major is a must that they are provided
in (Figure 2).

Due to the misclassification on breast-cancer-negative image on
the AlexNet model must keep trackt of the models’ performance
with several metrics. Several metrics in this domain are based
on classification metrics due to the classification study has been
tailored that the metrics that are in use will be accuracy and loss
respectively. Accuracy and losses of the system will keep track
of during each of epochs during execution of training models re-
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(a) CNN Architecture

(b) ViT Architecture

(c) AlexNet Architecture

Figure 1 Model Architectures of Models that they have trained dur-
ing the Breast Cancer Classification study.

spectively on training and validation sets to observe how model
behaves with the inputs that the inputs are breast x-ray images.
Loss function of binary cross-entropy will be observed due to it is
a binary classification study that the sigmoid activation function
activates the neurons at the last layer of each model. Each models’
accuracy and loss metrics have been played a vital role in breast-
cancer classification study with the accuracies that are over 0,9 in
each of the models’ separately. Loss functions have been dimin-
ished based on epochs in each model which is a shown that the
models behave well under several conditions in both validation
and training splits. Additionally, validation performances of mod-
els have been trained; strong even though plot of them seems not

(a) CNN – Breast Cancer Negative (b) ViT – Breast Cancer Negative

(c) AlexNet – Breast Cancer Nega-
tive (d) CNN – Breast Cancer Positive

(e) ViT – Breast Cancer Positive (f) AlexNet – Breast Cancer Positive

Figure 2 HuggingFace Breast Cancer Classification Space which
one Breast Cancer Negative and one Breast Cancer Positive Im-
ages have been investigated.

that promising. Even though breast-cancer classification has been
trained and the outcomes have been provided correct classification
which will also lead health-professionals on the domain of cancer
classification which will save many human-beings’ life in early
diagnosis of breast cancer. Accuracy and Loss plots of each model
on training and validation sets have been provided in (Figure 3).

Table 1 presents a comprehensive comparison of the three deep
learning models CNN, Vision Transformer (ViT), and AlexNet, in
terms of classification accuracy, loss, training epochs, parameter
counts, and execution time during breast X-ray image classifica-
tion. Among the three models, the Custom CNN achieved the
highest accuracy of 95.44% with a low loss of 0.1078 in just 45
epochs. This performance demonstrates its strong ability to extract
relevant features from medical images using a lightweight architec-
ture. Additionally, the CNN model required approximately 807.82
seconds of execution time and had around 11.1 million trainable
parameters, striking a good balance between performance and
computational efficiency.

The ViT model, on the other hand, while introducing advanced
attention mechanisms, achieved a lower accuracy of 91.56% with a
higher loss of 0.1987 despite training for 75 epochs. Notably, the
ViT had the fewest trainable parameters (236,737) and the lowest
model complexity, yet it required 1365.79 seconds to execute nearly
double the time of the CNN. This indicates that although ViT excels
at capturing long-range dependencies, it may not be as well-suited
for small-scale medical datasets or classification tasks where local
features dominate. AlexNet, the most complex model in terms of
architecture and parameters (46.75 million trainable parameters),
achieved an accuracy of 95.20%, which is comparable to CNN,
with a slightly better loss of 0.1072.

However, this performance came at a significant computational
cost, it recorded the highest execution time of 2597.42 seconds,
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■ Table 1 Models and Their Performances have been analyzed in a comparative manner in Breast Cancer Classification study

Metrics / Model CNN ViT AlexNet

Accuracy 0.9544 0.9156 0.9520

Epochs 45 75 50

Loss 0.1078 0.1987 0.1072

Trainable Parameters 11.169.089 236.737 46.751.105

Total Parameters 11.169.089 236.737 46.751.105

Execution Time 807.82 1365.79 2597.42

Figure 3 Accuracy and Loss Visualizations of models that they have been trained on Breast Cancer Classification study. (a) CNN – Accuracy
( Train), (b) CNN – Accuracy ( Validation ), (c) ViT – Accuracy ( Train ), (d) ViT – Accuracy ( Validation ), (e) AlexNet – Accuracy ( Train ), (f)
AlexNet – Accuracy ( Validation ), (g) CNN – Loss ( Train ), (h) CNN – Loss ( Validation ), (ı) ViT – Loss ( Train ), (j) ViT – Loss ( Validation ), (k)
AlexNet – Loss ( Train ), (l) AlexNet – Loss ( Validation ).

more than three times that of CNN. This highlights the trade-off
between deep architectural complexity and practical applicability
in real-time or resource-limited clinical environments. In summary,
the CNN model consistently outperformed both the Vision Trans-
former (ViT) and AlexNet architectures across multiple evaluation
metrics, including accuracy, computational efficiency, and execu-
tion time, establishing it as the most optimal choice for the breast
cancer classification task in this study.

The CNN’s ability to effectively capture spatial hierarchies and
local features contributed to its superior classification performance,
making it well-suited for medical image analysis where precision
is critical. While the ViT model demonstrated promise with its
relatively minimal number of trainable parameters, its higher ex-
ecution overhead and longer processing times present practical
challenges for real-time or resource-constrained diagnostic environ-
ments. On the other hand, AlexNet, despite achieving comparable
accuracy to CNN, proved to be computationally demanding and
slower, limiting its feasibility for rapid clinical deployment. These
findings highlight the trade-offs between model complexity, accu-
racy, and operational efficiency, emphasizing the CNN’s balance
as ideal for breast cancer detection workflows that require both

reliability and speed. Future work could explore hybrid models
or lightweight transformer variants to potentially combine the
strengths of these architectures while mitigating their respective
limitations.

