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ABSTRACT This study proposes a conceptual framework for integrating deep learning into the da Vinci
Surgical System. The framework was developed after identifying common applications and challenges through
a systematic review. It combines multiple data types, including visual, kinematic, and physiological signals,
into a closed-loop system. This system includes four core components: data acquisition and fusion, deep
learning-based analysis, adaptive control and feedback, and continuous skill assessment. These components
interact to support real-time surgical guidance and personalized training, aiming to improve surgical outcomes.
To inform the framework, a systematic search of the PubMed database was conducted, focusing on studies
that combine deep learning with the da Vinci system. Two major application areas were identified: the first
involves autonomous or semi-autonomous instrument control and image-guided navigation, and the second
covers surgical skill assessment and workflow analysis. While existing studies demonstrate the potential
of artificial intelligence in robotic surgery, they also reveal technical and practical limitations. By analyzing
these common approaches and obstacles, this study provides a structured foundation for future research.
The proposed framework offers a unified view that connects data processing, intelligent decision-making,
and feedback, paving the way for smarter systems that assist both in real-time procedures and long-term
training, and helping bridge the gap between advanced robotic hardware and cognitive support in surgical
environments.
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INTRODUCTION

In recent years, advances in surgical technology have significantly
transformed patient care and operative procedures. Robot-assisted
surgery (RAS) now enables surgeons to perform complex inter-
ventions with enhanced precision, reduced invasiveness, and im-
proved efficiency (Reddy et al. 2023). These innovations have
contributed to better clinical outcomes, including shorter recovery
times, reduced postoperative complications, and increased proce-
dural consistency (Kinoshita et al. 2022; Saman 2024). As a result,
robotic systems have become a central feature in many surgical
specialties (Cannizzaro et al. 2024).

A particularly important development in this field is the integra-
tion of advanced decision-support technologies into RAS platforms
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(Iftikhar et al. 2024). Artificial intelligence (AI), and more specif-
ically deep learning (DL) techniques, have emerged as critical
components of this evolution (Panesar et al. 2019). These tech-
niques are capable of processing complex, multi-modal datasets to
support real-time intraoperative decision-making, analyze surgical
performance, and predict patient-specific risks (Egert et al. 2020).
Recent studies emphasize that the convergence of robotic systems
with AI has the potential to enhance intraoperative safety, person-
alize surgical strategies, and improve outcomes by extending the
surgeon’s capabilities beyond mechanical precision alone (Iftikhar
et al. 2024; Knudsen et al. 2024).

One of the most prominent platforms in RAS is the da Vinci
Surgical System, developed by Intuitive Surgical in the late 1990s
and first introduced into clinical practice in 1999 (Pugin et al. 2011).
Now used in hospitals worldwide, the da Vinci system has become
a cornerstone of minimally invasive surgery (Azizian et al. 2020; Di-
Maio et al. 2011). It integrates surgeon-controlled robotic arms with
an ergonomic console and a high-definition (HD), 3-dimensional
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(3D) endoscopic imaging platform, enabling precise replication
of the surgeon’s hand movements with enhanced dexterity and
tremor filtration (Cepolina and Razzoli 2022; Pugin et al. 2011).
This setup allows for careful tissue handling and suturing through
small incisions, improving surgical precision and supporting faster
patient recovery (Cepolina and Razzoli 2022). The system’s design
provides a stable, immersive view of the operative field and facili-
tates complex procedures with greater control and better outcomes
compared to conventional minimally invasive techniques (Steffens
et al. 2023). Its 3D visualization significantly enhances spatial ori-
entation and depth perception, which is essential for performing
intricate procedures with minimal trauma to surrounding tissues
(Koh et al. 2018). Over the past two decades, the da Vinci Surgical
System has demonstrated substantial clinical impact across multi-
ple specialties, particularly urology (Koukourikis and Rha 2021),
gynecology (Li et al. 2022), and general surgery (Celotto et al. 2024).
It has also served as a key research and training platform through
initiatives such as the da Vinci Research Kit (dVRK), which has fos-
tered innovation and collaboration in the field of surgical robotics
(D’Ettorre et al. 2021).

