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Deep Learning in Robot-Assisted Surgery: A
Conceptual Framework for the da Vinci System
Hakan Özcan ID ∗,1

∗Department of Computer Technology, Design Vocational School, Amasya University, Amasya, 05100, Türkiye.

ABSTRACT This study proposes a conceptual framework for integrating deep learning into the da Vinci
Surgical System. The framework was developed after identifying common applications and challenges through
a systematic review. It combines multiple data types, including visual, kinematic, and physiological signals,
into a closed-loop system. This system includes four core components: data acquisition and fusion, deep
learning-based analysis, adaptive control and feedback, and continuous skill assessment. These components
interact to support real-time surgical guidance and personalized training, aiming to improve surgical outcomes.
To inform the framework, a systematic search of the PubMed database was conducted, focusing on studies
that combine deep learning with the da Vinci system. Two major application areas were identified: the first
involves autonomous or semi-autonomous instrument control and image-guided navigation, and the second
covers surgical skill assessment and workflow analysis. While existing studies demonstrate the potential
of artificial intelligence in robotic surgery, they also reveal technical and practical limitations. By analyzing
these common approaches and obstacles, this study provides a structured foundation for future research.
The proposed framework offers a unified view that connects data processing, intelligent decision-making,
and feedback, paving the way for smarter systems that assist both in real-time procedures and long-term
training, and helping bridge the gap between advanced robotic hardware and cognitive support in surgical
environments.

KEYWORDS

Artificial intelli-
gence
Deep learning
Robotic surgery
Robot-assisted
surgery
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INTRODUCTION

In recent years, advances in surgical technology have significantly
transformed patient care and operative procedures. Robot-assisted
surgery (RAS) now enables surgeons to perform complex inter-
ventions with enhanced precision, reduced invasiveness, and im-
proved efficiency (Reddy et al. 2023). These innovations have
contributed to better clinical outcomes, including shorter recovery
times, reduced postoperative complications, and increased proce-
dural consistency (Kinoshita et al. 2022; Saman 2024). As a result,
robotic systems have become a central feature in many surgical
specialties (Cannizzaro et al. 2024).

A particularly important development in this field is the integra-
tion of advanced decision-support technologies into RAS platforms
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(Iftikhar et al. 2024). Artificial intelligence (AI), and more specif-
ically deep learning (DL) techniques, have emerged as critical
components of this evolution (Panesar et al. 2019). These tech-
niques are capable of processing complex, multi-modal datasets to
support real-time intraoperative decision-making, analyze surgical
performance, and predict patient-specific risks (Egert et al. 2020).
Recent studies emphasize that the convergence of robotic systems
with AI has the potential to enhance intraoperative safety, person-
alize surgical strategies, and improve outcomes by extending the
surgeon’s capabilities beyond mechanical precision alone (Iftikhar
et al. 2024; Knudsen et al. 2024).

One of the most prominent platforms in RAS is the da Vinci
Surgical System, developed by Intuitive Surgical in the late 1990s
and first introduced into clinical practice in 1999 (Pugin et al. 2011).
Now used in hospitals worldwide, the da Vinci system has become
a cornerstone of minimally invasive surgery (Azizian et al. 2020; Di-
Maio et al. 2011). It integrates surgeon-controlled robotic arms with
an ergonomic console and a high-definition (HD), 3-dimensional
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(3D) endoscopic imaging platform, enabling precise replication
of the surgeon’s hand movements with enhanced dexterity and
tremor filtration (Cepolina and Razzoli 2022; Pugin et al. 2011).
This setup allows for careful tissue handling and suturing through
small incisions, improving surgical precision and supporting faster
patient recovery (Cepolina and Razzoli 2022). The system’s design
provides a stable, immersive view of the operative field and facili-
tates complex procedures with greater control and better outcomes
compared to conventional minimally invasive techniques (Steffens
et al. 2023). Its 3D visualization significantly enhances spatial ori-
entation and depth perception, which is essential for performing
intricate procedures with minimal trauma to surrounding tissues
(Koh et al. 2018). Over the past two decades, the da Vinci Surgical
System has demonstrated substantial clinical impact across multi-
ple specialties, particularly urology (Koukourikis and Rha 2021),
gynecology (Li et al. 2022), and general surgery (Celotto et al. 2024).
It has also served as a key research and training platform through
initiatives such as the da Vinci Research Kit (dVRK), which has fos-
tered innovation and collaboration in the field of surgical robotics
(D’Ettorre et al. 2021).

Building on this established success, it becomes clear that the
next frontier for RAS lies in augmenting these systems with ad-
vanced decision-support capabilities. Despite significant techno-
logical progress, a notable gap remains in the systematic and clini-
cally validated integration of AI-driven systems into RAS work-
flows (Boal et al. 2024). While DL models have shown potential in
interpreting large-scale visual, kinematic, and physiological data
for intraoperative guidance (Knudsen et al. 2024), current research
is often isolated to specific tasks, limited to controlled settings, or
lacking cross-platform generalizability. Moreover, a unified archi-
tectural framework that integrates these diverse data modalities
into a cohesive real-time support system is still lacking, despite
the need for adaptable and validated solutions in evolving robotic
surgery (Marcus et al. 2024). This fragmentation not only ham-
pers clinical translation but also limits opportunities for scalable
training, consistent evaluation, and adaptive surgical assistance.

To address this gap, the present study conducts a systematic
literature review to examine thematic application domains where
DL is employed to enhance various aspects of RAS with the da
Vinci system. The review provides a detailed analysis of these
applications and identifies persistent challenges hindering clini-
cal integration. Building on these insights, the study proposes a
conceptual framework for a multi-modal surgical decision support
system (DSS). This framework integrates diverse data streams, in-
cluding visual, kinematic, and physiological inputs, into a unified
closed-loop system designed to support real-time decision-making
and continuous surgical skill assessment.

By synthesizing recent advances and outlining future directions,
this study aims to contribute to the development of intelligent,
adaptive, and data-driven RAS platforms, ultimately facilitating
more effective and personalized patient care.

MATERIAL AND METHODS

In order to identify the core components of a conceptual frame-
work, a systematic literature review was conducted following the
PRISMA guidelines (Preferred Reporting Items for Systematic Re-
views and Meta-Analyses) (Page et al. 2021). Predefined inclusion
and exclusion criteria were applied to select recent studies focused
on DL applications in robotic surgery using the da Vinci Surgical
System. The study design is illustrated in Figure 1. Selected stud-
ies were grouped by application domain, and key challenges were
identified within each group. Based on these insights, a conceptual

framework for a multi-modal surgical DSS was proposed to unify
the identified components into a cohesive system.

Figure 1 Study design

Study Selection
Initially, 23 publications related to the da Vinci Surgical System
and DL applications were retrieved from the PubMed database
using the query shown in Figure 2. Predefined inclusion and ex-
clusion criteria guided the study selection. Specifically, studies
focusing exclusively on RAS and DL or machine learning appli-
cations with the da Vinci Surgical System, published within the
last five years and written in English, were included. During the
abstract screening, three studies were excluded because they used
da Vinci system outputs solely for classification model building
or diagnostic support, without directly addressing robotic surgery.
After full-text review, one additional study was excluded for not
being directly related to robotic surgery or the da Vinci system. In
total, 19 studies met the inclusion criteria and were incorporated
into the review.

Figure 2 Study selection flow

Data Extraction and Analysis
Following PRISMA guidelines, the findings of each study were
systematically summarized and analyzed. Methodological ap-
proaches, technologies utilized, and key outcomes were compared.
The review was performed in two stages: first, the studies were
grouped according to their application domains; then, each group
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was re-examined to identify specific challenges in applying DL,
which were organized into subtopics.

Conceptual Framework Development
Finally, based on the insights gained from these studies, a con-
ceptual framework for a multi-modal surgical DSS was proposed.
This framework is designed to integrate multi-modal data streams
from visual, kinematic, and physiological sources into a unified,
closed-loop system that supports both surgical decision-making
and continuous skill improvement. The framework is intended to
serve as a foundation for future research and development in RAS
DSSs.

RESULTS AND DISCUSSION

This study, guided by the PRISMA methodology outlined in the
methods section, synthesizes current research on the integration
of DL into the da Vinci Surgical System. Based on analysis of the
selected studies, two primary domains of application have been
identified. The first involves autonomous or semi-autonomous
instrument control and image-guided navigation, where DL tech-
niques are applied to enhance intraoperative decision-making,
visual guidance, and robotic manipulation. The second focuses
on surgical skill assessment and workflow analysis, highlighting
how machine learning algorithms, combined with physiological
and performance data, are used to evaluate surgical proficiency,
monitor ergonomics, and support training. As illustrated in Figure
3, there has been a steady growth in the number of studies across
both domains, with a noticeable increase in research addressing
mixed implementation approaches in recent years. The following
sections explore each of these domains in detail, emphasizing the
transformative role of DL in RAS.

Figure 3 Cumulative deep learning–related da Vinci studies by
domain (2020–2025)

Autonomous or Semi-Autonomous Instrument Control and Image-
Guided Navigation
The integration of DL into the da Vinci Surgical System has led to
significant advancements in autonomous and semi-autonomous
robotic capabilities, particularly in the realms of real-time visual
guidance, instrument control, and tactile perception. Relevant

studies on autonomous and semi-autonomous instrument control
and image-guided navigation are given in Table 1. These innova-
tions are increasingly contributing to enhanced surgical precision,
improved safety, and more efficient intraoperative workflows.

One of the most impactful developments involves real-time 3D
model registration and augmented reality (AR)-based navigation.
This was demonstrated in a study (Amparore et al. 2024) that lever-
aged the da Vinci system to enhance robotic partial nephrectomy
by automatically overlaying patient-specific 3D kidney models
onto the surgeon’s live endoscopic view. Two complementary
approaches were explored. The first utilized computer vision tech-
niques, enhanced by indocyanine green (ICG) fluorescence imag-
ing, to segment kidney structures and establish landmark-based
registration. The second approach employed a convolutional neu-
ral network (CNN) to automatically detect and segment the kidney
directly from live endoscopic images, without relying on fluores-
cence. Both methods were integrated into the da Vinci system via
the TilePro multi-input display, enabling real-time AR guidance
during surgery. The reported co-registration times ranged from 7
to 11 seconds, with only minimal manual adjustments required.
This automatic overlay system improves intraoperative visualiza-
tion, supports precise surgical navigation, and reduces cognitive
load on the operating surgeon.

Another key area of innovation is camera motion estimation
in dynamic surgical environments, which is essential for devel-
oping intelligent camera systems. This challenge was addressed
in a study (Huber et al. 2022) that proposed a DL approach for
estimating laparoscopic camera motion using deep homography
networks. The researchers created synthetic surgical sequences
by introducing artificial camera motion into static da Vinci video
frames and used these sequences to train a neural network based
on ResNet-34. The proposed system was able to estimate camera
motion accurately, even in the presence of moving instruments
and tissue, significantly outperforming classical computer vision
techniques such as SURF combined with RANSAC. The method
achieved up to 41% higher precision and was approximately 43%
faster on standard central processing units (CPUs). This capability
lays the foundation for intelligent and adaptive camera control
systems that can autonomously adjust viewpoint and maintain
optimal visual context during complex procedures.

In the domain of skill transfer and task automation, a study
(Gonzalez et al. 2021) used the dVRK as one of four robotic plat-
forms in the development of the Dexterous Surgical Skill (DESK)
dataset. The DESK dataset was designed to enable machine learn-
ing models to generalize across different robotic systems and en-
vironments, supporting the development of semi-autonomous
capabilities in settings such as remote or battlefield surgery. Us-
ing the dVRK, the researchers performed a peg transfer task that
was broken down into modular surgical gestures, referred to as
"surgemes", such as grasping, transferring, and releasing pegs.
Detailed kinematic data, including gripper state, position, and
orientation, were recorded and used to train classification mod-
els. Remarkably, machine learning models trained exclusively on
simulation data were able to achieve an accuracy of 93% when
tested on real robotic executions using the da Vinci system. This
result underscores the potential for leveraging virtual training en-
vironments and simulated data to develop generalizable models
for real-world autonomous surgical applications.

Another important line of research involves enhancing the real-
ism of biomechanical simulations used in training and preopera-
tive planning. This was demonstrated in a study (Wu et al. 2020)
that used the dVRK platform in combination with an RGB-depth
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■ Table 1 Studies on autonomous and semi-autonomous instrument control & image-guided navigation

Study Focus Methodology/Algorithm Modalities

(Wu et al. 2020) Simulation correction in soft-tissue
modeling

Modified 3D-UNet for correction fac-
tor prediction

RGB-D and kinematics

(Gonzalez et al. 2021) Surgeme classification via transfer
learning

Supervised learning (RF, SVM, MLP)
with FFT features

Kinematics and annotated video im-
ages

(Huber et al. 2022) Laparoscopic camera motion extrac-
tion

DNN-based homography estimation
(using synthetic augmentation)

Laparoscopic surgery video images

(Amparore et al. 2024) 3D virtual model overlay in robotic
partial nephrectomy

ICG-enhanced computer vision +
CNN-based kidney segmentation

RGB endoscopic images (± NIRF) &
3D kidney models

(Ullah et al. 2024) Fluorescence-guided tumor margin
delineation

Comparison of visible vs. NIR
probes; AI/ML for probe design

Visible and NIRF imaging

(Yilmaz et al. 2024) Sensorless haptic feedback Disturbance observer with deep
learning dynamic compensation

Motor kinematics and force data

(Khan et al. 2025) ML-based tension measurement LSTM-based torque estimation dVRK kinematics and force data

Abbreviations: 3D-UNet, Three-Dimensional U-Net; AI/ML, Artificial Intelligence / Machine Learning; AR, Augmented Reality; CNN, Convolutional Neural Network;
dVRK, da Vinci Research Kit; DNN, Deep Neural Network; FFT, Fast Fourier Transform; ICG, Indocyanine Green; LSTM, Long Short-Term Memory; MLP, Multi-Layer
Perceptron; NIRF, Near-Infrared Fluorescence; RF, Random Forest; RGB-D, Red Green Blue + Depth; SVM, Support Vector Machine.

camera sensor to capture visual and kinematic data while physi-
cally interacting with soft-tissue phantoms. They employed this
real-time data to improve Finite Element Method (FEM)-based
soft tissue models. Specifically, the authors train a neural network
to learn the difference between the FEM’s predicted tissue shape
and the actual tissue shape, as measured by real-time camera and
robot data (vision and kinematics). The network then generates
a correction factor that adjusts the FEM output to more closely
reflect the true, observed deformation of the soft-tissue phantom.
The resulting hybrid model reduced simulation errors by 15–30%.
These advances underscore the importance of increased realism in
soft-tissue simulation, both for surgical training and for machine
learning systems that depend on accurate virtual environments to
learn complex surgical tasks.