CONCLUSION

In this study, three deep learning models trained from scratch that
are respectively CNN, ViT and AlexNet have been analyzed in
a comparative manner with the Breast X-ray images to classify
the input images based on breast cancer negative and positive.
The study has been conducted with a dataset of breast cancer x-
ray images that are in use for computer vision and deep learning
studies that the dataset consists of 3,383 breast x-ray images. Study
has been tailored via using three deep learning models’ and their
respective implementations seperately and after training of models’
HuggingFace space environment has been used to deployment of
the study which the study has been classified several breast x-ray
images based on breast cancer classification which classify images
breast cancer negative and breast cancer positive respectively. To
compare the performance of three proposed models’ performance
metrics of accuracy, loss and execution time have been analyzed in
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both training and validation sets respectively.
According to the outcomes of the results, medical professionals

should keep track of the information of CNN preferable, apart from
CNN; they may rely on the trust of the ViT model. However as
discussed in the begining of the results section AlexNet model have
proven some misclassifications even though its high accuracy and
losses obtained during training. Accuracy and loss performances
of the models’ proven the suggestion that the medical Professionals
should rely on the CNN models’ trust in the classification of breast
cancer x-ray images based on cancer. Outcomes have been proven
that the 0,9544 accuracy and 0,1078 loss performance observed in
CNN model which outperformed both ViT and AlexNet models
respectively. In further studies It should be analyzed that the
AlexNet model should be trained with higher number of epochs
with more amount of execution time or in comparison, different
models’ apart from AlexNet should be investigated to performance
comparison on breast cancer domain.
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ABSTRACT Nowadays digital environment, the rapid duplication and unauthorized use of color images shared online have led to increasing concerns
regarding copyright infringement and data security. Therefore, the development of effective and robust methods for protecting digital content has become
critically important. In this study, an integrated digital watermarking method is proposed to ensure copyright protection and data security for both color and
medical images. In the proposed approach, watermark embedding is performed by jointly applying Discrete Wavelet Transform (DWT) and Singular Value
Decomposition (SVD) on the blue (B) color channel of the cover image. The watermark image is preprocessed using a dimension reduction technique
and optimized through the Grey Wolf Optimization (GWO) algorithm. The optimized watermark is then embedded into the cover image, and inverse
transformations are applied to obtain the watermarked image. The performance of the proposed algorithm is evaluated on standard test images under
various attack scenarios. Imperceptibility is assessed using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), while robustness is
measured using the Normalized Correlation (NC) and Bit Error Rate (BER) metrics. Experimental results demonstrate that the proposed method achieves
high imperceptibility and successfully preserves watermark information under different attacks. Comparisons with related studies in the literature indicate that
the proposed approach is competitive and, in some cases, superior in terms of both imperceptibility and robustness. Consequently, the proposed method
provides an effective and reliable digital watermarking solution for color images.

KEYWORDS

Data hiding
Color image
Medical image
watermarking
Dimension reduc-
tion

INTRODUCTION

With the advancement of the technological era, the increasing vol-
ume of digital data has made the storage, transmission, and confi-
dentiality of this data more critical (Gull and Parah 2024; Awasthi
et al. 2024). This situation has led to a growing importance of secu-
rity systems developed to ensure data security, which are generally
classified into data encryption and data hiding techniques (Çelik
and Doğan 2021). Cryptography, a subfield of data encryption,
is a method that encrypts content to prevent it from being read
by unauthorized parties and ensures that it is accessible only to
authorized users (Çelik and Yalçın 2023; Çelik and Doğan 2021).
Steganography, as a subcategory of data hiding, aims to preserve
data confidentiality by concealing the very existence of the data
(Awasthi et al. 2024; Çelik and Doğan 2021).

In digital image watermarking, copyright protection allows
the verification of content ownership by embedding a hidden
watermark into an image (Awasthi et al. 2024; Çelik and Doğan
2021). During the watermarking process applied to digital data, the
modifications introduced into the data must remain imperceptible
to third parties. In other words, the impact of the watermarking
process on the original digital data should be minimized as much
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as possible (Nawaz et al. 2025). From this perspective, digital
watermarking provides an effective solution for ensuring data
security (Wang et al. 2023). The digital watermarking process
consists of two main stages: watermark embedding and watermark
extraction (Mamuti 2019). In the watermark embedding stage, the
watermark information is embedded into the cover signal (Awasthi
et al. 2024; Yağcıoğlu and Sondaş 2021), while in the extraction and
verification stage, the watermark is retrieved by the receiver and
the verification process is performed. The stages of the digital
watermarking process are illustrated in Figure 1.

Figure 1 Watermarking scheme (embedding and extraction)

Watermarking methods are classified according to various cri-
teria in order to meet different application requirements, and this
study focuses on approaches used for color images (Wang et al.
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2023; Mahto and Singh 2021; Sharma et al. 2023). This classification
is based on the type of cover signal, watermark perceptibility, em-
bedding domain, robustness, and data extraction method (Nawaz
et al. 2025; Mahto and Singh 2021).