Building on this established success, it becomes clear that the
next frontier for RAS lies in augmenting these systems with ad-
vanced decision-support capabilities. Despite significant techno-
logical progress, a notable gap remains in the systematic and clini-
cally validated integration of AI-driven systems into RAS work-
flows (Boal et al. 2024). While DL models have shown potential in
interpreting large-scale visual, kinematic, and physiological data
for intraoperative guidance (Knudsen et al. 2024), current research
is often isolated to specific tasks, limited to controlled settings, or
lacking cross-platform generalizability. Moreover, a unified archi-
tectural framework that integrates these diverse data modalities
into a cohesive real-time support system is still lacking, despite
the need for adaptable and validated solutions in evolving robotic
surgery (Marcus et al. 2024). This fragmentation not only ham-
pers clinical translation but also limits opportunities for scalable
training, consistent evaluation, and adaptive surgical assistance.

To address this gap, the present study conducts a systematic
literature review to examine thematic application domains where
DL is employed to enhance various aspects of RAS with the da
Vinci system. The review provides a detailed analysis of these
applications and identifies persistent challenges hindering clini-
cal integration. Building on these insights, the study proposes a
conceptual framework for a multi-modal surgical decision support
system (DSS). This framework integrates diverse data streams, in-
cluding visual, kinematic, and physiological inputs, into a unified
closed-loop system designed to support real-time decision-making
and continuous surgical skill assessment.

By synthesizing recent advances and outlining future directions,
this study aims to contribute to the development of intelligent,
adaptive, and data-driven RAS platforms, ultimately facilitating
more effective and personalized patient care.

MATERIAL AND METHODS

In order to identify the core components of a conceptual frame-
work, a systematic literature review was conducted following the
PRISMA guidelines (Preferred Reporting Items for Systematic Re-
views and Meta-Analyses) (Page et al. 2021). Predefined inclusion
and exclusion criteria were applied to select recent studies focused
on DL applications in robotic surgery using the da Vinci Surgical
System. The study design is illustrated in Figure 1. Selected stud-
ies were grouped by application domain, and key challenges were
identified within each group. Based on these insights, a conceptual

framework for a multi-modal surgical DSS was proposed to unify
the identified components into a cohesive system.

Figure 1 Study design

Study Selection
Initially, 23 publications related to the da Vinci Surgical System
and DL applications were retrieved from the PubMed database
using the query shown in Figure 2. Predefined inclusion and ex-
clusion criteria guided the study selection. Specifically, studies
focusing exclusively on RAS and DL or machine learning appli-
cations with the da Vinci Surgical System, published within the
last five years and written in English, were included. During the
abstract screening, three studies were excluded because they used
da Vinci system outputs solely for classification model building
or diagnostic support, without directly addressing robotic surgery.
After full-text review, one additional study was excluded for not
being directly related to robotic surgery or the da Vinci system. In
total, 19 studies met the inclusion criteria and were incorporated
into the review.

Figure 2 Study selection flow

Data Extraction and Analysis
Following PRISMA guidelines, the findings of each study were
systematically summarized and analyzed. Methodological ap-
proaches, technologies utilized, and key outcomes were compared.
The review was performed in two stages: first, the studies were
grouped according to their application domains; then, each group
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was re-examined to identify specific challenges in applying DL,
which were organized into subtopics.

Conceptual Framework Development
Finally, based on the insights gained from these studies, a con-
ceptual framework for a multi-modal surgical DSS was proposed.
This framework is designed to integrate multi-modal data streams
from visual, kinematic, and physiological sources into a unified,
closed-loop system that supports both surgical decision-making
and continuous skill improvement. The framework is intended to
serve as a foundation for future research and development in RAS
DSSs.