The challenge of providing direct haptic feedback in the da
Vinci system has been widely recognized, as tactile information
is critical for safely manipulating delicate tissues. This issue was
addressed in a study (Yilmaz et al. 2024) that implemented sen-
sorless haptic feedback using internal dVRK signals such as joint
positions, velocities, and motor torques. In this study, DL is used to
estimate the robot’s internal dynamics so the system can accurately
distinguish external forces (e.g., contact with tissue or surgical
objects) from the robot’s own motion. Specifically, the authors
train a Long Short-Term Memory (LSTM)-based neural network
on the dVRK’s joint positions and velocities to learn friction and
inertia, then subtract this modeled disturbance from the measured
motor torque to estimate external contact forces. This sensorless
approach provides the basis for haptic feedback. Two experimental
tasks were conducted. The first involved tumor detection via pal-
pation, where sensorless feedback increased detection accuracy by
approximately 30% compared to visual-only guidance and nearly
matched the performance of systems using physical force sensors.
The second task focused on the classic peg transfer evaluation,
where sensorless feedback significantly reduced unwanted inter-
action forces by approximately threefold, improving safety and

surgical control. Additionally, dynamic modeling contributed to a
better user experience by reducing both physical strain and cogni-
tive workload. Importantly, this technique required no additional
hardware, highlighting its practical value for improving haptics in
existing surgical systems.

In a related effort to enhance intraoperative safety, researchers
(Khan et al. 2025) developed a machine learning-based method for
measuring tissue tension during robotic surgery using the dVRK.
Their approach involved using standard da Vinci instruments to
apply pulling forces on porcine colon tissues. A LSTM network
was trained on kinematic data (joint positions and velocities) and
successfully predicted tissue tension with an average accuracy of
74%, reaching up to 88% in optimal cases. The correlation between
predicted and ground-truth forces was consistently strong, with
Spearman’s correlations ≥ 0.81 in four of five experiments (mean
≈ 0.80). By enabling real-time monitoring of tissue stress, this
method offers a way to prevent complications such as anastomotic
leaks and opens new possibilities for quantitative intraoperative
guidance.

Furthermore, emerging research is increasingly leveraging
advanced fluorescence imaging modalities to support surgical
decision-making. A recent review (Ullah et al. 2024) discussed the
potential synergy between novel fluorescent probes, near-infrared
imaging windows, and robotic platforms in fluorescence imaging-
guided surgery. This work emphasized that future directions could
include "fluorescence-guided da Vinci" systems, where DL po-
tentially augments the fluorescence signal to provide automated
tissue differentiation or tumor margin detection. Taken together
with ICG-based AR, as demonstrated in the study (Amparore
et al. 2024), these developments pave the way for even more so-
phisticated guidance strategies that seamlessly blend AI-driven
analytics, robotics, and real-time imaging to enhance surgical pre-
cision.
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Overall, these studies demonstrate how DL techniques, when
integrated with the da Vinci Surgical System’s visual and kinematic
data, are pushing the boundaries of robotic surgery. From enhanc-
ing visual guidance through AR to predicting physical interactions
with tissue, these developments are gradually transforming the
da Vinci platform into a more autonomous and intelligent surgical
assistant capable of supporting complex intraoperative tasks with
greater safety, accuracy, and adaptability.

Surgical Skill Assessment and Workflow Analysis
The da Vinci Surgical System plays a central role in the devel-
opment of objective, data-driven approaches to surgical skill as-
sessment and intraoperative workflow analysis. Relevant stud-
ies focusing on surgical skill assessment and workflow analysis
are presented in Table 2. Leveraging its precise motion tracking,
real-time data capture capabilities, and compatibility with physio-
logical monitoring systems, the da Vinci platform has enabled the
integration of AI-based methods into both surgical training and
evaluation environments.

A study (Egert et al. 2020) emphasize the foundational role of
the da Vinci system in capturing automated performance met-
rics, such as instrument motion and camera positioning. These
quantitative indicators of surgeon performance serve as inputs for
machine learning algorithms that can assess surgical proficiency
and even predict patient outcomes based on observed patterns.
In addition to procedural logging, the da Vinci system supports
training through playback features that allow trainees to review
expert-performed tasks. These recordings can also be physically
re-experienced via tactile robotic control, facilitating the develop-
ment of procedural muscle memory and enhancing motor skill
acquisition. These capabilities suggest that AI-integrated robotic
platforms could provide standardized, objective feedback in surgi-
cal education.

Several studies have explored the integration of physiological
and behavioral monitoring with the da Vinci system to assess sur-
gical skill levels. One example of this approach is a study (Shafiei
et al. 2024b) that predicted Robotic Anastomosis Competency Eval-
uation metrics during vesico-urethral anastomosis. The authors
collected electroencephalography (EEG) and eye-tracking data
from 23 participants performing procedures on plastic models
and animal tissue using the da Vinci system. These data were
used to train machine learning models, including random forest
and gradient boosting regression, which could accurately predict
subtask-level performance such as needle handling, tissue trauma,
and suture placement. The ability to distinguish performance dif-
ferences among surgeons of varying experience levels underscores
the potential of using physiological and visual metrics for precise,
objective skill assessment.

Complementary research (Takács et al. 2024) examined the stress
and ergonomic impact of RAS with the da Vinci Xi while surgeons
performed standardized tasks on a Sea Spikes phantom. Using dig-
ital sensors that captured heart-rate variability, posture, and hand
movements, the authors trained machine learning models to clas-
sify self-reported workload levels and novice versus expert status
from these physiological indicators. Preliminary findings suggest
that, although the da Vinci’s ergonomic design reduces physical
strain relative to open surgery, remote tele-operation introduces
distinct cognitive and stress-related challenges that differ between
novice and experienced surgeons. This insight supports incorpo-
rating stress monitoring and ergonomics into future training and
evaluation models.

The combined use of EEG and eye-tracking data was further ex-
plored in another study (Shafiei et al. 2023b) involving live animal
surgeries using the da Vinci system. Surgeons performed cys-
tectomy, hysterectomy, and nephrectomy procedures while their
physiological responses were recorded during subtasks such as
blunt dissection and tissue retraction. Skill levels were assigned
using the modified Global Evaluative Assessment of Robotic Skills
(GEARS) tool, and models such as multinomial logistic regression,
random forest, and gradient boosting were trained to classify surgi-
cal expertise. The gradient boosting model achieved classification
accuracies up to 93%, demonstrating the reliability of this multi-
modal approach for distinguishing skill levels in real-time surgical
environments.

Building on this line of inquiry, an integrated EEG and eye-
tracking study (Shafiei et al. 2024a) using eXtreme Gradient
Boosting (XGBoost) evaluated mental workload across various
simulator- and Fundamentals of Laparoscopic Surgery-based tasks
in RAS. This study recruited 26 participants performing Match-
board and Ring Walk exercises on a da Vinci simulator, as well as
Fundamentals of Laparoscopic Surgery pattern cut and suturing
tasks. The XGBoost models achieved R2 values above 0.80 for
each task and identified key predictors such as pupil diameter,
temporal-lobe functional connectivity, and task complexity. These
findings further underscore the growing role of advanced physio-
logical analytics in understanding surgeons’ cognitive demands
and optimizing training programs to improve overall performance.

Reliable model development also depends on high-quality, syn-
chronised data, as demonstrated in a study (Hashemi et al. 2023)
that outlined protocols for acquiring and processing da Vinci sur-
gical data-combining stereoscopic endoscopic video with surgeon-
movement recordings from depth cameras. The researchers further
extracted event-level information such as clutch usage and instru-
ment activation by means of computer-vision algorithms. Their
open-source pipeline, together with a discussion of commercial
recorders like dVLogger, provides a comprehensive framework for
dataset development that supports reproducible and automated
surgical performance evaluation.

The effectiveness of visual metrics was demonstrated in a study
(Shafiei et al. 2023a), where participants performed robotic pro-
cedures on live pigs while wearing eye-tracking devices. Visual
behavior during subtasks such as cold dissection and tissue retrac-
tion was analyzed and used to train a gradient boosting classifier,
which achieved up to 96% accuracy across different tasks. Ex-
pert evaluations using GEARS served as the ground truth. These
findings demonstrate that visual metrics collected during da Vinci-
assisted procedures can reliably distinguish between varying skill
levels, making eye-tracking a practical tool for real-time feedback
and objective assessment.

The impact of automated feedback on learning was examined
in a study (Brown and Kuchenbecker 2023) involving the da Vinci
Standard system and a Smart Task Board. Trainees were divided
into feedback and control groups, with the former receiving near-
real-time GEARS score predictions generated by a regression-based
machine learning model. While both groups improved in tech-
nical metrics such as force application and tool acceleration, the
feedback group showed increased awareness of their performance
gaps, suggesting that automated feedback may enhance reflective
learning even if it does not immediately accelerate early psychomo-
tor development.
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■ Table 2 Studies on surgical skill assessment & workflow analysis

Study Methodology/Algorithm Modalities

(Egert et al. 2020) AI/ML (e.g., Computer Vision, ANN) Instrument motion, eye tracking, force sensors,
video

(Lyman et al. 2021) CUSUM + ML (using ORI) Kinematics (dVLogger from da Vinci system)

(Brown and Kuchenbecker 2023) Automated GEARS-based scoring Robotic instrument motion data (Smart Task Board)

(Hashemi et al. 2023) AI-ready data acquisition framework Video, 3D movement, event data

(Shafiei et al. 2023a) GB Eye gaze data

(Shafiei et al. 2023b) GB, RF, MLR EEG and eye gaze data

(Shafiei et al. 2024a) XGBoost EEG and eye-tracking (gaze, pupil, connectivity met-
rics)

(Shafiei et al. 2024b) GB, RF EEG and eye-tracking during VUA

(Takács et al. 2024) Exploratory ML + statistical correlation analysis Heart rate variability, posture, hand motion sensors
(digital wearables)

(Hatcher et al. 2025) Review of frameworks and assessments Simulation tools, assessment checklists

Abbreviations: AI/ML, Artificial Intelligence / Machine Learning; ANN, Artificial Neural Network; CUSUM, Cumulative Sum Control Chart; dVLogger, da Vinci Logger;
EEG, Electroencephalogram; GB, Gradient Boosting; GEARS, Global Evaluative Assessment of Robotic Skills; ML, Machine Learning; MLR, Multinomial Linear
Regression; ORI, Operative Robotic Index; RF, Random Forest; VUA, Vesicourethral Anastomosis; XGBoost, Extreme Gradient Boosting.

Skill progression over time was the focus of a study (Lyman et al.
2021) that investigated the learning curve of novice surgeons per-
forming hepaticojejunostomy using the da Vinci Surgical System.
Kinematic data, including camera adjustments and tool move-
ments, were recorded and analyzed with machine learning and
stepwise "combination of an objective cumulative sum" (CUSUM)
techniques. A new composite score, the Operative Robotic Index
(ORI), was introduced to summarize performance across key met-
rics. The ORI effectively differentiated novice from intermediate
skill levels and aligned closely with traditional CUSUM evalua-
tions. These findings highlight how detailed kinematic tracking,
and statistical modeling can be used to monitor skill development
over time.

The evolution of robotic simulation education was the subject of
a recent review (Hatcher et al. 2025) that emphasized the growing
need for standardized training curricula tailored to RAS platforms
like the da Vinci Xi. While early efforts such as the Fundamentals of
Robotic Surgery program provide a baseline, more comprehensive
tools and frameworks, such as GEARS, R-OSATS, and RO-SCORE,
are needed to assess advanced robotic surgical skills. The authors
also anticipate a future where emerging technologies such as AI,
virtual reality, and AR are fully integrated into training platforms,
making the da Vinci system a key player in next-generation surgi-
cal education.

Collectively, these studies illustrate the powerful role of the da
Vinci Surgical System as both a surgical and educational platform.
By capturing high-resolution data streams and integrating physio-
logical, visual, and motion-based metrics, the system supports the
development of automated models that can objectively assess skill
levels, monitor stress responses, and improve training outcomes.
These capabilities contribute to a future where surgical education is
more standardized, feedback is more immediate and objective, and

patient outcomes are continuously enhanced through data-driven
learning.

Challenges in Adapting Deep Learning to Robot-Assisted Surgery
Despite rapid progress in applying DL and other machine learning
methods to RAS, significant barriers remain before these tech-
niques can be seamlessly adopted in real operating rooms. This
section distills key challenges around data infrastructure, real-time
performance, algorithm generalizability, interpretability, workflow
integration, and regulatory/ethical concerns.

Data Availability, Quality, and Standardization: A fundamental
challenge is assembling high-quality, large-scale datasets of robot-
assisted procedures. The da Vinci Surgical System can record
textual, kinematic, and video data, but there is no single, standard-
ized protocol across institutions (Hashemi et al. 2023). In some
contexts, researchers gather adverse event reports (Li et al. 2024)
or produce specialized datasets for skill assessment (Lyman et al.
2021), but these remain fragmented. Meanwhile, anonymization
requirements and the labor-intensive nature of manual annotation,
particularly in advanced tasks like EEG- and eye-gaze–based skill
assessment (Shafiei et al. 2023a,b, 2024b), discourage broad data-
sharing. Even successful attempts to fuse multiple data modalities
(e.g., vision, kinematics, and textual records) can be hampered by
incompatible data formats, sensor noise, or incomplete metadata
(Wu et al. 2020). The net effect is that many DL models are trained
on small, nonrepresentative samples, limiting generalizability.

Real-Time Performance and Resource Constraints: DL algorithms
used for tasks such as AR overlays, surgical-phase detection, or
skill evaluation must produce sub-second updates. For instance,
sensorless haptic feedback systems (Yilmaz et al. 2024) or real-
time stress measurement (Takács et al. 2024) require tight latency
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bounds for closed-loop control. Yet many robotics labs still rely
on external graphics processing units or slower CPUs not specifi-
cally tuned to handle real-time inference. Even modest delays can
disrupt surgical flow. Moreover, models of this class, such as the
deep-transformer pipeline "Bert-BiLSTM" used for adverse-event
classification (Li et al. 2024), typically require considerable compute
resources. Balancing model complexity with real-time feasibility is
an ongoing struggle.