The first criterion used in the classification of watermarking
methods is the type of the cover signal. Different signal types such
as text, image, audio, and video can be used as cover signals in
the watermarking process (Awasthi et al. 2024; Mahto and Singh
2021). Another classification criterion is whether the watermark is
perceptible to the human visual system. In this context, watermark-
ing methods are divided into two groups: visible and invisible
watermarking (Awasthi et al. 2024; Mahto and Singh 2021; Sharma
et al. 2023). Invisible watermarks are generally used in applications
such as copyright protection, image authentication, and privacy
protection (Mahto and Singh 2021).

The domain in which the watermarking process is performed is
also an important classification criterion (Wang et al. 2023; Mahto
and Singh 2021). A watermark can be embedded either in the
spatial domain or in the transform domain of the cover signal (Hu
2024; Sharma et al. 2023). In the Least Significant Bit (LSB) tech-
nique, which is one of the spatial domain methods, watermark bits
are stored in the least significant bits of the pixels of the carrier im-
age (Gull and Parah 2024; Wang et al. 2016). In transform-domain
methods, the image is represented using specific mathematical
transformations; examples include techniques based on DWT, DCT,
and SVD (Hu 2024; Sharma et al. 2023; Wang et al. 2016). The ability
of transform-domain methods to effectively exploit the principles
of the human visual system and visual perception characteristics
has made them highly popular (Hu 2024). In line with these ad-
vantages, this study proposes a watermarking method based on
transform-domain techniques.

Watermarking techniques are also classified according to their
robustness against external attacks. In this context, they are gener-
ally categorized into three main groups: fragile, semi-fragile, and
robust watermarking methods (Mahto and Singh 2021; Anand and
Singh 2021; Singh et al. 2023). Robust watermarks exhibit resis-
tance to both intentional and unintentional modifications applied
to the image (Awasthi et al. 2024). In contrast, fragile watermarks
are easily degraded even by minor alterations. Semi-fragile wa-
termarking methods provide resistance to certain types of attacks
while enabling the detection of content manipulations (Zainol et al.
2021; Sharma et al. 2024). Finally, watermarking systems are clas-
sified into three groups blind, semi-blind, and non-blind based
on the information required during the watermark extraction pro-
cess (Awasthi et al. 2024; Sharma et al. 2023). In blind watermark-
ing methods, the original image is not required at the extraction
stage; semi-blind watermarking methods require only the original
watermark information, whereas non-blind watermarking meth-
ods require both the cover image and the watermark information
(Awasthi et al. 2024; Sharma et al. 2023; Zainol et al. 2021).

There are three fundamental properties that determine the per-
formance of digital watermarking systems: imperceptibility, ro-
bustness, and capacity. Imperceptibility refers to the similarity
between the cover image and the watermarked image obtained af-
ter the watermarking process. In other words, it indicates the level
of distortion introduced into the cover image by the watermark
embedding operation . Robustness is defined as the similarity
between the original watermark image and the watermark ex-
tracted from the watermarked image, and it represents the degree
of degradation affecting the watermark during the watermarking
process (Awasthi et al. 2024; Hu 2024; Zainol et al. 2021). Capacity
denotes the amount of watermark data that can be embedded into

the cover image. Establishing an appropriate balance among these
parameters is of great importance for the overall performance of
watermarking systems (Hu 2024).

In watermarking schemes, the relationship among robustness,
imperceptibility, and capacity follows a trade-off structure (Begum
and Uddin 2020). For instance, as the data payload increases, i.e.,
as capacity is enhanced, the robustness of the watermark decreases
while its perceptibility increases. Similarly, improving impercep-
tibility may lead to a reduction in both robustness and capacity.
Maintaining all parameters at optimal levels within this trade-off
triangle is one of the primary objectives of digital watermarking
systems (Begum and Uddin 2020; Qasim et al. 2018). These trade-
off components are illustrated in Figure 2.

Figure 2 Trade-off components (imperceptibility, robustness, and
capacity)

In watermarking methods, not only the structure of the wa-
termark image but also the type of the cover (host) image is an
important classification criterion that affects the design and perfor-
mance of the algorithm. While cover images may be grayscale or
color, watermark images can be used in binary, grayscale, or color
formats depending on the application (Wang et al. 2023; Sharma
et al. 2023). These different data structures of the cover and wa-
termark images directly influence performance metrics such as
capacity, imperceptibility, and robustness of watermarking meth-
ods.

Color cover images are represented in the RGB color space
and have a three-dimensional matrix structure consisting of rows,
columns, and color channels. Within this structure, each layer
corresponds to one of the red (R), green (G), and blue (B) color
components. Each color channel can be treated as a grayscale
image, and the watermarking process can be applied separately
to these channels (Hu 2024; Mamuti 2019). This multi-channel
structure enables higher data embedding capacity during the wa-
termarking process (Wang et al. 2023; Hu 2024).