RESULTS AND DISCUSSION

This study, guided by the PRISMA methodology outlined in the
methods section, synthesizes current research on the integration
of DL into the da Vinci Surgical System. Based on analysis of the
selected studies, two primary domains of application have been
identified. The first involves autonomous or semi-autonomous
instrument control and image-guided navigation, where DL tech-
niques are applied to enhance intraoperative decision-making,
visual guidance, and robotic manipulation. The second focuses
on surgical skill assessment and workflow analysis, highlighting
how machine learning algorithms, combined with physiological
and performance data, are used to evaluate surgical proficiency,
monitor ergonomics, and support training. As illustrated in Figure
3, there has been a steady growth in the number of studies across
both domains, with a noticeable increase in research addressing
mixed implementation approaches in recent years. The following
sections explore each of these domains in detail, emphasizing the
transformative role of DL in RAS.

Figure 3 Cumulative deep learning–related da Vinci studies by
domain (2020–2025)

Autonomous or Semi-Autonomous Instrument Control and Image-
Guided Navigation
The integration of DL into the da Vinci Surgical System has led to
significant advancements in autonomous and semi-autonomous
robotic capabilities, particularly in the realms of real-time visual
guidance, instrument control, and tactile perception. Relevant

studies on autonomous and semi-autonomous instrument control
and image-guided navigation are given in Table 1. These innova-
tions are increasingly contributing to enhanced surgical precision,
improved safety, and more efficient intraoperative workflows.

One of the most impactful developments involves real-time 3D
model registration and augmented reality (AR)-based navigation.
This was demonstrated in a study (Amparore et al. 2024) that lever-
aged the da Vinci system to enhance robotic partial nephrectomy
by automatically overlaying patient-specific 3D kidney models
onto the surgeon’s live endoscopic view. Two complementary
approaches were explored. The first utilized computer vision tech-
niques, enhanced by indocyanine green (ICG) fluorescence imag-
ing, to segment kidney structures and establish landmark-based
registration. The second approach employed a convolutional neu-
ral network (CNN) to automatically detect and segment the kidney
directly from live endoscopic images, without relying on fluores-
cence. Both methods were integrated into the da Vinci system via
the TilePro multi-input display, enabling real-time AR guidance
during surgery. The reported co-registration times ranged from 7
to 11 seconds, with only minimal manual adjustments required.
This automatic overlay system improves intraoperative visualiza-
tion, supports precise surgical navigation, and reduces cognitive
load on the operating surgeon.

Another key area of innovation is camera motion estimation
in dynamic surgical environments, which is essential for devel-
oping intelligent camera systems. This challenge was addressed
in a study (Huber et al. 2022) that proposed a DL approach for
estimating laparoscopic camera motion using deep homography
networks. The researchers created synthetic surgical sequences
by introducing artificial camera motion into static da Vinci video
frames and used these sequences to train a neural network based
on ResNet-34. The proposed system was able to estimate camera
motion accurately, even in the presence of moving instruments
and tissue, significantly outperforming classical computer vision
techniques such as SURF combined with RANSAC. The method
achieved up to 41% higher precision and was approximately 43%
faster on standard central processing units (CPUs). This capability
lays the foundation for intelligent and adaptive camera control
systems that can autonomously adjust viewpoint and maintain
optimal visual context during complex procedures.

In the domain of skill transfer and task automation, a study
(Gonzalez et al. 2021) used the dVRK as one of four robotic plat-
forms in the development of the Dexterous Surgical Skill (DESK)
dataset. The DESK dataset was designed to enable machine learn-
ing models to generalize across different robotic systems and en-
vironments, supporting the development of semi-autonomous
capabilities in settings such as remote or battlefield surgery. Us-
ing the dVRK, the researchers performed a peg transfer task that
was broken down into modular surgical gestures, referred to as
"surgemes", such as grasping, transferring, and releasing pegs.
Detailed kinematic data, including gripper state, position, and
orientation, were recorded and used to train classification mod-
els. Remarkably, machine learning models trained exclusively on
simulation data were able to achieve an accuracy of 93% when
tested on real robotic executions using the da Vinci system. This
result underscores the potential for leveraging virtual training en-
vironments and simulated data to develop generalizable models
for real-world autonomous surgical applications.