Transfer Learning and Algorithm Generalizability: Neural net-
works often degrade when applied to new surgical environments,
different endoscopic hardware, or novel tissue types (Egert et al.
2020; Hatcher et al. 2025). Similarly, skill classifiers that excel in sim-
ulator tasks (Rivero-Moreno et al. 2023) may stumble in real-world
surgery with unfamiliar lighting conditions or tool usage patterns.
Bridging simulation to reality remains a major hurdle. For in-
stance, the realism of biomechanical simulations was improved
by integrating real vision and kinematics data (Wu et al. 2020), al-
though differences between controlled phantom data and anatom-
ical variance in patients still limit direct transfer. Approaches to
domain adaptation (ranging from augmented training sets to semi-
supervised learning) are essential if we want robust models that
generalize well across procedures and platforms.

Interpretability and Surgeon Acceptance: Black-box deep mod-
els trained on massive data can be difficult to interpret, thereby
reducing surgeon trust. The necessity of transparent and easily
digestible metrics for surgical performance has been emphasized
in prior work (Egert et al. 2020). Similarly, it has been shown
that while EEG or eye-tracking data can accurately gauge skill
level, explaining why a model produces a particular skill rating
remains challenging (Shafiei et al. 2023a,b, 2024b). Surgeons or
medical trainees often rely on step-by-step guidance and immedi-
ate feedback; purely numerical or "black-box" predictions might be
undervalued if they cannot be explained in a clinically meaningful
manner. Fostering trust may require "explainable AI" methods
(Setchi et al. 2020) to highlight relevant video frames, tissue edges,
or motion trajectories that drive each inference.

Workflow Integration and Educational Gaps: Even when DL out-
puts are accurate, they can disrupt the robotic workflow if deliv-
ered through clunky interfaces or if they add cognitive load. Ob-
jective skill metrics such as the dVLogger-based ORI are presently
reviewed post-hoc (Lyman et al. 2021); if such feedback were ever
pushed into real time, an unfiltered stream of notifications could
overwhelm surgeons. Likewise, the "Bert-BiLSTM" classifier de-
veloped to label da Vinci adverse-event reports remains a bench
prototype (Li et al. 2024), and its clinical deployment would re-
quire careful alert management. At the same time, most residency
programmes still lack dedicated AI or data-science instruction, cre-
ating a literacy gap that slows adoption (Hatcher et al. 2025; Egert
et al. 2020). Reviews consequently stress the need for intuitive user-
interface design and formal curricula that teach clinicians how to
interpret and respond to algorithmic recommendations (Rivero-
Moreno et al. 2023). Without such human–machine-interface re-
finements, even high-performing models may remain sidelined.

Regulatory, Ethical, and Liability Considerations: Regulatory
frameworks for AI-driven surgical systems are still evolving (Egert
et al. 2020). Tools that automate or partially automate tasks such
as trocar placement or tissue retraction face extra scrutiny, since
errors can have severe ramifications (Attanasio et al. 2020). Liabil-
ity is another gray area (Marcus et al. 2024): if a trained model or
algorithm misclassifies an adverse event or suggests an ill-advised

maneuver, it is unclear whether the responsibility lies with the
surgeon, the device manufacturer, or the hospital system. Data
privacy is yet another consideration particularly for advanced ana-
lytics involving EEG, eye-gaze, or physiologic signals (Hashemi
et al. 2023; Shafiei et al. 2024b). Without robust, standardized gov-
ernance, it is challenging to deploy advanced AI functionalities at
scale.

Proposed Conceptual Framework for a Multi-Modal Surgical Deci-
sion Support System
In light of previous studies (as discussed in the Results section) that
focused on isolated aspects of robotic surgery, this study proposes a
conceptual framework (Figure 4) that integrates these components
into a unified, closed-loop system. The need for such a framework
arises from the growing complexity of robotic surgical procedures
and the demand for real-time, comprehensive decision support
that enhances both surgical performance and training.

Figure 4 Proposed conceptual framework for the da Vinci system.
This figure illustrates the interaction between the four core compo-
nents: data acquisition and fusion, deep learning-based analysis,
adaptive control and feedback, and continuous skill assessment. 3D,
Three-Dimensional; CNN, Convolutional Neural Network; EEG, Elec-
troencephalography; HD, High-Definition; LSTM, Long Short-Term
Memory; RNN, Recurrent Neural Network.

Framework Components and Their Functions: The framework
is composed of several interconnected components designed to
capture, analyze, and act upon multi-modal data. Each compo-
nent plays a vital role in ensuring that information is processed
efficiently and utilized effectively to support surgical decision-
making and continuous skill improvement.

The data acquisition and fusion component is critical for collecting
and synchronizing diverse data sources to provide a comprehen-
sive view of the surgical environment:

• Visual Data: HD 3D endoscopic imaging is captured by the da
Vinci system. This data is used for AR overlays and real-time
segmentation and registration of surgical sites.

• Kinematic Data: Detailed movement data from robotic arms
and instruments, recorded via tools such as the dVLogger,
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provides insights into instrument trajectories and motion pat-
terns.

• Physiological Data: Wearable sensors collect metrics such
as EEG, eye-tracking information, and stress indicators. This
information reflects the surgeon’s cognitive and emotional
state during procedures.

• Fusion Mechanism: A central data fusion module synchro-
nizes these diverse data streams into a unified dataset, ensur-
ing that all modalities contribute to real-time analysis.

The deep learning-based analysis component leverages advanced
DL models to interpret the fused data and extract actionable in-
sights:

• Image Processing: CNNs are used to process visual data.
These networks perform tasks such as object detection, seg-
mentation, and 3D model alignment, thereby enhancing the
visual context provided to the surgeon.

• Temporal Analysis: Recurrent neural network- or LSTM-
based models analyze the kinematic and physiological data
over time. This analysis supports dynamic skill assessment
and monitors the surgeon’s state throughout the procedure.

• Predictive Analytics: Machine learning algorithms integrate
the fused data to predict surgical outcomes, provide alerts,
and recommend adjustments based on historical performance
and real-time trends.

The adaptive control and feedback component enables the system
to dynamically adjust surgical parameters and provide real-time
guidance based on continuous data analysis:

• Control Adjustments: Reinforcement learning algorithms
enable the system to make semi-autonomous control adjust-
ments. These adjustments can optimize instrument move-
ments and camera positioning during surgery.

• Real-Time Feedback: The framework provides continuous
feedback to the surgeon via the da Vinci console. This feed-
back may be visual, auditory, or haptic in nature, ensuring
that the surgeon is informed of any deviations or potential
improvements. Additionally, model interpretation (MI), such
as through Shapley value-based approaches (Dean Pelegrina
and Siraj 2024), helps the system deliver intelligible feedback
(e.g., highlighting why a control adjustment is recommended).

The continuous skill assessment component focuses on evaluating
and tracking surgeon performance over time to support targeted
training and improved outcomes:

• Performance Metrics: Automated performance metrics are
extracted from the fused data, allowing for an objective evalu-
ation of surgical proficiency.

• Skill Profiling: This component continuously updates a skill
profile for each surgeon. The profile is used to identify
strengths, weaknesses, and trends in performance, which in
turn supports targeted training interventions.

• Outcome Correlation: The framework correlates real-time
performance data with surgical outcomes, contributing to a
feedback loop that helps refine both the control system and
the training protocols. Additionally, MI helps visually and
numerically explain how specific data (e.g., instrument tra-
jectories, EEG patterns) influence performance assessments.
The two-sided connection provides an adaptive relationship
between the component and MI (e.g., emphasizing temporal
motion irregularities if fine motor control is a known issue).
This transparency enables surgeons and educators to digest
complex analytics in an intuitive and actionable manner.

Interactions Between Components: The proposed framework
functions as an interconnected system in which each component
reinforces and informs the others. In this system, the data acquisi-
tion module collects multi-modal information (including visual,
kinematic, and physiological data) and feeds it into the DL-based
analysis module, which interprets these data and subsequently
informs the adaptive control system that provides real-time feed-
back to the surgeon. Meanwhile, the continuous skill assessment
module monitors performance metrics and updates the surgeon’s
skill profile, which in turn is used to refine control strategies and
training protocols. By integrating these diverse data streams into a
unified framework, this approach bridges gaps observed in previ-
ous research, enhancing intraoperative decision-making and foster-
ing a continuous learning environment that ultimately improves
surgical outcomes and training efficiency. Additionally, the system
integrates MI-based explanations that help visualize how specific
inputs influence assessment outcomes. These explanations support
clearer decision-making, promote user understanding of AI-driven
suggestions, and contribute to more informed adjustments during
both training and live procedures.

CONCLUSION

This study systematically reviewed recent advances in integrating
DL with the da Vinci Surgical System, highlighting key innova-
tions in autonomous instrument control, real-time image-guided
navigation, skill assessment, and sensorless haptic feedback. These
developments show great promise, yet challenges persist in data
standardization, real-time performance, domain adaptation, and
model interpretability. To address these challenges, the review
organized recent DL applications into a comprehensive conceptual
framework that supports real-time feedback, adaptive control, and
continuous skill assessment, providing a foundation for future
development and validation in RAS. As DL advances alongside
sensing technologies, user-interface research, and evolving regula-
tory guidance, the framework can steer innovation toward safer,
more autonomous, and intelligent surgical systems that improve
both clinical practice and surgical education.

Although this preliminary framework is an important step to-
ward a multi-modal DSS for RAS, further research and rigorous
validation remain essential to assess real-world feasibility, optimize
each component, and fully unlock the benefits of this integrated
approach. The included studies vary methodologically, and many
were conducted in simulated or controlled settings rather than
operating rooms. Future work should prioritize clinical validation
through well-designed prospective trials and enhance model trans-
parency to foster surgeon trust and ensure robustness under real-
world conditions. Ongoing updates to the da Vinci platform must
be tracked to keep the framework compatible and clinically rele-
vant. Progress will require close collaboration among engineers,
surgeons, data scientists, and regulators to translate laboratory
prototypes into safe, widely adopted clinical tools.
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ABSTRACT This study presents a modified Transmission Line Modelling (TLM) method for simulating bioheat transfer in biological
tissues, with a particular focus on accounting for non-unidirectional blood flow. While the Pennes bioheat equation has been widely used
for such problems, it assumes unidirectional perfusion and may overlook important thermal effects introduced by non-unidirectional blood
flow. To address this limitation, a TLM-based formulation of the Klinger bioheat equation known for incorporating flow directionality is
developed and implemented for one-dimensional (1D) problems. A novel TLM cell model is introduced to represent the governing equation
and its associated boundary conditions. Validation is performed through a 1D multilayer human tissue model exposed to electromagnetic
(EM) fields at multiple 4G carrier frequencies. Comparative results with the Finite Element Method (FEM) show strong agreement,
especially under steady-state conditions. Furthermore, the proposed model reveals that the impact of non-unidirectional blood flow
becomes more pronounced in thicker tissue layers, confirming the importance of incorporating convective terms. This work demonstrates
that the modified TLM approach provides a stable, efficient, and more physiologically accurate method for bioheat simulations.
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INTRODUCTION

Bioheat transfer plays a critical role in understanding thermal
interactions within biological tissues (Singh 2024; Ostadhossein
and Hoseinzadeh 2024), with wide-ranging applications in medi-
cal diagnostics (D’Alessandro et al. 2024; Akulova and Sheremet
2024), hyperthermia-based therapies (Jiang 2024; Sherief et al. 2024),
and cryosurgery studies (Barman et al. 2021; Kumar and Rai 2022)
among others. Traditional models, such as Pennes’ bioheat equa-
tion (Pennes 1948), have provided a foundational framework for
analysing heat conduction in perfused tissues. However, these
models often assume simplified blood flow patterns, typically uni-
directional and spatially averaged perfusion, which may not ade-
quately capture the complexity of heat transmission in biological
tissues (Hristov 2019; Tucci et al. 2021).

The Transmission Line Modelling (TLM) method has gained at-
tention in the literature as a robust numerical technique for solving
the wave equation, the diffusion equation and the linear combina-
tion of both wave and diffusion types of partial differential equa-
tions (PDEs) (Christopoulos and Christopoulos 1995; Aricioglu
and Ferikoglu 2021; Johns 1977). A key advantage of the TLM
method lies in its unconditional stability and the fact that it does
not require matrix inversion for time-domain solutions, making
it both efficient and scalable for large and complex simulations
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(Milan and Gebremedhin 2018).
In this study, a modified TLM method is presented for simu-

lating bioheat transfer, extending the classical framework by in-
corporating non-unidirectional blood flow effects. The Pennes
bioheat equation is one of the most commonly used models in the
literature for solving bioheat transfer problems (Ostadhossein and
Hoseinzadeh 2022; Abro et al. 2021; El-Sapa et al. 2024; Ezzat et al.
2014; Ferras et al. 2015). However, as noted by H.G. Klinger, the
Pennes equation neglects the effects of non-unidirectional blood
flow, which may lead to inaccuracies (Klinger 1974). Therefore,
this study employs the Klinger bioheat equation as an alterna-
tive. To implement this, a new TLM cell model was developed
that accounts for non-unidirectional blood flow. To the best of the
author’s knowledge, there is currently no TLM-based implemen-
tation of the Klinger bioheat equation in the literature. Thus, the
TLM model for the Klinger equation constitutes the novel contri-
bution of this work. For simplicity, only the one-dimensional (1D)
case is considered.

The remainder of the paper is organized as follows: Section 2
presents the materials and methods. Section 3 provides numerical
simulations and results. Finally, Section 4 concludes the paper
with a summary of findings and perspectives for future work.