The watermark image, on the other hand, can be selected as
binary, grayscale, or color depending on the application. Embed-
ding strategies and extraction methods vary according to the data
structure of the watermark (Wang et al. 2023; Sharma et al. 2023).
In this study, color images are preferred as cover images, while
a grayscale image is used as the watermark. This choice aims to
exploit the capacity advantage provided by color cover images
while establishing a balanced structure between imperceptibility
and robustness through the use of a grayscale watermark.

Performance evaluation in watermarking methods is gener-
ally carried out based on imperceptibility and robustness criteria
(Awasthi et al. 2024). To assess the imperceptibility performance
of watermarking schemes, Peak Signal-to-Noise Ratio (PSNR) and
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Structural Similarity Index (SSIM) metrics are widely used for
image quality and similarity analysis. For robustness evaluation,
the Normalized Correlation (NC) metric is employed to measure
the similarity between the extracted watermark and the original
watermark, while the Bit Error Rate (BER) metric is used to assess
the degree of robustness (Karmouni et al. 2024; Çelik and Yalçın
2023; Melman and Evsutin 2023). The PSNR metric is calculated
using the following Equation (1).

PSNR(H, Hw) = 10 log10

(
Max2

H
MSE

)
(1)

Here, H denotes the cover image, while Hw represents the
watermarked image. The Mean Squared Error (MSE) represents
the average pixel-wise error between the cover and watermarked
images (Eltoukhy et al. 2023). MSE is defined by Equation (2):

MSE =
1

N2

n

∑
x=1

n

∑
y=1

[H(x, y)− Hw(x, y)]2 (2)

The SSIM, which is a structural similarity measure, is defined
by Equation (3):

SSIM(H, Hw) =
(2µHµHw + C1)(2σHHw + C2)

(µ2
H + µ2

Hw
+ C1)(σ

2
H + σ2

Hw
+ C2)

(3)

Here, µH and µHw denote the local mean values of the cover
image H and the watermarked image Hw, respectively, while σH
and σHw represent their corresponding standard deviations. The
constants C1 and C2 are introduced to ensure numerical stability
during computation. For an ideally imperceptible watermarking
algorithm, the SSIM value is expected to be close to 1 (Horasan
et al. 2019; Mousavi et al. 2014).

To evaluate robustness in watermarking schemes, the water-
marked image is subjected to various potential attacks during
testing (Mousavi et al. 2014). These attacks are generally classified
as geometric and conventional attacks. Commonly applied attack
types include rotation, cropping, copy–paste, deletion, median
filtering, JPEG compression, salt-and-pepper noise, and Gaussian
filtering operations (Li et al. 2023; Khare and Srivastava 2021; Ho-
rasan et al. 2019).

The NC metric, which is used for robustness evaluation, is
defined by Equation (4):

NC =

P

∑
i=1

Q

∑
j=1

w(i, j)w′(i, j)

P

∑
i=1

Q

∑
j=1

[w(i, j)]2
(4)

In this equation, w(i, j) represents the original watermark im-
age, while w′(i, j) denotes the extracted watermark image (Mo-
hanarathinam et al. 2020; Anand and Singh 2021). An NC value
greater than 0.75 under attack conditions and close to 1 under ideal
conditions is generally expected. As the NC value approaches
unity, the watermarking method is regarded as robust and resilient
(Yurttakal and Horasan 2022; Priyadarshini and Naik 2024).

The BER metric, which is used to evaluate robustness, repre-
sents the ratio of incorrectly extracted bits to the total number of
embedded bits. BER values range between 0 and 1, where a value
of 0 indicates error-free extraction [38]. BER is defined by Equation
(5):

BER =
Number of Errors

Total Number of Transmitted Bits
(5)

LITERATURE REVIEW

The rapid production and sharing of visual data in digital envi-
ronments have led to increasing issues related to copyright in-
fringement and unauthorized use. In this context, digital image
watermarking has emerged as an effective solution for ownership
verification, preservation of content integrity, and prevention of
unauthorized copying. Although early studies primarily focused
on grayscale images, the widespread use of color images in real-
world applications has necessitated the adaptation of watermark-
ing methods to multi-channel and more complex structures. The
presence of multiple channels in color images offers the potential
to increase watermark embedding capacity, while also introducing
new challenges due to inter-channel correlations and compression
processes.

Studies in the field of color image watermarking have predomi-
nantly focused on classical transform-domain-based approaches.
In this regard, Wang et al. (2023) proposed a blind color image
watermarking method using mid-frequency coefficients in the two-
dimensional Discrete Cosine Transform (2D-DCT) domain. To
enhance watermark security, a two-stage encryption process based
on affine transformation and Arnold transform was applied. In
addition, imperceptibility and robustness were improved by em-
ploying variable embedding coefficients across different blocks
and layers. Although such DCT-based methods provide high vi-
sual quality, a significant portion of approaches operating in the
RGB color space do not explicitly address the effects of color space
transformation and quantization applied during the JPEG com-
pression process. This limitation may lead to notable performance
degradation of RGB-based watermarks, particularly under JPEG
attacks.

The neglect of spectral relationships among RGB channels has
emerged as one of the fundamental weaknesses of color image
watermarking methods in the literature. Addressing this issue,
Hu (2024) demonstrated that the conversion to the YCbCr color
space and the quantization of chroma components during the
JPEG compression process have destructive effects on watermark
information embedded in RGB channels. To mitigate this problem,
the proposed synergistic compensation (SC) approach aims to
enhance JPEG robustness by suppressing quantization errors in
channels where the watermark is not embedded.