Another important line of research involves enhancing the real-
ism of biomechanical simulations used in training and preopera-
tive planning. This was demonstrated in a study (Wu et al. 2020)
that used the dVRK platform in combination with an RGB-depth
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■ Table 1 Studies on autonomous and semi-autonomous instrument control & image-guided navigation

Study Focus Methodology/Algorithm Modalities

(Wu et al. 2020) Simulation correction in soft-tissue
modeling

Modified 3D-UNet for correction fac-
tor prediction

RGB-D and kinematics

(Gonzalez et al. 2021) Surgeme classification via transfer
learning

Supervised learning (RF, SVM, MLP)
with FFT features

Kinematics and annotated video im-
ages

(Huber et al. 2022) Laparoscopic camera motion extrac-
tion

DNN-based homography estimation
(using synthetic augmentation)

Laparoscopic surgery video images

(Amparore et al. 2024) 3D virtual model overlay in robotic
partial nephrectomy

ICG-enhanced computer vision +
CNN-based kidney segmentation

RGB endoscopic images (± NIRF) &
3D kidney models

(Ullah et al. 2024) Fluorescence-guided tumor margin
delineation

Comparison of visible vs. NIR
probes; AI/ML for probe design

Visible and NIRF imaging

(Yilmaz et al. 2024) Sensorless haptic feedback Disturbance observer with deep
learning dynamic compensation

Motor kinematics and force data

(Khan et al. 2025) ML-based tension measurement LSTM-based torque estimation dVRK kinematics and force data

Abbreviations: 3D-UNet, Three-Dimensional U-Net; AI/ML, Artificial Intelligence / Machine Learning; AR, Augmented Reality; CNN, Convolutional Neural Network;
dVRK, da Vinci Research Kit; DNN, Deep Neural Network; FFT, Fast Fourier Transform; ICG, Indocyanine Green; LSTM, Long Short-Term Memory; MLP, Multi-Layer
Perceptron; NIRF, Near-Infrared Fluorescence; RF, Random Forest; RGB-D, Red Green Blue + Depth; SVM, Support Vector Machine.

camera sensor to capture visual and kinematic data while physi-
cally interacting with soft-tissue phantoms. They employed this
real-time data to improve Finite Element Method (FEM)-based
soft tissue models. Specifically, the authors train a neural network
to learn the difference between the FEM’s predicted tissue shape
and the actual tissue shape, as measured by real-time camera and
robot data (vision and kinematics). The network then generates
a correction factor that adjusts the FEM output to more closely
reflect the true, observed deformation of the soft-tissue phantom.
The resulting hybrid model reduced simulation errors by 15–30%.
These advances underscore the importance of increased realism in
soft-tissue simulation, both for surgical training and for machine
learning systems that depend on accurate virtual environments to
learn complex surgical tasks.

The challenge of providing direct haptic feedback in the da
Vinci system has been widely recognized, as tactile information
is critical for safely manipulating delicate tissues. This issue was
addressed in a study (Yilmaz et al. 2024) that implemented sen-
sorless haptic feedback using internal dVRK signals such as joint
positions, velocities, and motor torques. In this study, DL is used to
estimate the robot’s internal dynamics so the system can accurately
distinguish external forces (e.g., contact with tissue or surgical
objects) from the robot’s own motion. Specifically, the authors
train a Long Short-Term Memory (LSTM)-based neural network
on the dVRK’s joint positions and velocities to learn friction and
inertia, then subtract this modeled disturbance from the measured
motor torque to estimate external contact forces. This sensorless
approach provides the basis for haptic feedback. Two experimental
tasks were conducted. The first involved tumor detection via pal-
pation, where sensorless feedback increased detection accuracy by
approximately 30% compared to visual-only guidance and nearly
matched the performance of systems using physical force sensors.
The second task focused on the classic peg transfer evaluation,
where sensorless feedback significantly reduced unwanted inter-
action forces by approximately threefold, improving safety and

surgical control. Additionally, dynamic modeling contributed to a
better user experience by reducing both physical strain and cogni-
tive workload. Importantly, this technique required no additional
hardware, highlighting its practical value for improving haptics in
existing surgical systems.