MATERIALS AND METHODS

In this section, the application of the TLM method to 1D bioheat
problems is explained. The TLM method can be used to solve
wave equations, diffusion equations, or any combination of the
two. The general thermal diffusion equation is:
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k∇2T = ρC
∂T
∂t

− Q. (1)

Here, k is the thermal conductivity (W/mK), T is the temper-
ature (K), ρ is the density (kg/m3), C is the specific heat capacity
(J/kgK), and Q is the heat source term (W/m3). In biological tis-
sues, thermal diffusion described by the Pennes bioheat equation
is given by (Pennes 1948)

kT∇2T = ρTCT
∂T
∂t

+ ωbCb(T − Tb)− Qmet − Qe. (2)

Here, kT is the thermal conductivity of the tissue (W/m·K), T is
the temperature (K), ρT is the tissue density (kg/m3), CT is the spe-
cific heat capacity of the tissue (J/kg·K), ωb is the blood perfusion
rate (kg/m3s), Cb is the specific heat capacity of blood (J/kg·K),
Tb is the initial temperature of blood (K), Qmet is the metabolic
heat generation rate (W/m3), and Qe is the power absorbed by the
tissue from an external heat source (W/m3). The Klinger bioheat
equation is (Klinger 1974):

kT∇2T = ρTCT
∂T
∂t

+ (ρTCT)(u⃗ · ∇T)− Qmet − Qe. (3)

The term (ρTCT)(u⃗ · ∇T) represents the effect of blood flow ve-
locity on heat distribution within the tissue, where u⃗ is the velocity
vector (m/s). In this model, the physical properties of the tissue
are assumed to be constant, and the blood flow is considered as an
incompressible.

The new transmission line model for Klinger bioheat equation
The 1D transmission line that models the Klinger bioheat equation
is shown in Figure 1

Figure 1 The 1D TLM circuit for the Klinger bioheat model.

In Figure 1, the current source models the metabolic and other
heat sources (Milan and Gebremedhin 2018; Desai et al. 1992; Mi-
lan et al. 2014; Milan and Gebremedhin 2016), while the voltage-
controlled voltage source represents the effect of blood flow on the
bioheat distribution. Applying the Kirchhoff’s Voltage Law (KVL)
to the circuit in Figure 1 yields.

V − ∂V
∂z

∆l
2

− aV − L
∆l
2

∂Iz

∂t
− R

∆l
2

Iz − V = 0. (4)

If (4) is rearranged and both sides of the equation are divided
by ∆l/2, then the following is obtained

− ∂V
∂z

− 2a
∆l

V = L
∂IZ
∂t

+ RIZ. (5)

Applying Kirchhoff’s Current Law (KCL) at node V in Figure 1
gives:

IZ −
(

IZ +
∂IZ
∂z

∆l
2

)
−

(
G

∆l
2

V + C
∆l
2

∂V
∂t

− IS

)
= 0. (6)

If (6) is rearranged and both sides are divided by ∆l
2 yields:

∂IZ
∂z

= −GV − C
∂V
∂t

+
2IS
∆l

. (7)

Taking the derivative of (5) with respect to z, and the derivative
of (7) with respect to t, then combining the two yields:

∂2V
∂z2 = LC

∂2V
∂t2 +(LG+RC)

∂V
∂t

+RGV +
2a
∆l

∂V
∂z

− L
∆l

∂IS
∂t

− RIS
∆l

.

(8)
(8) contains both wave and diffusion terms. Since the bio-

heat equation is fundamentally a diffusion equation, the diffu-
sion terms should dominate. This is ensured by the condition:
LG + RC ≫ ωLC where R, L, G, and C denote the resistance,
inductance, conductivity, and capacitance per unit length of the
transmission line, and ω is the angular frequency. A simple way
to satisfy this condition is by setting L = 0, which eliminates the
wave term in (8). When L = 0, (8) simplifies to:

∂2V
∂z2 = RC

∂V
∂t

+ RGV +
2a
∆l

∂V
∂z

− RIS
∆l

. (9)

By comparing (3) with (9), the equivalence relations shown in
Table 1 can be established.

For the transmission line shown in Figure 1, the resistance R
is selected as 1/kT . The remaining lumped parameters are then
calculated accordingly, based on this choice. The corresponding
values of the lumped elements for the 1D transmission line, ex-
pressed in terms of the tissue’s thermal properties, are summarized
in Table 2.

Boundary Condition Models in the TLM Used for Bioheat Prob-
lems
Heat transfer problems, including those involving bioheat transfer,
typically involve four types of boundary conditions: interface
boundary conditions, Dirichlet boundary conditions, Neumann
boundary conditions, and convection boundary conditions. For
simplicity in modeling these conditions, the effect of blood flow
velocity on heat transfer is neglected at the boundaries.

Interface Boundary Condition The interface boundary condition is
used in structures composed of multiple different materials. For
the interface boundary condition to be valid, the following two
conditions must be satisfied:

• The surfaces of the two different materials in contact must be
at the same temperature.

• The interface must not store any energy.

The interface boundary condition can be defined as in (10).

−kT1
∂T1
∂x

= −kT2
∂T2
∂x

. (10)

Here, kT1 and kT2 represent the thermal conductivities of two
different tissues, while T1 and T2 denote the temperature distri-
butions in the two different tissues. This boundary condition
demonstrates the applicability of the TLM method in solving bio-
heat transfer equations for heterogeneous media. When examining
the equivalencies given in Table 2, it is observed that the inverse of
thermal conductivity is the R parameter of the transmission line,
while the voltage corresponds to temperature. Therefore, when
applying (10), the interface boundary condition can be represented
as shown in Figure 2.

In Figure 2, at the surface where the two tissues are in contact,
i.e., where the transmission line models are connected, the voltages

Computers and Electronics in Medicine 37



■ Table 1 Equivalence between the 1D Transmission Line and Klinger Bioheat Equation.

1D Transmission Line Klinger Bioheat Equation

V (V) T (K)

RC (Ω·F/m2)
ρTCT

kT
(J·kg/m3)

2a
∆l

(1/m)
ρTCT |u⃗|

kT
(W/kg·m2)

RG (1/m2)
ωbCb

kT
(W/m3·K)

ISR
∆l

(V/m2)
ωbCbTb + Qmet + Qe

kT
(K/m2)

■ Table 2 Equivalence between 1D Transmission Line Lumped Parameters and Thermal Properties dependent Parameters of Tissue.

1D Transmission Line Lumped Parameters Thermal Properties dependent Parameters of Tissue

R (Ω/m)
1

kT
(K·m/W)

C (F/m) ρTCT (J/m3·K)

G (1/Ω/m) ωbCb (W/m3·K)

2a
ρTCT |u⃗|∆l

kT

IS (A) (ωbCbTb + Qmet + Qe)∆l (W/m2)

Figure 2 The circuit model for interface boundary condition in the
TLM.

are equal, and there is no circuit element that stores energy at the
interface. This satisfies the two conditions required for the interface
boundary condition. The currents I1 and I2 in the figure are equal
and can be calculated as in (11).

I1 = − 1
R1

∂V1
∂x

,

I2 = − 1
R2

∂V2
∂x

,

I1 = I2 = − 1
R1

∂V1
∂x

= − 1
R2

∂V2
∂x

.

(11)

Dirichlet Boundary Condition In heat transfer problems, the Dirich-
let boundary condition indicates that the surface temperature re-
mains constant. An example of this boundary condition occurs
when the surface is in contact with a melting solid or a boiling
liquid. In both cases, heat transfer occurs at the contact surface,

but the surface temperature remains constant as the solid or liquid
undergoes phase change.

In bioheat transfer problems, the Dirichlet boundary condition
can be implemented in the TLM method by connecting a fixed
voltage source at the end of the TLM cell to satisfies the Dirichlet
condition. The modelling of this boundary condition is shown in
Figure 3.

Figure 3 The circuit model for the Dirichlet boundary condition in the
TLM.

Neumann Boundary Condition In heat transfer problems, the Neu-
mann boundary condition is applied when the rate of temperature
change, or the heat flux, at the boundary surface is known. This
situation is mathematically expressed as in (12).

qy = −kT
∂T
∂x

. (12)
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Here, qy is the heat flux at the boundary surface (W/m), and kT
is the thermal conductivity of the tissue (W/m·K). The Neumann
boundary condition in the TLM model is shown in Figure 4.

Figure 4 The circuit model for the Neumann boundary condition in
the TLM.

In Figure 4, I1 and IN are equal, and can be calculated as follows:

I1 = IN = − 1
R

∂V
∂x

. (13)

In the Neumann boundary condition, the case where the heat
flux at the boundary surface is zero is a special case and is also
referred to as the insulated (adiabatic) boundary condition. This
situation is mathematically expressed as in (14).

qy = −kT
∂T
∂x

= 0. (14)

The adiabatic boundary condition in the TLM model is shown
in Figure 5. In the figure, since the transmission line is terminated
with an open circuit, the value of current I1 is zero. Thus, the
condition given in (14) is satisfied.

Figure 5 The circuit model for the adiabatic boundary condition in
the TLM.

Convection Boundary Condition In heat transfer problems, the
convection boundary condition is also known as Newton’s bound-
ary condition states that the heat transfer at the boundary surface
is obtained from the conservation of energy at the surface. It is
assumed that no energy is stored at the boundary surface. There-
fore, the net heat flux entering the surface is equal to the net heat
flux leaving the surface. Mathematically, the convection boundary
condition is expressed as in (15).

−kT
∂T
∂x

= h(TT − T). (15)

Here, kT is the thermal conductivity of the tissue (W/m·K), T is
the temperature in the tissue (K), h is the heat transfer coefficient
at the boundary surface (W/m), and TT is the temperature on the
other side of the boundary surface. The model for the convection
boundary condition is shown in Figure 6.

Figure 6 The circuit model for the convection boundary condition in
the TLM model.

In Figure 6, the currents I1 and I2 are equal and can be written
as follows.

I1 = − 1
R

∂V
∂x

,

I2 ≈ 1
RT

(V − VT),

I1 = I2 = − 1
R

∂V
∂x

=
1

RT
(V − VT).

(16)

In Table 3, the modelling of boundary conditions of the heat
transfer problems in TLM is summarized.

SIMULATIONS AND RESULTS

In the simulation a 1D bioelectromagnetic problem is considered.
In the problem a 1D multilayer human body tissue model selected
for the study. The multilayer human body tissue model used in
this work is shown in Figure 7. The model consists of skin, fat,
and muscle tissues, with thicknesses of 1 mm, 4 mm, and 10 mm,
respectively (Lin 1986).

Figure 7 Multilayer human body tissue model.

In this section, the resulting temperature rise due to EM expo-
sure in a one-dimensional (1D) multilayered human body tissue
model were obtained using both the Transmission Line Modelling
(TLM) method and the Finite Element Method (FEM). For the
tissue model presented in Figure 7, the distribution of EM fields
within the tissues was calculated at various 4G frequencies. The
carrier frequencies considered were 700 MHz, 900 MHz, 1800 MHz,
2100 MHz, and 2600 MHz. The incident electric field intensity was
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■ Table 3 The relationship between boundary conditions and the parameters of the TLM models.

TLM Heat Transfer Problem

Interface Boundary Condition

V1 T1

V2 T2

1/R1 k1

1/R2 k2

Dirichlet Boundary Condition (Constant
Surface Temperature)

VD TD

Neumann Boundary Condition IN qy

Adiabatic Boundary Condition Open Circuit qy = 0

Convection Boundary Condition
VT TT

1/RT h

set to 10 V/m for all 4G frequencies. This selected field intensity is
below the general public exposure limits specified by the ICNIRP
(International Commission on Non-Ionizing Radiation Protection)
guidelines for all the given frequencies (ICNIRP 2009). The expo-
sure duration used in the temperature rise calculations was set to
2 hours.

Figure 8 shows the simulation setup for the 1D bioelectromag-
netic problem. In the figure, the lossy transmission lines labelled
TSi, TFj, and TMk represent the skin, fat, and muscle tissues, respec-
tively. In the simulation, the skin tissue is divided into 10 equal
segments, the fat tissue into 6 equal segments, and the muscle
tissue into 4 equal segments. The lengths of the TLM cells repre-
senting the skin, fat, and muscle tissues are 0.1 mm, 0.67 mm, and
1 mm, respectively. The impedance, denoted as ZL in the figure,
is chosen to be as open circuit. In other words, the simulation is
terminated with adiabatic boundary condition for simplicity.

Figure 8 The simulation setup for the 1D bioelectromagnetic prob-
lem.

The average temperature rise in the body tissue model after 2
hours of exposure to the EM field is shown in Figure 9. In Figure 9,
the temperature rise calculation is performed using both the TLM
method and the FEM method. Additionally, the ambient tempera-
ture is chosen to be 25◦C for the temperature rise calculations.

When the results of both methods are compared, the temper-
ature rises obtained by both methods are quite similar. The total
average temperature rise in the tissue model decreases monoton-
ically with frequency at 4G frequencies. Even in the worst-case
scenario, the total average temperature rise is less than 0.1◦C (≈
0.07◦C).

Figure 10 shows the temperature increases at both boundaries
of the muscle tissue in the analyses conducted using the Klinger
bioheat transfer equation-based FEM and TLM, the Pennes bioheat
transfer equation-based TLM method at 2600 MHz. The muscle
tissue was selected for this analysis because it is the thickest layer
in the model.

As seen in Figure 10, the temperature increases at both bound-
aries of the muscle tissue appear to be very similar between the
Klinger bioheat transfer equation-based TLM and the FEM method,
particularly in the steady-state condition. The temperature differ-
ence at both and of the muscle tissue is about 1m◦C. On the
other hand, the results obtained using the Pennes bioheat transfer
equation-based TLM show nearly identical temperature increases
at both ends of the muscle tissue. This difference arises because the
effect of blood flow velocity on temperature variation is neglected
in the Pennes bioheat transfer equation. As a result, more accurate
results were obtained using the newly developed Klinger bioheat
transfer equation-based TLM.
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Figure 9 The average temperature rise due to exposure to 4G fre-
quencies in a multilayered tissue model (top) TLM based method,
(bottom) FEM based method.

Figure 10 Temperature increases obtained at observations points
in the muscle tissue using the Klinger and Pennes bioheat transfer
equations-based FEM and the TLM method.

CONCLUSION

In this study, a modified Transmission Line Modelling (TLM)
method was developed and applied to bioheat transfer prob-
lems by incorporating the effects of non-unidirectional blood flow
through the Klinger bioheat equation. The method was validated
through simulations of a multilayer human body tissue model
exposed to 4G electromagnetic fields, with temperature rise pre-
dictions compared against those from the Finite Element Method
(FEM). The results demonstrate strong agreement between the pro-
posed TLM method and FEM, especially under steady-state condi-
tions. While the Pennes-based TLM model showed nearly symmet-
ric temperature distributions, the Klinger-based TLM method cap-
tured directional differences at tissue boundaries, underscoring the
importance of modelling convective transport. The observed total
average temperature rise remained below critical safety thresholds
in all test cases, supporting compliance with ICNIRP exposure
guidelines.