Other studies aiming to model inter-channel relationships in
a more holistic manner have focused on quaternion-based ap-
proaches. Wang et al. (2025) proposed a watermarking method that
preserves linear correlations among RGB channels by employing
a split quaternion matrix model and double-layer singular value
decomposition. Similarly, Wang et al. (2013) introduced a blind
watermarking method based on the quaternion Fourier transform,
targeting high robustness against both color-based attacks and
geometric distortions. Although such methods provide strong
robustness, they involve practical limitations such as increased
computational cost and additional information requirements.

More recent studies in the literature have emphasized
optimization-based and hybrid-domain approaches to improve
the imperceptibility–robustness trade-off. Sharma et al. (2023)
and Sahir et al. (2025) optimized scaling factors in DWT–SVD
and DWT–HD–SVD frameworks, respectively, using the Artifi-
cial Bee Colony (ABC) algorithm, thereby enhancing both visual
quality and robustness against attacks. Agarwal and Singh (2022)
employed a genetic algorithm in the DCT domain to select op-
timal pixel groups, achieving notable improvements in PSNR
and NCC values, particularly across RGB channels. Ahmadi et al.
(2021) proposed a blind dual watermarking approach based on
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DWT–SVD and Particle Swarm Optimization (PSO), addressing
both copyright protection and integrity authentication within a
unified framework; robust watermarking performed specifically
on the blue channel resulted in high capacity and robustness.

Among approaches focusing on lower computational cost, Su
and Chen (2018) proposed a blind color image watermarking
method that directly utilizes DC coefficients in the spatial domain
instead of the transform domain, achieving satisfactory robust-
ness against JPEG compression and noise attacks. This method
stands out in terms of processing speed and implementation sim-
plicity. Roy and Pal (2019) introduced a DWT–SVD-based ap-
proach relying solely on the luminance component in the YCbCr
color space; although the method demonstrates robustness un-
der various attacks, its non-blind structure and single-channel
utilization limit its capacity. In the context of medical image se-
curity, Eltoukhy et al. (2023) developed a watermarking method
based on Slant–SVD–QFT transforms combined with one-time
pad (OTP) encryption, providing very high visual quality and
security. Finally, Su et al. (2024) presented a low-latency, high-
security, and fully blind fusion-domain watermarking scheme
using graph-based transformation and PSO.mOverall, a review of
the literature reveals that the field of color image watermarking has
witnessed a wide diversity of methods and significant advance-
ments, ranging from classical transform-domain approaches to
quaternion-based models, and from heuristic optimization algo-
rithms to graph-based and learning-assisted techniques. These
studies offer various advantages in terms of imperceptibility, ro-
bustness, security, and computational efficiency.

However, it is noteworthy that the effects of attacks originat-
ing from color space transformations and quantization processes
such as those introduced by JPEG compression are often addressed
indirectly or treated as secondary issues in many studies, particu-
larly in RGB-based methods. Therefore, approaches that explicitly
consider the interaction between color space conversion and com-
pression processes provide a complementary and strengthening
perspective to existing methods.

THEORICAL BACKGROUND

Discrete Wavelet Transform (DWT)

The DWT is an effective signal processing technique that enables
multilevel analysis by decomposing images into their frequency
components. Through the LL, LH, HL, and HH sub-bands ob-
tained after applying DWT, the fundamental structural informa-
tion and detailed components of an image can be separated (Wang
et al. 2016; Othman and Zeebaree 2020). The high time–frequency
localization capability provided by DWT allows the watermark
to be embedded efficiently without significantly degrading image
quality. Moreover, the ability to extract the watermark without
requiring the original image makes DWT a suitable method for
applications such as compression and noise reduction (Othman
and Zeebaree 2020).

In DWT-based watermarking approaches for color images, the
image is first decomposed into RGB or YCbCr color spaces, and
DWT is applied separately to each color channel to obtain the
corresponding sub-bands. By selecting appropriate sub-bands
for watermark embedding, visual quality can be preserved while
robustness against signal-processing-based attacks is enhanced
(Karmouni et al. 2024). The DWT-based approach for color images
is schematically illustrated in Figure 3.

Figure 3 DWT-based approach for color images

Singular Value Decomposition (SVD)
SVD is a powerful linear algebra technique that is widely used in
image processing and, in particular, in digital watermarking due to
its ability to preserve visual quality and provide robustness against
various distortions [19]. SVD decomposes an image matrix into
three matrices (U, S, VT) where the singular values in S capture the
intrinsic properties of the image and exhibit high stability under
common image processing operations (Mohanarathinam et al. 2020;
Zainol et al. 2021).

In the literature, SVD is commonly combined with the DWT
in adaptive watermarking algorithms that allow watermark em-
bedding in both low- and high-frequency components. Such ap-
proaches contribute to the development of robust watermark-
ing systems capable of withstanding attacks such as contrast
and brightness adjustments, cropping, and noise addition (Mo-
hanarathinam et al. 2020). The application of SVD on images is
illustrated in Figure 4.