In a related effort to enhance intraoperative safety, researchers
(Khan et al. 2025) developed a machine learning-based method for
measuring tissue tension during robotic surgery using the dVRK.
Their approach involved using standard da Vinci instruments to
apply pulling forces on porcine colon tissues. A LSTM network
was trained on kinematic data (joint positions and velocities) and
successfully predicted tissue tension with an average accuracy of
74%, reaching up to 88% in optimal cases. The correlation between
predicted and ground-truth forces was consistently strong, with
Spearman’s correlations ≥ 0.81 in four of five experiments (mean
≈ 0.80). By enabling real-time monitoring of tissue stress, this
method offers a way to prevent complications such as anastomotic
leaks and opens new possibilities for quantitative intraoperative
guidance.

Furthermore, emerging research is increasingly leveraging
advanced fluorescence imaging modalities to support surgical
decision-making. A recent review (Ullah et al. 2024) discussed the
potential synergy between novel fluorescent probes, near-infrared
imaging windows, and robotic platforms in fluorescence imaging-
guided surgery. This work emphasized that future directions could
include "fluorescence-guided da Vinci" systems, where DL po-
tentially augments the fluorescence signal to provide automated
tissue differentiation or tumor margin detection. Taken together
with ICG-based AR, as demonstrated in the study (Amparore
et al. 2024), these developments pave the way for even more so-
phisticated guidance strategies that seamlessly blend AI-driven
analytics, robotics, and real-time imaging to enhance surgical pre-
cision.
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Overall, these studies demonstrate how DL techniques, when
integrated with the da Vinci Surgical System’s visual and kinematic
data, are pushing the boundaries of robotic surgery. From enhanc-
ing visual guidance through AR to predicting physical interactions
with tissue, these developments are gradually transforming the
da Vinci platform into a more autonomous and intelligent surgical
assistant capable of supporting complex intraoperative tasks with
greater safety, accuracy, and adaptability.

Surgical Skill Assessment and Workflow Analysis
The da Vinci Surgical System plays a central role in the devel-
opment of objective, data-driven approaches to surgical skill as-
sessment and intraoperative workflow analysis. Relevant stud-
ies focusing on surgical skill assessment and workflow analysis
are presented in Table 2. Leveraging its precise motion tracking,
real-time data capture capabilities, and compatibility with physio-
logical monitoring systems, the da Vinci platform has enabled the
integration of AI-based methods into both surgical training and
evaluation environments.

A study (Egert et al. 2020) emphasize the foundational role of
the da Vinci system in capturing automated performance met-
rics, such as instrument motion and camera positioning. These
quantitative indicators of surgeon performance serve as inputs for
machine learning algorithms that can assess surgical proficiency
and even predict patient outcomes based on observed patterns.
In addition to procedural logging, the da Vinci system supports
training through playback features that allow trainees to review
expert-performed tasks. These recordings can also be physically
re-experienced via tactile robotic control, facilitating the develop-
ment of procedural muscle memory and enhancing motor skill
acquisition. These capabilities suggest that AI-integrated robotic
platforms could provide standardized, objective feedback in surgi-
cal education.

Several studies have explored the integration of physiological
and behavioral monitoring with the da Vinci system to assess sur-
gical skill levels. One example of this approach is a study (Shafiei
et al. 2024b) that predicted Robotic Anastomosis Competency Eval-
uation metrics during vesico-urethral anastomosis. The authors
collected electroencephalography (EEG) and eye-tracking data
from 23 participants performing procedures on plastic models
and animal tissue using the da Vinci system. These data were
used to train machine learning models, including random forest
and gradient boosting regression, which could accurately predict
subtask-level performance such as needle handling, tissue trauma,
and suture placement. The ability to distinguish performance dif-
ferences among surgeons of varying experience levels underscores
the potential of using physiological and visual metrics for precise,
objective skill assessment.