However, several limitations must be acknowledged. The as-
sumption of homogeneous tissue properties simplifies the geom-
etry and may not fully capture the complexities of real biolog-
ical structures. Additionally, the model neglects temperature-
dependent perfusion, which can influence thermal behavior in
vivo. Despite these simplifications, the study lays important
groundwork for extending TLM-based techniques to more anatom-
ically realistic geometries and heterogeneous tissue conditions in
future research. Overall, the Klinger-based TLM approach offers
enhanced accuracy and flexibility for modelling complex bioheat
transfer phenomena, particularly in scenarios where blood flow
directionality plays a significant role.
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ABSTRACT
Anemia and other blood disorders are serious global health issues affecting millions of individuals. These conditions, often triggered by
insufficient hemoglobin or red blood cells, can manifest symptoms like fatigue, weakness, and reduced immune function. When such
disorders progress into advanced stages, they can compromise organ function and overall quality of life, making early diagnosis especially
critical. In recent years, as the value of prompt detection has become increasingly clear, artificial intelligence and autonomous diagnostic
technologies have begun to take center stage in the medical community. Machine learning models excel at parsing complex datasets
and generating accurate, rapid assessments, thus offering clinicians robust decision-support tools. Through these AI-driven methods,
healthcare professionals can better interpret patients’ blood metrics and clinical indicators, enabling them to identify diseases at earlier
stages and develop more effective treatment strategies. This study proposes a machine learning–based approach to classify various types
of anemia and related blood disorders, including iron deficiency anemia, leukemia, and thrombocytopenia. We trained five contemporary
algorithms Decision Tree, Random Forest, CatBoost, Gradient Boosting, and XGBoost using critical blood parameters such as white and
red blood cell counts, hemoglobin levels, and platelet counts. Notably, Gradient Boosting emerged as the most accurate model, achieving
an impressive 99.19% accuracy rate. These findings underscore how AI-powered autonomous diagnostic systems have the potential to
revolutionize hematology by facilitating earlier and more precise disease detection.

KEYWORDS

Anemia
Machine learning
Blood disorders
Clinical decision
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Hematological
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INTRODUCTION

Anemia, a spectrum of blood orders characterized by the shortness
of red blood cells or hemoglobin, is one of the most common
global health challenges that considerably threatens people of
all ages. While the symptoms differ, common manifestations of
anemia are fatigue, weakness, and pale skin (Yoshida 2024). Causes
found in the medical literature about anemia include nutritional
deficiencies, chronic diseases, or diseases associated with the bone
marrow (Krieg et al. 2024). Early identification of anemia is very
critical for proper treatment and management because untreated
anemia may develop into other life-threatening conditions. The
classification of anemia and other blood ailments like leukemia,
thrombocytopenia, and macrocytic anemia is very important when
it comes to the diagnostic aspect and to plan for treatment (Fentie
et al. 2020; Subba and Araveti 2025).

Identification of anemia falls along the lines of multiple contrib-
utors called blood markers at very different levels; the most critical
among them are white blood cell count (WBC), red blood cell count
(RBC), hemoglobin (HGB), and platelet count (PLT) (Karra et al.
2025; Malak et al. 2025; Li et al. 2025). Recent advancements in
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machine learning (ML) include various algorithms such as Deci-
sion Tree (DT), Random Forest (RF), CatBoost, Gradient Boosting
(GB), and XGBoost, showing great potential in the classification
and prediction of blood disorders; in our case, anemia. Tradi-
tional methods for diagnosis tend to take longer and are expensive,
whereas ML algorithms have the capability of analyzing medi-
cal data that is very complicated and involved, very quickly and
accurately (Link et al. 2024).

Integration of the algorithms of Decision Tree (DT), Random
Forest (RF), CatBoost, Gradient Boosting (GB), and XGBoost highly
improved the accuracy of the disease classification models. For
our study, we examined the algorithms in classifying various types
of anemia and other blood disorders; the Gradient Boosting al-
gorithm recorded the highest accuracy at 99.19%, while Decision
Tree trailed by achieving 98.38%. CatBoost and XGBoost achieved
accuracy levels of 97.98% each, and Random Forest achieved sat-
isfactory accuracy at 96.76%. Therefore, our results prove that,
in the medical field, claims made about the efficiency of using
’ML’ algorithms in the proper classification of blood disorders are
hugely encouraging for early diagnosis and timely interventional
treatment (Ramzan et al. 2024; Kitaw et al. 2024).

Machine learning and deep learning has revolutionized health-
care by offering solutions that help make diagnosis and treatment
more efficient (Pacal 2024b; Pacal and Attallah 2025a; Aruk et al.
2025; İnce et al. 2025; Ince et al. 2025). The use of ML models con-
cerning blood disorder classification is an important step into more
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personalized medicine; algorithms can identify subtle patterns in
medical data that might remain undetected by clinicians (Cakmak
et al. 2024; Cakmak and Pacal 2025). Using large datasets and so-
phisticated algorithms, we can enhance the accuracy of diagnosing,
reduce human error, and enhance patient outcomes (Ozdemir and
Pacal 2025; Pacal 2024a). Our study highlights the significant role
ML plays in the diagnosis of anemia and other blood disorders,
thus emphasizing the need for continued research and practical
adaptation of these technologies. With early diagnosis and precise
categorization, ML-based models would help the medical author-
ities offer better patient care, save on health care expenses, and
proffer better public health outcomes (Ozdemir et al. 2025; Pacal
and Attallah 2025b).

LITERATURE REVIEW

Sanap et al. (2011) conducted a study utilizing data mining tech-
niques to predict and classify anemia, a prevalent blood disorder
that can be categorized based on red blood cell morphology and
etiology. The researchers constructed a dataset from complete
blood count (CBC) test data obtained from various hospitals and
evaluated the performance of two classification algorithms: the
C4.5 decision tree algorithm and Support Vector Machine (SVM),
implemented as J48 and Sequential Minimal Optimization (SMO)
respectively, within the Weka software environment. Through a
series of experiments, they generated a decision tree that facilitates
optimal classification of anemia types and assesses anemia sever-
ity based on CBC reports. Their findings indicate that the C4.5
algorithm exhibits superior performance, achieving the highest
accuracy in anemia classification.

Jaiswal et al. (2018) highlight the importance of machine learn-
ing in transforming healthcare data into meaningful insights for
disease prediction and decision-making. Using CBC data from
pathology centers, they evaluate Naïve Bayes, Random Forest, and
Decision Tree algorithms for anemia classification. Their findings
show that Naïve Bayes outperforms the other models in accu-
racy. Meena et al. (2019) examine childhood anemia, highlighting
the impact of maternal health and diet during pregnancy. Using
NFHS-4 survey data, they develop a decision support system with
data mining techniques to predict anemia and guide prevention
through dietary recommendations. Comparing decision tree and
association rule mining, the study identifies the most effective
method for predictive modeling in healthcare.

Yıldız et al. (2021) propose a decision support system for ane-
mia detection using machine learning. Trained on 1,663 patient
records from a Turkish hospital, the model classifies 12 anemia
types based on hemogram data and medical history. Among the
four algorithms tested, Bagged Decision Trees achieved the highest
accuracy (85.6%), followed by Boosted Trees (83.0%) and Artificial
Neural Networks (79.6%). The system aims to assist medical pro-
fessionals and students in diagnosis. Asare et al. (2023) reviews
machine learning applications for anemia detection, highlighting
their affordability and non-invasive nature compared to traditional
methods. They analyze current trends, algorithms, evaluation met-
rics, and dataset characteristics. The study finds that machine
learning techniques offer a practical and efficient solution for ane-
mia diagnosis, particularly in resource-limited settings. The results
demonstrate that these methods enable timely and accessible de-
tection, supporting their feasibility for clinical use.

Kilicarslan et al. (2021) explore deep learning for anemia predic-
tion, emphasizing the need for tailored models due to dataset vari-
ability. They propose two hybrid models, GA-SAE and GA-CNN,
which optimize Stacked Autoencoder (SAE) and Convolutional

Neural Network (CNN) hyperparameters using a genetic algo-
rithm (GA). The study classifies HGB-anemia, nutritional anemia
(iron, B12, and folate deficiency), and non-anemic cases. Evalu-
ated using accuracy, F-score, precision, and sensitivity, GA-CNN
outperforms existing methods, achieving 98.50% accuracy.

Aslan and Özüpak (2024) investigate the integration of deep
learning and image processing techniques for the classification of
white blood cells (WBCs). In their study, they employed Convo-
lutional Neural Network (CNN) models, specifically ResNet-50,
VGG19, and a model they proposed, as feature extractors to en-
hance WBC classification accuracy. These CNN models were syn-
ergistically combined with Ridge feature selection and Maximal In-
formation Coefficient (MIC) techniques to identify the most salient
features and expedite the classification process. Consequently, they
reported achieving a 98.27% success rate in the categorization of
white blood cells, demonstrating a considerable improvement in
classification accuracy with their proposed CNN model.

Alpsalaz et al. (2025) address the critical challenge of maize leaf
disease diagnosis by proposing a lightweight and interpretable
convolutional neural network (CNN) model for accurate and ef-
ficient classification. Utilizing the ‘Corn or Maize Leaf Disease
Dataset,’ their model classifies four disease categories Healthy,
Gray Leaf Spot, Common Rust, and Northern Leaf Blight achieving
94.97% accuracy and a micro-average AUC of 0.99. Emphasizing
practical deployment, the model’s minimal parameter count (1.22
million) supports real-time inference on mobile devices, facilitat-
ing field applications. The authors employed data augmentation
and transfer learning for robust generalization, and Explainable
Artificial Intelligence (XAI) methods (LIME and SHAP) to enhance
transparency by identifying disease-relevant features, with SHAP
achieving an IoU of 0.82. The proposed model outperformed
benchmark architectures, including ResNet50, MobileNetV2, and
EfficientNetB0, in both accuracy and computational efficiency. Fur-
thermore, the model demonstrated adaptability with only a 2.82%
performance drop under simulated extreme environmental condi-
tions. These findings highlight the model’s potential as a reliable,
fast, and explainable solution for precision agriculture, particularly
in resource-constrained settings.

MATERIALS AND METHODS

Dataset and Preprocessing
Anemi Dataset: This study utilizes a dataset consisting of 1281
rows and 15 features to classify anemia and other blood disorders.
However, 49 duplicate records were removed, and the models
were trained on the remaining 1232 rows. The target classes in
the dataset include Healthy (HLT), Iron deficiency anemia (IDA),
Leukemia (LEU), Leukemia with thrombocytopenia (LwT), Macro-
cytic anemia (MAA), Normocytic hypochromic anemia (NHA),
Normocytic normochromic anemia (NNA), Other microcytic ane-
mia (OMA), and Thrombocytopenia (THP) (Kaggle 2025).

The aim of this research is to employ machine learning tech-
niques to classify the different types of anemia. Anemia is a sig-
nificant global health issue, and its early diagnosis and accurate
classification are essential for effective treatment and management.
Proper classification of these disorders has the potential to improve
treatment efficacy and healthcare management, thus contributing
to better patient outcomes. The distribution of classes in the dataset
used in the study is shown in Figure 1.
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Figure 1 The distribution of classes in the dataset used in the
study is shown

Characteristics and Classes of The Dataset: This study investi-
gates key hematological features that play a vital role in the classi-
fication of anemia and related blood disorders. Each feature pro-
vides insights into specific aspects of blood cell composition and
function. The characteristics and their corresponding attributes
are summarized in Table 1.

Data Preprocessing Steps: The dataset underwent several prepro-
cessing steps to enhance the quality and efficiency of the training
process. Initially, missing values were handled by either removing
the rows with null values or imputing them using statistical meth-
ods such as averaging or the median. Feature scaling was applied
to ensure that all variables were within a comparable range, which
is particularly important for models that rely on distance-based
measurements. For categorical variables, encoding methods like
one-hot or label encoding were used to convert them into numeri-
cal values. Since the target variable was already in a suitable format
for classification, no logarithmic transformation was applied.

Additionally, duplicate records (49 instances) were identified
and removed to avoid redundancy in the dataset. The dataset was
then split into 80% for training and 20% for testing, as shown in
Figure 2.

Figure 2 The dataset used in the study was divided into train 80%
and test 20%

Algorithms Used
The machine learning algorithms employed in this study are de-
tailed and explained in Table 2. These algorithms were carefully
chosen for their proven effectiveness in classification tasks and

their ability to handle complex, high-dimensional datasets. Each
algorithm has unique characteristics that contribute to its perfor-
mance in classifying anemia and other blood disorders. The selec-
tion process was based on the algorithms’ strengths in terms of
accuracy, efficiency, and ability to capture intricate patterns within
the data. Below is a summary of each algorithm’s approach and
its relevance to the objectives of the study. Figure 3 shows some
machine learning architectures.

The Decision Tree (DT) is a widely applied supervised learning
algorithm for both classification and regression, constructing a
tree-like model by recursively partitioning the dataset into smaller,
more homogeneous subgroups based on feature values that maxi-
mize information gain or minimize impurity at each split (Muyama
et al. 2024). Valued for their interpretability and efficiency with
small to medium-sized datasets (Islam et al. 2024), DTs are prone
to overfitting if allowed to grow excessively deep, learning noise
and peculiarities from the training data which can hinder gener-
alization. To mitigate this in this study, specific hyperparameter
configurations were deliberately chosen: the max-depth of the tree
was explicitly set to 6 to control complexity and prevent overfit-
ting, while random-state was set to 42 to ensure the reproducibility
of results. Although a more exhaustive hyperparameter search
could explore other parameters like min-samples-split or criterion,
constraining max-depth is a fundamental and effective strategy
to balance the model’s learning capacity with its ability to gen-
eralize to unseen data, a crucial aspect for reliable classification
performance (Kasthuri et al. 2024).

Random Forest (RF) is a powerful ensemble learning algorithm
that constructs a multitude of decision trees during training and
outputs the class that is the mode of the classes (classification) or
mean prediction (regression) of the individual trees. By training
each tree on random subsets of both data samples (bagging) and
features, RF aims to improve classification accuracy and robust-
ness, effectively mitigating the overfitting tendency often seen in
individual decision trees (Muyama et al. 2024).