Figure 4 Application of Singular Value Decomposition

Dimension Reduction
Dimension reduction is an approach that aims to obtain a more
compact representation that preserves the essential structure of
the data by eliminating components that are considered noise or
do not carry meaningful information in large datasets. This pro-
cess not only reduces computational cost but also increases data
processing speed and enhances system robustness by suppressing
noise present in the signal. As a result, more meaningful relation-
ships can be revealed, and in applications such as watermarking,
the imperceptibility performance can be improved (Yurttakal and
Horasan 2022; Horasan et al. 2019; Çetinkaya and Horasan 2025).
The general structure of the dimension reduction approach is illus-
trated in Figure 5.

Figure 5 Dimension Reduction
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Optimization Algorithm

Optimization is a process that aims to obtain the best (optimal)
value of an objective function defined under certain constraints
(Melman and Evsutin 2023). In this study, Grey Wolf Optimiza-
tion (GWO) is examined and applied. GWO is an optimization
algorithm inspired by the social hierarchy and hunting behavior of
grey wolf packs, proposed by Mirjalili et all. (Seyedali and Andrew
2014). In this method, candidate solutions are represented by alpha,
beta, delta, and omega wolves, and the search process is guided
according to this hierarchical structure (Mirjalili 2015; Seyedali and
Andrew 2014). The position update mechanism, which models the
encircling and attacking phases of prey, together with a linearly
decreasing control parameter, enables the algorithm to gradually
transition from the exploration phase to the exploitation phase
(Rodríguez et al. 2017; Seyedali and Andrew 2014).

MATERIAL AND METHOD

Embedding Process

In this study, color images in RGB format were selected as cover
images, and these images were decomposed into three color chan-
nels: red (R), green (G), and blue (B). The digital watermarking
process was performed solely on the B channel, and the matrix cor-
responding to this channel was obtained. The DWT was applied to
the obtained B matrix, and among the subbands obtained from the
transformation, the low-frequency LL band was selected for pro-
cessing. The SVD algorithm was applied to the LL band to obtain
a singular value matrix from this band. Similarly, the rank-k SVD
algorithm was applied to the data to be used as the watermark for
dimension reduction, and the singular value matrix of the water-
mark was computed. These two singular value matrices obtained
from the cover image and the watermark data were summed prior
to the merging operation to form a new singular value matrix. The
resulting new singular values were reconstructed using the inverse
SVD process.

The Inverse DWT was applied to the LL band obtained from
this process to yield the B channel matrix containing the digital
watermark. In the final stage, the original R and G channels were
combined with the watermarked B channel to successfully generate
the watermarked color image. The stages of the DWT–SVD based
watermark embedding process performed on the B channel of the
cover image are schematically illustrated in Figure 6.

Figure 6 Embedding Process

Extraction Process

After obtaining the watermarked image, the image was decom-
posed into RGB color channels, and all operations were performed

solely on the B channel. The DWT was applied to this channel,
decomposing the image into four subbands: LL, LH, HL, and HH.

SVD was applied to the low-frequency LL band of the water-
marked image, and the corresponding singular value matrix was
obtained as a result of this operation. For watermark extraction, the
singular value matrix of the original cover image was subtracted
from the singular value matrix obtained from the watermarked
image, thereby isolating the singular values corresponding exclu-
sively to the embedded watermark.

These isolated singular values were combined with the other
two SVD matrices of the watermark obtained during the embed-
ding stage, and the watermark image was reconstructed using
the Inverse SVD method. As a result of this process, the water-
mark image was successfully retrieved. The extracted watermark
image has the same dimensions as the dimension reduced water-
mark used in the embedding stage. The overall workflow of the
proposed watermark extraction process is illustrated in Figure 7.

Figure 7 Extraction Process

Optimization Process
In this study, an optimization problem was defined to determine
the optimal values of the parameters used in the RGB multi-level
DWT–SVD based watermarking method. The optimization process
aims to achieve a balance between the robustness and impercepti-
bility metrics obtained under different attack scenarios.

The optimization problem involves two fundamental decision
variables: k, representing the rank value employed in the SVD
of the watermark, and α, denoting the scaling coefficient used to
embed the watermark into the singular values of the cover image.

When the constraints are examined in detail:

• Rank (k) Constraint: Given that the watermark image has
dimensions hw × ww, the maximum meaningful rank value is
defined in Equation (6).

kmax = min (hw, ww) (6)

To prevent the adverse effects of excessively small or exces-
sively large rank values, it has been constrained within the
range specified in Equation 7.

0.1 kmax ≤ k ≤ 0.75 kmax (7)

This constraint prevents both excessive reduction of the wa-
termark and overly aggressive embedding.

• Scaling Coefficient (α) Constraint: This controls the effect of
the watermark on the cover image. This parameter is defined
in the continuous interval in Equation 8.

αmin ≤ α ≤ αmax (8)

This range has been determined experimentally to provide a
reasonable balance between imperceptibility and robustness.
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Each candidate solution (k, α) was evaluated using NC, BER,
SSIM and PSNR metrics under multiple attack scenarios. The
results of these metrics reflect both the extractability of the water-
mark and the perceptual quality of the cover image. When these
metrics are examined:

• PSNR Normalization: Since the PSNR value is measured in
dB, it has been normalized to be evaluated on the same scale
as the other metrics, as given in Equation 9.

normalizedPSNR =


1, PSNR ≥ 37,

PSNR
37

, PSNR < 37.
(9)

This threshold was determined based on the 37 dB reference,
which is widely accepted in the literature for high perceptual
quality.