Complementary research (Takács et al. 2024) examined the stress
and ergonomic impact of RAS with the da Vinci Xi while surgeons
performed standardized tasks on a Sea Spikes phantom. Using dig-
ital sensors that captured heart-rate variability, posture, and hand
movements, the authors trained machine learning models to clas-
sify self-reported workload levels and novice versus expert status
from these physiological indicators. Preliminary findings suggest
that, although the da Vinci’s ergonomic design reduces physical
strain relative to open surgery, remote tele-operation introduces
distinct cognitive and stress-related challenges that differ between
novice and experienced surgeons. This insight supports incorpo-
rating stress monitoring and ergonomics into future training and
evaluation models.

The combined use of EEG and eye-tracking data was further ex-
plored in another study (Shafiei et al. 2023b) involving live animal
surgeries using the da Vinci system. Surgeons performed cys-
tectomy, hysterectomy, and nephrectomy procedures while their
physiological responses were recorded during subtasks such as
blunt dissection and tissue retraction. Skill levels were assigned
using the modified Global Evaluative Assessment of Robotic Skills
(GEARS) tool, and models such as multinomial logistic regression,
random forest, and gradient boosting were trained to classify surgi-
cal expertise. The gradient boosting model achieved classification
accuracies up to 93%, demonstrating the reliability of this multi-
modal approach for distinguishing skill levels in real-time surgical
environments.

Building on this line of inquiry, an integrated EEG and eye-
tracking study (Shafiei et al. 2024a) using eXtreme Gradient
Boosting (XGBoost) evaluated mental workload across various
simulator- and Fundamentals of Laparoscopic Surgery-based tasks
in RAS. This study recruited 26 participants performing Match-
board and Ring Walk exercises on a da Vinci simulator, as well as
Fundamentals of Laparoscopic Surgery pattern cut and suturing
tasks. The XGBoost models achieved R2 values above 0.80 for
each task and identified key predictors such as pupil diameter,
temporal-lobe functional connectivity, and task complexity. These
findings further underscore the growing role of advanced physio-
logical analytics in understanding surgeons’ cognitive demands
and optimizing training programs to improve overall performance.

Reliable model development also depends on high-quality, syn-
chronised data, as demonstrated in a study (Hashemi et al. 2023)
that outlined protocols for acquiring and processing da Vinci sur-
gical data-combining stereoscopic endoscopic video with surgeon-
movement recordings from depth cameras. The researchers further
extracted event-level information such as clutch usage and instru-
ment activation by means of computer-vision algorithms. Their
open-source pipeline, together with a discussion of commercial
recorders like dVLogger, provides a comprehensive framework for
dataset development that supports reproducible and automated
surgical performance evaluation.

The effectiveness of visual metrics was demonstrated in a study
(Shafiei et al. 2023a), where participants performed robotic pro-
cedures on live pigs while wearing eye-tracking devices. Visual
behavior during subtasks such as cold dissection and tissue retrac-
tion was analyzed and used to train a gradient boosting classifier,
which achieved up to 96% accuracy across different tasks. Ex-
pert evaluations using GEARS served as the ground truth. These
findings demonstrate that visual metrics collected during da Vinci-
assisted procedures can reliably distinguish between varying skill
levels, making eye-tracking a practical tool for real-time feedback
and objective assessment.

The impact of automated feedback on learning was examined
in a study (Brown and Kuchenbecker 2023) involving the da Vinci
Standard system and a Smart Task Board. Trainees were divided
into feedback and control groups, with the former receiving near-
real-time GEARS score predictions generated by a regression-based
machine learning model. While both groups improved in tech-
nical metrics such as force application and tool acceleration, the
feedback group showed increased awareness of their performance
gaps, suggesting that automated feedback may enhance reflective
learning even if it does not immediately accelerate early psychomo-
tor development.
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■ Table 2 Studies on surgical skill assessment & workflow analysis

Study Methodology/Algorithm Modalities

(Egert et al. 2020) AI/ML (e.g., Computer Vision, ANN) Instrument motion, eye tracking, force sensors,
video

(Lyman et al. 2021) CUSUM + ML (using ORI) Kinematics (dVLogger from da Vinci system)