This ensemble approach helps reduce both variance and bias,
leading to more reliable and generalized predictions. RF is also
known for its efficiency in handling high-dimensional data, its
capability to manage missing values, and its scalability with large
datasets. While RF excels at preventing overfitting and achieving
high accuracy, its improved performance can come at the cost of
increased computational resources and reduced interpretability
compared to a single decision tree, due to the large number of trees
involved.

In this study, to leverage these strengths while ensuring con-
sistent results, the Random Forest classifier was configured with
n-estimators set to 100, indicating that the forest was composed of
100 individual decision trees. The random-state was set to 42 to
ensure the reproducibility of the model’s training and subsequent
predictions. While other hyperparameters such as max-depth for
individual trees or min-samples-split could be further tuned, the
choice of 100 estimators is a common and often effective starting
point for balancing predictive power with computational load,
aiming to harness the collective wisdom of the ensemble for robust
classification.

Gradient Boosting (GB) is an ensemble learning technique that
sequentially builds a strong predictive model from a collection of
weak learners, typically decision trees. The core principle involves
iteratively fitting new models to the residuals (errors) of the previ-
ous models, thereby progressively reducing bias and enhancing
overall model accuracy. This additive training process allows GB to
effectively model complex relationships in data for both regression
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■ Table 1 Dataset features and descriptions

Features Description

WBC White Blood Cell count, indicating the number of white blood cells in the blood, used to assess immune function.

LYMp Percentage of lymphocytes in the total white blood cell count, indicating immune response.

NEUTp Percentage of neutrophils in the total white blood cell count, associated with bacterial infections.

LYMn Absolute number of lymphocytes in the blood, providing a measure of immune function.

NEUTn Absolute number of neutrophils in the blood, important in detecting bacterial infections.

RBC Red Blood Cell count, reflecting the number of red blood cells that carry oxygen throughout the body.

HGB Hemoglobin level in the blood, indicating the oxygen-carrying capacity of the blood.

HCT Hematocrit, the proportion of blood volume occupied by red blood cells, used to diagnose anemia.

MCV Mean Corpuscular Volume, representing the average size of red blood cells, important in anemia classification.

MCH Mean Corpuscular Hemoglobin, indicating the average amount of hemoglobin per red blood cell.

MCHC Mean Corpuscular Hemoglobin Concentration, measuring the average concentration of hemoglobin in red blood cells.

PLT Platelet count, reflecting the number of platelets in the blood, crucial for blood clotting.

PDW Platelet Distribution Width, measuring the variation in platelet size, which can indicate platelet disorders.

PCT A procalcitonin test can help your health care provider diagnose if you have sepsis from a bacterial infection or if you have a high risk of
developing sepsis.

Diagnosis The target variable indicating the type of anemia or blood disorder diagnosis.

■ Table 2 Observed data for the DT algorithm

Class Precision % Recall % F1-Score % Support

HLT 98.0 98.0 98.0 64

IDA 100.0 100.0 100.0 44

LEU 91.0 100.0 95.0 10

LwT 80.0 80.0 80.0 5

MAA 100.0 100.0 100.0 4

NHA 100.0 98.0 99.0 49

NNA 98.0 100.0 99.0 52

OMA 100.0 86.0 92.0 7

THP 100.0 100.0 100.0 12

Macro avg 96.0 96.0 96.0 247

Weighted avg 96.0 98.0 98.0 247

and classification tasks across diverse data types and distributions.
However, without careful tuning, GB can be susceptible to over-
fitting, particularly with a large number of iterations or excessive
weight given to individual learners.

Regularization techniques, such as shrinkage (controlled by the
learning rate) and subsampling (stochastic gradient boosting), are

commonly employed to mitigate overfitting and improve model
generalization (Mwangi et al. 2024). In this study, the Gradient
Boosting Classifier was specifically configured with n-estimators
(the number of boosting stages or trees) set to 100, a learning-
rate of 0.1, and a max-depth of 6 for each individual tree. The
random-state was set to 42 to ensure reproducibility. These hyper-
parameter settings were chosen to harness GB’s predictive power:
the n-estimators and learning-rate together control the complexity
and learning speed of the ensemble, while max-depth limits the
complexity of individual weak learners, collectively aiming for a
robust model that accurately captures underlying data patterns
without succumbing to overfitting.

Extreme Gradient Boosting (XGBoost), an acronym for Extreme
Gradient Boosting, represents an advanced and optimized im-
plementation of the gradient boosting framework, designed for
superior computational efficiency, scalability, and predictive per-
formance. It constructs an ensemble of decision trees sequentially,
where each new tree aims to correct the errors made by the preced-
ing ones (Kasthuri et al. 2024).

XGBoost distinguishes itself from traditional gradient boosting
through several key enhancements, including built-in L1 (Lasso)
and L2 (Ridge) regularization methods to combat overfitting and
improve model generalization (Olatunji et al. 2024). Furthermore,
it employs a more sophisticated optimization process utilizing
second-order Taylor expansions (Hessians) in addition to first-
order gradients, facilitating more precise model updates and po-
tentially faster convergence.

Features such as parallel processing for tree construction and
advanced tree pruning techniques contribute to its efficiency in
terms of both time and computational resources, making it a highly
popular choice in machine learning competitions and diverse real-
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world applications for classification, regression, and ranking tasks,
often achieving state-of-the-art results (Mwangi et al. 2024). In this
study, the XGBoost classifier was configured with n-estimators
(number of boosting rounds) set to 100, a learning-rate of 0.1, and
a max-depth of 6 for individual trees. To ensure compatibility and
suppress warnings, use-label-encoder was set to False, and logloss
was specified as the eval-metric. The random-state was fixed at 42
for reproducibility. These specific hyperparameter settings were
chosen to effectively leverage XGBoost’s capabilities, balancing
the model’s complexity (via max-depth and n-estimators) with
its learning pace (learning-rate) to achieve robust and accurate
classification performance.

Categorical Boosting (CatBoost) is an advanced gradient boost-
ing algorithm renowned for its robust handling of categorical data,
often without requiring extensive preprocessing, which can be
time-consuming with other methods. Based on decision trees, Cat-
Boost builds an ensemble by sequentially adding trees, where each
new tree corrects the errors made by its predecessors.

A key distinguishing feature of CatBoost is its sophisticated
internal processing of categorical features, employing techniques
like ordered target statistics that implicitly encode them without
distorting their inherent structure, thereby simplifying feature
engineering and enhancing modeling efficiency, especially with
high-cardinality categorical variables. Furthermore, CatBoost in-
corporates ordered boosting and strategies for growing symmetric
trees, which help mitigate overfitting and improve model general-
ization. The algorithm also offers built-in support for missing data
and often demonstrates competitive speed and accuracy compared
to traditional gradient boosting implementations.

Due to its high performance and often requiring minimal tun-
ing, it has gained widespread adoption in machine learning com-
petitions and real-world applications (Mwangi et al. 2024). In this
study, the CatBoost classifier was specifically configured with iter-
ations (number of trees) set to 100, learning-rate to 0.1, and depth
(maximum depth of the trees) to 6. The verbose parameter was set
to 0 to suppress training output. These hyperparameter choices
aim to harness CatBoost’s strengths in a controlled manner, with
the learning rate influencing the contribution of each tree, the num-
ber of iterations determining the ensemble size, and the depth
controlling individual tree complexity, all contributing to a bal-
ance between model expressiveness and its ability to generalize
effectively from the training data.

RESULTS AND DISCUSSION

Decision Trees (DT)
The DT algorithm performs impressively well in classifying prob-
lems, boasting of overall accuracy that stands at a high 98%. The
model, for the most part, established quite a high precision and
recall among its classes, where perfect classification results, that
is, 100%, in precision and recall, were achieved for class 1. The
precision and recall of other classes well within high thresholds
allowed macro-and weighted average F1 scores to be computed
at 96% and 98%, respectively. These scores indicate that the pre-
dictive model’s precision and recall are balanced across all classes.
While slightly poorer performance was seen across smaller classes,
the ability of the vast bandwidth of instances to be classified de-
notes effectiveness by the model on the dataset. The performance
results of the DT algorithm discussed in this paragraph predestine
high potential in regard to accurately classifying distinct types of
anemia and blood disorders and being a very helpful instrument
in diagnostic tasks. The observed data to the DT algorithm are
shown in Table 2, while the confusion matrix is shown in Figure 4.

(a)

(b)

Figure 3 Models based on CatBoost and RF algorithms are
provided in a and b, respectively (Pandey et al. 2023)

Figure 4 The Confusion Matrix obtained from the DT algorithm

Random Forest (RF)

The RF algorithm showed strong performance with an overall
accuracy of 97%. Hence, this model is highly effective in classify-
ing various types of anemia and blood disorders. In a class-wise
breakdown, class 1 (Iron deficiency anemia) had both precision
and recall and F1-score with a perfect score of 100%. Note that
class 3 (Leukemia with thrombocytopenia) and class 4 (Macrocytic
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anemia) had lower recall and F1 scores at 40% and 50% respectively.
Yet the general performance of the model is solid, highlighted by a
macro-average and a weighted average F1 score of 89% and 96%
respectively. These results indicate the RF algorithm to be effective
in providing accurate classification for the majority of the classes,
leaving however an avenue for improvement on the management
of certain lesser-represented categories. The observed data for RF
algorithm is shown in Table 3 and the confusion matrix is shown
in Figure 5.

■ Table 3 Observed data for the RF algorithm

Class Precision % Recall % F1-Score % Support

HLT 97.0 100.0 98.0 64

IDA 100.0 100.0 100.0 44

LEU 90.0 90.0 90.0 10

LwT 100.0 40.0 57.0 5

MAA 100.0 50.0 67.0 4

NHA 98.0 96.0 97.0 49

NNA 96.0 100.0 98.0 52

OMA 100.0 100.0 100.0 7

THP 86.0 100.0 92.0 12

Macro avg 96.0 86.0 89.0 247

Weighted avg 97.0 97.0 96.0 247

Figure 5 The Confusion Matrix obtained from the RF algorithm

Categorical Boosting (CatBoost)
The CatBoost algorithm showed excellent classification perfor-
mance and achieved an overall accuracy of 98%, which means that
the model is potentially very good at attacking various types of
anemia and disorders of blood. Class 1, Iron deficiency anemia,
had perfect precision, recall, and F1-score, indicating a very strong
model for this class. Class 3, Leukemia with thrombocytopenia,
had support for recall, where 80% of instances which belong to

this class were, in fact, detected by the model. Class 4, Macrocytic
anemia, had its complementary value for recall as 75%, because,
although it was lower than the other classes, the model was able
to classify a very good proportion of the instances for this class.
Overall, the CatBoost model was efficient for all classes, which was
revealed by high macro and weighted average F1-scores of 96%
and 98%, respectively. These results confirm the effectiveness of
the CatBoost algorithm in its classification task. The observed data
for the CatBoost algorithm is displayed in Table 4, whilst Figure 6
illustrates the confusion matrix.

■ Table 4 Observed data for the CatBoost algorithm

Class Precision % Recall % F1-Score % Support

HLT 98.0 100.0 99.0 64

IDA 100.0 100.0 100.0 44

LEU 91.0 100.0 95.0 10

LwT 100.0 80.0 89.0 5

MAA 100.0 75.0 86.0 4

NHA 100.0 94.0 97.0 49

NNA 95.0 100.0 97.0 52

OMA 100.0 100.0 100.0 7

THP 100.0 100.0 92.0 12

Macro avg 98.0 86.0 96.0 247

Weighted avg 98.0 98.0 98.0 247

Figure 6 The Confusion Matrix obtained from the CatBoost
algorithm

Gradient Boosting (GB)
This GB model incredibly has done well with an analysis of 99%,
which demonstrated its superior performance. Some classes specif-
ically two and three for leukemia and leukemia with thrombo-
cytopenia, respectively were scored absolutely perfect for both
precision, recall, and F1, so the model successfully scored these
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classes. Class four, Macrocytic Anemia, also demonstrated perfect
classification. Class seven, other microcytic anemia, would have a
recall of 86% yet has still got some decent performance as shown
with an F1 score of 92%. The macro average of F1 score is further
enhanced by an overall score of 99%, while a weighted average F1
score of 99% underscores the model’s classification quality. These
results demonstrate the great advance provided by the GB algo-
rithm in this task, with very consistent and reliable performance
across all classes. The results of GB and some data for confusion
matrices are shown in Table 5 and Figure 7, respectively.

■ Table 5 Observed data for the GB algorithm

Class Precision % Recall % F1-Score % Support

HLT 98.0 100.0 99.0 64

IDA 100.0 100.0 100.0 44

LEU 100.0 100.0 100.0 10

LwT 100.0 100.0 100.0 5

MAA 100.0 100.0 100.0 4

NHA 98.0 98.0 98.0 49

NNA 100.0 100.0 100.0 52

OMA 100.0 86.0 92.0 7

THP 100.0 100.0 100.0 12

Macro avg 100.0 98.0 99.0 247

Weighted avg 99.0 99.0 99.0 247

Figure 7 The Confusion Matrix obtained from the CatBoost
algorithm

Extreme Gradient Boosting (XGBoost)
The XGBoost algorithm performed very well as well, getting an
accuracy level of 98%. The model’s precision and recall scores
were outstanding for several classes, including class 1 (i.e., Iron
deficiency anemia) and class 6 (i.e., Normocytic normochromic
anemia), both of which showed perfect values of 100% precision,

recall, and F1-scores. Class 2 demonstrated good scoring with
precision metrics of 91% and perfect recall measures. However,
class 3 recorded lower recalls: it was around 40%, which affected
its F1-score, to about 57%, still. Nevertheless, the overall macro
and weighted averages of 93% F1-value and 98% F1-value, respec-
tively, indicate that the XGBoost model has performed well in the
classification task. Therefore, it can be inferred that XGBoost tends
to be an exceptionally capable algorithm for anemia classification,
with lots of room for improvement for some classes. Observed
data for the XGBoost algorithm is presented in Table 6, while the
confusion matrix is presented in Figure 8.