• Attack-Based Average Performance: For a candidate solution
(k, α), the averages of the metrics obtained under all attack
scenarios are defined as follows Equations 10-13, N denotes
the total number of attacks employed.

NC =
1
N

N

∑
i=1

NCi (10)

invBER =
1
N

N

∑
i=1

(1 − BERi) (11)

SSIM =
1
N

N

∑
i=1

SSIMi (12)

PSNRnorm =
1
N

N

∑
i=1

PSNRnorm,i (13)

In this study, the fitness function is defined in Equation 14
to minimize the difference between the average robustness and
imperceptibility metrics across all attack scenarios

fit(k, α) =
1
N

N

∑
i=1

|NCi + invBERi − SSIMi − normalizedPSNRi|

(14)
The primary objective of this formulation is to ensure that the

terms representing robustness, NCi + invBERi and those repre-
senting imperceptibility, SSIMi + normalizedPSNRi are as close
to each other as possible. The optimization problem under the
defined fitness function and constraints is expressed in Equation
15 as follows.

(k∗, α∗) = arg min
k,α

fit(k, α) (15)

Through this structure, the optimization process is directed
toward producing a balanced solution between robustness and
imperceptibility, rather than excessively optimizing a single metric.

EXPERIMENTAL RESULTS

To evaluate the performance of the proposed watermarking algo-
rithm, both medical and standard benchmark color images were
employed as cover images. As illustrated in Figure 1(a), the se-
lected cover images include Melanoma, Cerebral, Retinal Fundus,
Baboon, and Peppers, which are widely used benchmark images
in digital watermarking studies. All cover images have a spatial
resolution of 512 × 512 pixels.

Figure 8 (a) Color Cover Images [Baboon, Peppers, Cerebral,
Melanoma, Retinal Fundus] (b) Watermark [copyright]

Table 1 presents the optimal k parameter and the optimal α
values obtained for different cover images and watermark sizes.
When all cover images are considered, it is observed that the op-
timal k value decreases as the watermark size becomes smaller.
This indicates that the rank parameter is directly dependent on the
watermark dimensions. The optimal α parameter, namely the wa-
termark embedding coefficient, shows an increasing trend as the
watermark size decreases. This result indicates that a stronger em-
bedding operation is required to maintain robustness when smaller
watermarks are used. The obtained findings clearly demonstrate
the drawbacks of using fixed parameter values and highlight the
necessity of optimization-based parameter selection.

To evaluate the performance of the proposed DWT–SVD-based
watermarking method using the optimized parameters, NC, BER,
SSIM, and PSNR metrics were employed. The performance evalu-
ation results obtained for different watermark sizes are presented
in Table 1.

When the values presented in Table 2 are examined, it is ob-
served that NC ≥ 0.97 is achieved for different cover images and
watermark sizes. The BER values are very close to zero (with a
maximum BER of 0.0070), indicating that the watermark can be
extracted with a negligible level of error. These results demonstrate
that the proposed method provides high watermark extractability
across different cover images and watermark sizes. Moreover, the
high NC and low BER values obtained particularly for medical
images further support the suitability of the proposed method for
applications involving sensitive data.

Secondly, when evaluated in terms of watermark size, a clear in-
crease in PSNR values is observed as the watermark size decreases.
The fact that all obtained PSNR values are above 37 dB, which
is widely accepted in the literature as the threshold for high per-
ceptual quality and imperceptibility, indicates that the proposed
method achieves satisfactory imperceptibility performance. This
result shows that smaller watermarks introduce less distortion to
the cover image and confirms the effectiveness of the proposed
approach in terms of imperceptibility. An examination of the SSIM
values reveals that they remain at approximately 0.999 through-
out all experiments. Variations in either the cover image or the
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■ Table 1 Optimized parameter values (k and α) for different watermark sizes and cover images

Cover Image Watermark Opt. k Opt. α

Melanoma

256 × 256 182 0.0346

128 × 128 80 0.0305

64 × 64 42 0.0202

Cerebral

256 × 256 154 0.0173

128 × 128 72 0.0183

64 × 64 30 0.0284

Retinal Fundus

256 × 256 122 0.0077

128 × 128 56 0.0137

64 × 64 46 0.0229

Baboon

256 × 256 126 0.0090

128 × 128 76 0.0120

64 × 64 38 0.0115

Peppers

256 × 256 142 0.0206

128 × 128 72 0.0181

64 × 64 46 0.0219

■ Table 2 Performans evaluation for different watermark sizes

Cover Image Watermark NC BER PSNR SSIM

Melanoma

256 × 256 0.9962 0.0006 37.042 0.9997

128 × 128 0.9991 0.0022 44.064 0.9999

64 × 64 0.9820 0.0034 51.440 0.9999

Cerebral

256 × 256 0.9994 0.0002 43.043 0.9994

128 × 128 0.9990 0.0016 48.507 0.9998

64 × 64 0.9962 0.0022 50.517 0.9999

Retinal Fundus

256 × 256 0.9893 0.0017 49.621 0.9996

128 × 128 0.9964 0.0025 50.251 0.9997

64 × 64 0.9963 0.0009 51.323 0.9998

Baboon

256 × 256 0.9983 0.0003 48.255 0.9999

128 × 128 0.9923 0.0029 51.175 0.9999

64 × 64 0.9700 0.0070 59.587 0.9999

Peppers

256 × 256 0.9995 0.0002 41.493 0.9996

128 × 128 0.9979 0.0017 48.767 0.9999

64 × 64 0.9964 0.0034 51.275 0.9999

watermark size do not lead to a significant decrease in SSIM values.