■ Table 6 Observed data for the XGBoost algorithm

Class Precision % Recall % F1-Score % Support

HLT 98.0 100.0 99.0 64

IDA 100.0 100.0 100.0 44

LEU 91.0 100.0 95.0 10

LwT 100.0 40.0 57.0 5

MAA 100.0 100.0 100.0 4

NHA 98.0 98.0 98.0 49

NNA 100.0 100.0 100.0 52

OMA 100.0 86.0 92.0 7

THP 86.0 100.0 92.0 12

Macro avg 97.0 92.0 93.0 247

Weighted avg 98.0 98.0 98.0 247

Figure 8 The Confusion Matrix obtained from the XGBoost
algorithm

Feature Importance Analysis
The bar chart presented illustrates the feature importance scores de-
termined by the GB model. In this case, the importance is derived
from the magnitude of the absolute values of the model’s coeffi-
cients, reflecting the degree to which each feature influences the
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classification decision (Azimjonov and Kim 2024). "HGB" emerges
as the most significant feature, followed by "MCH" and "MCHC,"
with higher coefficient magnitudes indicating their critical role in
distinguishing between the classes. Other features like "MCV,"
"PLT," and "WBC" also contribute meaningfully to the model’s pre-
dictions. Conversely, features lower in the chart, such as "PDW,"
"NEUTp," and "LYMn," hold relatively less importance and thus
have a reduced impact on the decision boundary. Overall, the
feature importance analysis emphasizes the central role of HGB,
MCH, and MCHC-based attributes in the classification process,
underscoring their relevance in hematological analysis and the
diagnosis of anemia and related blood disorders. Figure 9 presents
the feature importance plot for the GB algorithm (Got et al. 2024).

Figure 9 Illustrates the feature importance plot for the GB
algorithm, highlighting the relative significance of each feature in
the model’s classification process

DISCUSSION

This section introduces an autonomous diagnostic approach based
on machine learning for the diagnosis of anemia, a prevalent and
clinically significant blood disorder. In this study, several com-
monly used machine learning algorithms, selected from the exist-
ing literature for their proven efficacy in similar classification tasks,
were trained and tested on anemia-related data. The primary aim
was to identify the most accurate model for distinguishing anemic
cases. The experimental results, specifically the accuracy achieved
by each algorithm, are systematically presented in Table 7 below.
This table offers a direct comparison of the predictive capabilities
of the tested models when applied to the Anemi dataset.

■ Table 7 The experimental results of the ML algorithms tested
on the Anemi dataset

Rank Models Accuracy %

1 Gradient Boosting 99.19

2 Decision Tree 98.38

3 CatBoost 97.98

4 XGBoost 97.98

5 Random Forest 96.76

As evident from Table 8, the GB model stands out as the top-
performing algorithm, achieving an impressive accuracy of 99.19%.
Such exceptional performance underscores the model’s capacity to
iteratively correct its mistakes and produce highly refined predic-
tions, making it particularly well-suited for complex classification
tasks like anemia diagnosis and suggesting its strong potential as
a core component in an automated anemia screening tool. Other
models also demonstrated commendable performance. The DT
algorithm achieved a high accuracy of 98.38%, often effective in
capturing interactions among input features. CatBoost, with an
accuracy of 97.98%, also performed superbly, its strength lying in
its optimized handling of categorical features combined with gra-
dient boosting techniques. XGBoost achieved an identical accuracy
of 97.98%, while RF followed closely with 96.76% (Kasthuri et al.,
2024). While these models also exhibited strong predictive power,
they did not quite match the benchmark set by GB. Nevertheless,
both XGBoost and RF are robust ensemble methods, known for
their tree-based nature and capabilities in managing feature inter-
actions, with RF, in particular, mitigating overfitting by averaging
predictions from multiple decision trees.

It is crucial to acknowledge that model performance is sig-
nificantly dependent on factors such as feature selection, data
preprocessing, and meticulous hyperparameter tuning; further
fine-tuning could potentially lead to even greater performance.
Beyond predictive accuracy, computational efficiency is an impor-
tant consideration for real-world clinical applications. While GB
yielded the highest accuracy, it can be computationally more in-
tensive. In contrast, algorithms like RF and XGBoost might offer
better scalability. Future work could explore advanced feature
engineering, hybrid models, and leveraging deep learning archi-
tectures. Crucially, incorporating explainability methods such as
SHAP values or LIME will be vital for providing transparency into
model decisions, thereby fostering trust and facilitating the adop-
tion of AI-assisted anemia diagnostic systems in clinical practice
(Awe et al. 2024).

CONCLUSION

This research compellingly demonstrates the transformative poten-
tial of machine learning algorithms in enhancing the early detec-
tion and precise classification of anemia and other hematological
disorders, conditions often overlooked until they manifest severe
consequences. Through the application of classical machine learn-
ing models, including DT, RF, CatBoost, GB, and XGBoost, on key
hematological parameters such as red RBC, WBC, hemoglobin
(HGB), and platelet count (PLT), this study identified Gradient
Boosting as a particularly robust model, achieving an impressive
accuracy of 99.19%. This high level of accuracy underscores the
model’s capacity to capture intricate, complex patterns within pa-
tient datasets, thereby enabling highly precise predictions and
showcasing significant promises for medical diagnostics.

The findings emphasize how AI-powered diagnostic ap-
proaches can significantly augment clinical decision-making pro-
cesses by facilitating faster, more reliable diagnoses and poten-
tially reducing diagnostic errors, which is especially critical for
conditions like anemia where timely intervention can substan-
tially improve patient outcomes and mitigate complications. The
widespread adoption of such autonomous diagnostic tools could
also alleviate the burden on healthcare systems by expediting treat-
ment planning.

Looking ahead, the continued refinement of these algorithms
and the integration of more advanced techniques, such as deep
learning or hybrid models, are anticipated to further elevate diag-
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nostic accuracy and enhance the scalability of these solutions in
clinical workflows. A crucial aspect of future development will be
the implementation of explainable AI (XAI) methodologies, like
SHAP or LIME. These techniques are vital for fostering greater
trust and acceptance among healthcare professionals by providing
transparency into the decision-making processes of the models,
thereby supporting their integration into routine clinical practice.
Ultimately, the progression of machine learning in the diagno-
sis and management of anemia and other blood disorders paves
the way for more personalized, data-driven medical solutions,
holding immense promise for improving patient care, optimiz-
ing healthcare delivery, and offering deeper insights into complex
hematological conditions, moving us closer to the paradigm of
precision medicine.
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X-ray Images
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ABSTRACT Data privacy in healthcare system is getting more importance day by day. In this study we introduce a novel chaos-based
encryption scheme for medical X-ray images. We used a double Lorenz map as chaotic system to produce random key streams in
confusion phase and in diffusion phase. We also used hash value of the original file to determine initial parameters of second chaotic map.
So, our scheme is highly resistant to differential attacks. In confusion phase, we employed row-based and column-based shift operation to
confuse original data. In diffusion phase we used XoR operation to encrypt data. Since Lorenz map has 3 dimensions, we used each one
for different purposes like X dimension is for row-based shift operation, Y dimension is for column-based shift operation, Z dimension is
for data distribution, XoR operation etc. On average, our scheme generates a NPCR value exceeding 99.66% and an UACI value of
approximately 33.39% when there is a one-pixel alteration in the plaintext. Additionally, it yields an average information entropy value
greater than 7.9976. Since our method utilizes a double Lorenz map, it is resilient against brute force attacks. The results from our tests
and analyses indicate that our schema is pretty fast, dependable, resilient, practical, and effective. It serves as a solid encryption scheme
option for medical images.
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INTRODUCTION

Medical image encryption has been a hot topic for several decades
in terms of patient data privacy. Numerous encryption methods
have been developed based on different ideas and systems to pro-
tect data from prying eyes or unauthorized access. One of the
most popular systems is chaotic systems. Because of their anatom-
ical characteristics, such as pseudo-randomness, ergodicity, high
sensitivity to initial conditions and parameters, and aperiodicity,
chaotic systems have become more popular in cryptography in
recent years. Researchers have long benefited from chaotic sys-
tems in their studies since these characteristics are necessary for a
strong encryption scheme (Malik et al. 2020; Mohammed et al. 2023;
Abdelli et al. 2024).

In order to achieve much more successive and robust outcomes,
researchers prefer using chaotic systems with other mathemat-
ical models like DNA (deoxyribonucleic acid) (Chai et al. 2017,
2019; Liu and Liu 2020; Wang et al. 2019; Zhou et al. 2022), Fourier
Transform (Farah et al. 2020), Generative Adversarial Networks
(Fang et al. 2021), Hilbert Curves and H-Fractals (Zhang et al. 2019),
Knuth–Durstenfeld (Wang et al. 2020), Transcendental Numbers
(Silva Garcia et al. 2019), Particle Swarm Optimization (Alibrahim
and Ludwig 2021), Latin Square (Machkour et al. 2015), Rotor Ma-
chine (Rehman et al. 2020), and Discrete Wavelet Transform (DWT)
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(Oteko Tresor and Sumbwanyambe 2019).
In this study, we propose a chaos-based image encryption

scheme to protect medical X-ray images. We used a dual Lorenz
map, where the XOR operation is applied using the outcome of
the second map and the number of shift steps for both rows and
columns is determined using the first map. The secret key is the
only source of input parameters for the first Lorenz map, whereas
the hash value of the plaintext and the secret key are combined
to provide the input parameters for the second Lorenz map. Our
technique is highly resistant to differential attacks by using the
plaintext hash value to set the input parameter for the second
Lorenz map. When a single pixel in the plaintext changes, it typ-
ically generates a value of over 99.66% NPCR (number of pixels
change rate) and over 33.39% UACI (unified average changing in-
tensity). Additionally, it generates an average information entropy
value of more than 7.9976.

When we look at the literature, we see that researchers have
been using chaotic systems extensively in medical image encryp-
tion for several decades. Demirkol et al. (2024) proposed a novel
locally active memristor-based chaotic circuit model and presented
a real-time hybrid image encryption application developed on a
PYNQ-Z1 (Python Productivity for Zynq) low-cost FPGA board
using Jupiter programming environment. The proposed hybrid al-
gorithm combines memristor-based chaos with a DNA encryption
algorithm exploiting diffusion-confusion techniques.
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Kanwal et al. (2024) offered an IoT-Blockchain system based
on chaos smart healthcare image encryption scheme using Tinker-
bell mapping to ensure medical data integrity and authenticity.
The suggested approach was examined to assess performance
parameters such as key space analysis, key sensitivity analysis,
Information Entropy (IE), histogram, correlation of adjacent pixels,
Number of Pixel Change Rate (NPCR), Unified Average Chang-
ing Intensity (UACI), Peak Signal to Noise Ratio (PSNR), Mean
Square Error (MSE), and Structural Similarity Index (SSIM). John
and Kumar (2023) proposed a hybrid chaotic model, 2D Lorentz
Chaotic model coupled with the Logistic chaotic model for the
encryption/decryption of medical DICOM CT images. Prior to en-
cryption, preprocessing was done by the median filter. The hybrid
chaotic model scrambles the rows and columns of the image and
bitwise XOR operation is carried out to generate the encrypted
image. Ismail et al. (2018) proposed a medical image encryption
algorithm based on pseudo-random sequence generation using
the proposed generalized DH map offering secure communica-
tion transfer of medical MRI and X-ray images. Security analyses
are carried out to consolidate system efficiency including key sen-
sitivity and key-space analyses, histogram analysis, correlation
coefficients, MAE, NPCR and UACI calculations.

Several other notable works have contributed to this field. Vi-
jayakumar and Ahilan (2024) offered a new medical image encryp-
tion technology based on chaotic map substitution boxes (S-box)
and cellular automata (CA). Qobbi et al. (2023) proposed a new
method for medical image encrypting of arbitrary sizes and for-
mats based on chaos with an S-box construction. Rehman et al.
(2023) presented a color medical image encryption scheme that in-
tegrates multiple encryption techniques, including alternate quan-
tum random walks and controlled Rubik’s Cube transformations.
Roy et al. (2025) offered an innovative framework that integrates
healthcare engineering, chaotic encryption, and artificial intelli-
gence (AI) to address the privacy issue of medical data. Dua and
Bhogal (2024) proposed a medical image cryptosystem using a
one-dimensional novel Sine-Tangent Chaotic (STC) map and a
shared key. Masood et al. (2021) proposed a lightweight cryptosys-
tem based on Henon chaotic map, Brownian motion, and Chen’s
chaotic system. Clemente-Lopez et al. (2024) proposed a chaos-
based lightweight encryption scheme for IoT healthcare systems
with a primary application in the encryption of wearable devices.
Kaya et al. (2025) proposed a novel lightweight encryption scheme
for platforms with limited resources utilizing chaotic systems with
a double logistic map, hash code of original file and cycle rotation.

The remainder of this paper is organized as follows. Section II
presents the proposed encryption algorithm with chaotic map and
the detailed methodology. Section III presents all experimental
results and security analysis comparisons with other schemes. The
conclusion is presented in the last section.

PROPOSED ALGORITHM

Numerous chaotic maps, ranging from basic to intricate architec-
tures, exist, including the Henon, Lorenz, Tent, Arnold Cat, and
Logistic maps. In our study we used 3-D Lorenz map in confusion
and diffusion phase as pseudo random number generator. Each di-
mension of the map is used for a different process like X dimension
is used for row-based shift operation while Y dimension is used
for column-based shift operation and Z dimension is used for XoR
operation. Two distinct Lorenz maps with various starting param-
eters were employed. Only the secret key is utilized to determine
the first Lorenz map’s initial parameter, and rows and columns of
the plaintext are shuffled by using this key stream data for shift

operations. We combined the hash value of the plaintext with the
secret key to generate the initial parameters of the second Lorenz
map and key stream data is utilized for XoR operation because
our scheme needs to be sensitive to plaintext changes in order to
withstand differential attacks.

Lorenz map

The Lorenz map is one of the most popular and widely used 3-D
chaotic map, which is formulated as shown below in Eqs. (1)-(3):

dx
dt

= σ(y − x) (1)

dy
dt

= x(ρ − z)− y (2)

dz
dt

= xy − βz (3)

Here, σ, ρ and β are constant parameters and generally used
the values σ = 10, ρ = 28, and β = 8

3 . When these (and similar)
values are present, the system behaves chaotically. Lorenz map
attractor can be viewed in Figure 1.

Figure 1 : Lorenz map attractor

Hash function

The fundamental purpose of hash functions is to obtain a tiny
input data signature. The hash value is the result of the hash
function. A successful hash function must be sensitive to even
the smallest changes in the input data, meaning that even small
changes should result in noticeably different hash values. Many
hash functions, including SHA-1, SHA-2, SHA-3, MD5, BLAKE,
xxHash and others, are now in use. Since xxHash is known as the
speediest hash function we choose it in our study.