This finding indicates that the proposed method preserves not

only pixel-level similarity but also the structural integrity of the
image. Since maintaining structural integrity is of critical impor-
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■ Table 3 NC Values obtaıned agaınst dıfferent attacks (watermark: 64x64)

Type of Attacks Noise Density Retinal Fundus Baboon Peppers

No Attack – 0.9963 0.9700 0.9964

Gaussian low-pass filter 3 × 3 0.9625 0.8089 0.9313

Median 3 × 3 0.9912 0.8978 0.9669

Rescaling 0.25–4 0.9486 0.8083 0.9337

Gaussian noise 0.001 0.9053 0.8809 0.8306

Salt and pepper noise 0.001 0.9180 0.9448 0.9727

Speckle noise 0.001 0.9797 0.9452 0.9767

JPEG compression 50 0.9323 0.8242 0.9503

JPEG2000 compression 12 0.9951 0.9072 0.9879

Sharpening attack 0.8 0.9575 0.8370 0.9203

Average filter 3 × 3 0.9626 0.8087 0.9404

tance in medical imaging applications, the obtained results further
support the applicability of the proposed method to such sensitive
use cases.

Table 3 presents the robustness evaluation of the proposed
method against different types of attacks using Retinal Fundus,
Baboon, and Peppers as cover images when the watermark size is
fixed at 64×64. The robustness performance is assessed in terms of
the NC metric.

The conducted attack analyses demonstrate that the proposed
DWT–SVD-based watermarking method exhibits a high level of
robustness against various attack types. Owing to its frequency-
domain characteristics, the method successfully preserves NC val-
ues, particularly under JPEG2000 compression, speckle noise, and
salt-and-pepper noise attacks. On the other hand, Gaussian noise
and geometric rescaling attacks are observed to have a more lim-
iting effect on performance, especially for images with high tex-
ture complexity, such as Baboon. Nevertheless, even under these
challenging attack conditions, the obtained NC values remain at
acceptable levels, indicating that the embedded watermark can
still be reliably extracted.

Overall, the experimental results indicate that the proposed wa-
termarking method achieves high robustness and imperceptibility
across different cover images and watermark sizes. As the water-
mark size decreases, an improvement in perceptual image quality
is observed. The fact that all obtained values remain above the
thresholds commonly accepted in the literature confirms that the
proposed approach provides a stable, reliable, and generalizable
performance under a wide range of attack scenarios.

CONCLUSION

In this study, a hybrid digital watermarking method based on di-
mensionality reduction and optimization is proposed to ensure
copyright protection and data security for both color and medi-
cal images. In the proposed approach, DWT and SVD are jointly
applied only to the B channel of the color host image, while the
watermark image is preprocessed through dimensionality reduc-
tion. The optimal embedding parameters are determined using
the GWO algorithm. In this way, a balanced trade-off between

imperceptibility and robustness is achieved.

Experimental studies were conducted on both standard test
images and medical images under various watermark sizes and
different attack scenarios. The obtained results demonstrate that
the proposed method provides high imperceptibility under all test
conditions. The fact that PSNR values remain above the thresh-
old commonly accepted in the literature across all experiments,
and that SSIM values are consistently around 0.999, indicates that
the watermarking process has a negligible effect on image quality
and structural integrity. This is particularly important for medical
imaging applications, where preserving visual fidelity and struc-
tural information is critical. Robustness analyses reveal that the
proposed method exhibits strong resistance against both classical
signal processing attacks and compression- and noise-based at-
tacks. The NC values obtained under different attack types are
mostly above 0.90, confirming that the embedded watermark can
be reliably extracted. In addition, BER values remaining close
to zero clearly demonstrate the effectiveness of the frequency-
domain-based structure of the method as well as the optimization
process.

Furthermore, the analysis of optimized parameters for different
watermark sizes shows that the use of fixed parameters may be
insufficient in terms of performance. Thanks to the GWO-based
optimization approach, the optimal rank value and embedding
strength are automatically determined for each host image and
watermark size, significantly enhancing the generalizability and
adaptability of the method. The obtained findings support the
importance of optimization-based approaches in improving the
performance of digital watermarking systems. In conclusion, the
proposed digital watermarking method offers high imperceptibil-
ity, strong robustness, and balanced performance characteristics.
It provides an effective and reliable solution for application ar-
eas such as medical image security, copyright protection, and the
prevention of unauthorized use of sensitive data. In future work,
the proposed method will be evaluated in different color spaces
(e.g., YCbCr, HSV), integrated with deep learning-based optimiza-
tion approaches, and improved to reduce computational cost for
real-time systems.
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