Shuffling algorithm

In the permutation phase, we employed row-based and column-
based shift operations to shuffle the plaintext. Each row and each
column are shifted n times which are generated by the first Lorenz
map X dimension and Y dimension respectively. In decryption
process we applied column-based and row-based shift operations
in reverse direction to obtain unshuffled data from shuffled data.
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Encryption Process
Initially, we calculate the plaintext’s hash value, pick just the first
two bytes of this value, and refer to it as H2. To create pseudo
random values that will be utilized in the XOR operation a step
later, we utilize H2 with a secret key as input parameters of the
second Lorenz map. Next, we use key stream for row-based and
column-based shift operations in the permutation phase, and we
start the first Lorenz map with just a secret key as an input param-
eter. Then, we use a second Lorenz map key stream to perform the
XOR operation on this shuffled data.

Using the H2 value we create 1-byte validation value and used
it with H2 value as 3-byte HV3 value. The repeating HV3 values
are then added to a new row that is added at the bottom of the
matrix. Assuming, for instance, that the matrix column size is 210,
the newly inserted row will have 70 times HV3 values sequentially
(210/3 = 70). To safeguard the HV3 values, we then execute the
XOR operation to this row using the first Lorenz map key stream.
In the final phase, we use the indexes produced by the first Lorenz
map to distribute this new row data into the XORed matrix by
swap operation. Consequently, the final ciphertext was acquired.
Figure 2 shows all encryption processes.

Figure 2 :Encryption process of proposed scheme

Decryption Process
To decrypt the ciphertext, the encryption operations are applied in
reverse order. First, using the indices generated by the first Lorenz
map, a swap operation is performed to retrieve the XORed HV3
values and place them at the bottom row of the matrix. To recover
the original HV3 sequence, an XOR operation is then applied to
this row using the corresponding key stream. Since the data may
be affected by external factors such as noise or cropping attacks,
validating the integrity of the HV3 value is essential.

A validation procedure is carried out to ensure the correctness
of HV3, and only the most frequently occurring valid HV3 value
is accepted. Once the valid HV3 value is identified, the last row is

removed from the matrix, and its final byte is discarded to retrieve
the H2 value. This extracted H2, in combination with the secret
key, is then used to initialize the second Lorenz map. The resulting
key stream is used to perform an XOR operation on the encrypted
matrix to reverse the diffusion process.

Finally, inverse shift operations are performed on the resulting
matrix — first column-based and then row-based — using the
key streams generated by the first Lorenz map. As a result, the
original plaintext is successfully recovered. All decryption steps
are illustrated in Figure 3.

Figure 3 :Decryption process of proposed scheme

Figure 4 presents the original X-ray image (256×256 grayscale),
the encrypted image obtained using the proposed scheme, and the
corresponding decrypted image, respectively.

Figure 4 Scheme outputs: (a) plaintext, (b) ciphertext, (c) original
plaintext.

EXPERIMENTAL RESULTS

In this section, we have conducted numerous simulated analyses
and experimental tests to assess the safety, effectiveness, and ro-
bustness of our method. In our tests, we used some of medical
X-ray images, like “Chest”, “Foot”, “Hand” and “Joint” in 256x256
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grayscale format. These data are publicly available and taken from
Kaggle. We tested our algorithm on a Mac OS X (Sequoia) with
Apple M1 pro processor and 16 GB of RAM after developing it
with Python 3.9.2.

Information Entropy Analysis

A cryptosystem’s entropy value indicates how resilient the algo-
rithm is against entropy attacks. Entropy essentially measures how
randomly the pixels in an image are distributed. The calculation
of information entropy is given below equation:

H(X) = ∑n
i=1 Pr(xi) log2

(
1

Pr(xi)

)
where X denotes the input image, xi denotes a pixel value,

and Pr(xi) denotes the probability of xi. Truly random entropy
value for a 2n symbol data is n. Since there are 256 different colors
and 28 = 256, the truly random entropy value is 8 for a grayscale
image. The algorithm appears more secure when the entropy value
converges to a truly random entropy value, which is 8 in this case.
Our test results are shown in Table 1 and represent satisfactory
results by converging to a truly random entropy value of 8.

■ Table 1 Information Entropy Values of Plain and Encrypted
Medical Images

Image Size Plain Image Entropy Cipher Image Entropy

Chest 256×256 7.037043 7.996937

Foot 256×256 6.924769 7.997189

Hand 256×256 7.000145 7.997503

Joint 256×256 7.206429 7.997263

Histogram Analysis

The distribution of pixel frequencies in an image can be seen by
histogram analysis. Histogram analysis is crucial for an encrypted
image, and a balanced pixel value distribution is intended to with-
stand statistical attacks. The histogram leaks information about
the original image and provides attackers with hints about it if
it lacks a balanced distribution. The histogram analysis of both
plain and encrypted images is shown in Figure 5. In contrast to
the original images’ histograms, the encrypted images’ histograms
show a distribution that is comparatively uniform.

Correlation Analysis

In terms of diagonal, vertical, and horizontal neighborhoods, there
is a strong association between neighboring pixels in an image. It
provides attackers with a wealth of information about the origi-
nal image. Therefore, these correlations must be destroyed by a
secure encryption scheme. This is measured using the correlation
coefficient value between Eqs.(5)-(8) that is computed as follows:

Figure 5 : Histogram analysis; the first column is original images,
the second column is histograms of the original images, the third
column is encrypted images, the fourth column is histograms of
the encrypted images

rxy =
cov(x, y)√
D(x)

√
D(y)

(5)

cov(x, y) =
1
N

N

∑
i=1

(xi − E(x))(yi − E(y)) (6)

D(x) =
1
N

N

∑
i=1

(xi − E(x))2 (7)

E(x) =
1
N

N

∑
i=1

xi (8)

where two neighboring pixels in the image have grayscale val-
ues denoted by x and y. 10,000 neighboring pixels were chosen
at random for our test in order to compute the horizontal, verti-
cal, and diagonal correlations for each plain and encrypted image.
Figure 6 displays the outcomes of our tests, and Table 2 lists the
correlation coefficient values. The correlation analysis results pro-
duced by our scheme are satisfactory.

■ Table 2 Correlation Coefficient Values of Plain and Encrypted
Images

Image Plain H Plain V Plain D Enc. H Enc. V Enc. D

Chest 0.9957 0.9937 0.9912 0.0139 0.0052 -0.0124

Foot 0.9970 0.9916 0.9895 -0.0134 0.0002 0.0016

Hand 0.9874 0.9965 0.9856 0.0145 -0.0181 -0.0052

Joint 0.9909 0.9969 0.9897 -0.0029 0.0108 -0.0002
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Figure 6 Correlation analysis of Chest image: (a) plain image
horizontal correlation, (b) encrypted image horizontal correla-
tion, (c) plain image vertical correlation, (d) encrypted image
vertical correlation, (e) plain image diagonal correlation, (f) en-
crypted image diagonal correlation.

Differential attack analysis
Attackers try everything to find out the original data. In one
method, the input plain image is slightly altered, and then both
the original and altered images are encrypted. Next, a significant
association between the plain and encrypted images is found. To
assess the effect of altering a single pixel in the plaintext on the
encrypted image, two metrics, Number of Pixels Change Rate
(NPCR) and Unified Average Changing Intensity (UACI) have
been created. NPCR is defined as the proportion of different pixel
intensities between the plain and cipher images. Conversely, UACI
is the average strength of the differences between the plain and
cipher images. NPCR is formulated as in Eq. (9),

NPCR =
∑i,j S(x, y)

N × M
× 100% (9)

where M and N are the dimensions of the image and S(x, y) is
expressed as in Eq. (10):

S(x, y) =

1, if C1(x, y) ̸= C2(x, y)

0, if C1(x, y) = C2(x, y)
(10)

where C1 is the first encrypted image, and C2 is the encrypted
image after one pixel has been changed in the original image.
UACI is calculated as in Eq. (11):

UACI =
1

nm

∑
i,j

|C1(i, j)− C2(i, j)|
255

× 100% (11)

where C1 is the first encrypted image, C2 is the encrypted image
after one pixel in the original file has changed, and n and m are
the image’s dimensions. The NPCR and UACI values of some test

images are shown in Table 3. Given that a successful encryption
scheme requires an NPCR value of more than 99% and a UACI
value of roughly 33%, it indicates that these values are generally
good for our encryption system.

■ Table 3 NPCR and UACI Values of Encrypted Medical Im-
ages

Image Size NPCR (%) UACI (%)

Chest 256×256 99.597215 33.499561

Foot 256×256 99.639773 33.452925

Hand 256×256 99.594175 33.434233

Joint 256×256 99.582016 33.428475

Robustness analysis

Images that are encrypted may suffer harm during network trans-
mission. Even when some data has been lost, a strong encryption
scheme should be able to restore the original image. The degree of
similarity between the original and decrypted images is measured
by the Peak Signal-to-Noise Ratio (PSNR). This value is infinite
for the same images. Two images are said to be very similar if the
PSNR value converges to infinity; if not, the similarity is low. The
PSNR value is determined using Eq. (12) as follows:

PSNR = 10 × log10

(
(255 × 255)

MSE

)
(dB) (12)

where MSE is the Mean Square Error value between two images,
m is the width of the image and n is the height of the image. It is
calculated as follows in Eq. (13):

MSE =
1

mn

m

∑
i=1

n

∑
j=1

∥I1(i, j)− I2(i, j)∥2 (13)

Cropping attack

A cropping attack substitutes all white or all black values for a por-
tion of the encrypted image. The cropped image is then decrypted,
and it is anticipated that the original image will be recovered. The
missing data is then evenly spread throughout the entire image.
We decrypted the cropped images after applying crop operation
at four distinct ratios: 6.25%, 25%, 50%, and 75% of the full im-
age. Despite losing 75% of the original image, our plan was able
to restore the original image despite the data loss. Figure 7 lists
the results of the cropping assault test, and Table 4 lists the PSNR
values. These findings demonstrate how resilient our system is to
cropping and data loss attack.

■ Table 4 PSNR Results Under Cropping Attack

Cropping Ratio Size PSNR (dB)

6.25% 256×256 39.876748

25% 256×256 33.914343

50% 256×256 30.909268

75% 256×256 29.150291
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Figure 7 : Cropping attack results.

Noise attack
Some pixels of the encrypted image are randomly altered by noise
attacks. Later, the encrypted image with the noise added is de-
coded. Despite the loss of some data, it is anticipated that the
original image will be recovered. For four distinct test images, we
injected noise at random in the [1000–1100] pixel range. Figure 8
displays the outcomes of the tests. We show that our approach is
quite robust against noise attacks.

Figure 8 :Noise attack results. a) noise added encrypted image
of Chest, b) noise added encrypted image of Foot, c) noise added
encrypted image of Hand, d) noise added encrypted image of
Joint, e) decrypted image of a, f) decrypted image of b, g) de-
crypted image of c, h) decrypted image of d.

THE COMPARISON OF SECURITY AND PERFORMANCE
ANALYSIS

In this part, we compared our test findings with the study sug-
gested at (Çavuşoğlu et al. 2017) using a 256x256 grayscale "crowd"
image. They had previously compared the test results of their
suggested method with those of other encryption systems using
a "crowd" image; we added our test result to the study’s table by
using the same image. Our test results are added to Table 5 to
display the result. In terms of information entropy, NPCR and
UACI, our approach outperforms all others.

■ Table 5 Security and Performance Comparison of Encryption
Algorithms

Metric Chaos (Çavuşoğlu et al. 2017) AES (Çavuşoğlu et al. 2017) Ref. (Çavuşoğlu et al. 2017) Ours

NPCR 99.6067 99.6325 99.6299 99.7021

UACI 31.2477 31.8724 31.8346 33.4502

Entropy 7.9545 7.9591 7.9567 7.9971

In terms of correlation coefficients, information entropy, NPCR,
and UACI values, we also compared our approach with those of
other studies. To ensure a fair comparison, we used a 512x512
grayscale “Barbara” image, consistent with the other algorithm
tests. Table 6 summarizes all the test results. Our scheme out-
performs the average of other methods in correlation coefficient
values, ranks third in information entropy, holds the second-best
NPCR value, and exceeds the average UACI value of the compared
algorithms.

■ Table 6 Performance Comparison Between Our Algorithm
and Other Algorithms

Scheme Corr. H Corr. D Corr. V Entropy NPCR UACI

Ref. Wang et al. (2019) -0.0075 -0.0050 0.0040 - - -

Ref. Zhou et al. (2022) 0.0006 -0.0049 0.0005 7.9977 0.9961 0.3356

Ref. Zhang et al. (2019) -0.0035 0.0025 0.0050 7.9976 0.9962 0.3337

Ref. Machkour et al. (2015) 0.0017 0.0023 0.0008 7.9992 0.9981 0.3332

Ref. Wang et al. (2016) -0.0044 -0.0168 0.0198 - - -

Ref. Liu and Liu (2020) -0.0247 -0.0031 -0.0129 7.9942 0.9950 0.3332

Ref. Bakhshandeh and Eslami (2013) - - - 7.9717 0.9956 0.3357

Ref. Zhou (2021) 0.0078 -0.0164 0.0058 7.9974 0.9963 0.3353

Ref. Zhang and Tang (2017) 0.0121 0.0457 0.0389 7.9971 0.9960 0.3343

Ours 0.0045 0.0039 -0.0093 7.9976 0.9966 0.3339

CONCLUSION

This study introduces a chaos-based image encryption algorithm
for medical X-ray images. We employed a double Lorenz map: one
that is initialized by the secret key and used in the confusion phase,
and another that is initialized by the plaintext hash value and
secret key and used in the diffusion phase. Row-based and column-
based shift operations were used in the confusion phase, while
the XOR operation was used in the diffusion phase. To ensure our
scheme was stable, resilient, and effective, we thoroughly tested
and analyzed it. We evaluated our scheme against similar schemes
from previous years and obtained above-average values in terms
of NPCR, UACI, information entropy, and correlation coefficient.
Our approach outperforms most similar schemes with an average
information entropy value of 7.9976, NPCR value of 99.66%, and
approximately 33.39% UACI value. All test results demonstrate
that our scheme is a very strong security alternative for medical
X-ray images.
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