(Brown and Kuchenbecker 2023) Automated GEARS-based scoring Robotic instrument motion data (Smart Task Board)

(Hashemi et al. 2023) AI-ready data acquisition framework Video, 3D movement, event data

(Shafiei et al. 2023a) GB Eye gaze data

(Shafiei et al. 2023b) GB, RF, MLR EEG and eye gaze data

(Shafiei et al. 2024a) XGBoost EEG and eye-tracking (gaze, pupil, connectivity met-
rics)

(Shafiei et al. 2024b) GB, RF EEG and eye-tracking during VUA

(Takács et al. 2024) Exploratory ML + statistical correlation analysis Heart rate variability, posture, hand motion sensors
(digital wearables)

(Hatcher et al. 2025) Review of frameworks and assessments Simulation tools, assessment checklists

Abbreviations: AI/ML, Artificial Intelligence / Machine Learning; ANN, Artificial Neural Network; CUSUM, Cumulative Sum Control Chart; dVLogger, da Vinci Logger;
EEG, Electroencephalogram; GB, Gradient Boosting; GEARS, Global Evaluative Assessment of Robotic Skills; ML, Machine Learning; MLR, Multinomial Linear
Regression; ORI, Operative Robotic Index; RF, Random Forest; VUA, Vesicourethral Anastomosis; XGBoost, Extreme Gradient Boosting.

Skill progression over time was the focus of a study (Lyman et al.
2021) that investigated the learning curve of novice surgeons per-
forming hepaticojejunostomy using the da Vinci Surgical System.
Kinematic data, including camera adjustments and tool move-
ments, were recorded and analyzed with machine learning and
stepwise "combination of an objective cumulative sum" (CUSUM)
techniques. A new composite score, the Operative Robotic Index
(ORI), was introduced to summarize performance across key met-
rics. The ORI effectively differentiated novice from intermediate
skill levels and aligned closely with traditional CUSUM evalua-
tions. These findings highlight how detailed kinematic tracking,
and statistical modeling can be used to monitor skill development
over time.

The evolution of robotic simulation education was the subject of
a recent review (Hatcher et al. 2025) that emphasized the growing
need for standardized training curricula tailored to RAS platforms
like the da Vinci Xi. While early efforts such as the Fundamentals of
Robotic Surgery program provide a baseline, more comprehensive
tools and frameworks, such as GEARS, R-OSATS, and RO-SCORE,
are needed to assess advanced robotic surgical skills. The authors
also anticipate a future where emerging technologies such as AI,
virtual reality, and AR are fully integrated into training platforms,
making the da Vinci system a key player in next-generation surgi-
cal education.

Collectively, these studies illustrate the powerful role of the da
Vinci Surgical System as both a surgical and educational platform.
By capturing high-resolution data streams and integrating physio-
logical, visual, and motion-based metrics, the system supports the
development of automated models that can objectively assess skill
levels, monitor stress responses, and improve training outcomes.
These capabilities contribute to a future where surgical education is
more standardized, feedback is more immediate and objective, and

patient outcomes are continuously enhanced through data-driven
learning.

Challenges in Adapting Deep Learning to Robot-Assisted Surgery
Despite rapid progress in applying DL and other machine learning
methods to RAS, significant barriers remain before these tech-
niques can be seamlessly adopted in real operating rooms. This
section distills key challenges around data infrastructure, real-time
performance, algorithm generalizability, interpretability, workflow
integration, and regulatory/ethical concerns.

Data Availability, Quality, and Standardization: A fundamental
challenge is assembling high-quality, large-scale datasets of robot-
assisted procedures. The da Vinci Surgical System can record
textual, kinematic, and video data, but there is no single, standard-
ized protocol across institutions (Hashemi et al. 2023). In some
contexts, researchers gather adverse event reports (Li et al. 2024)
or produce specialized datasets for skill assessment (Lyman et al.
2021), but these remain fragmented. Meanwhile, anonymization
requirements and the labor-intensive nature of manual annotation,
particularly in advanced tasks like EEG- and eye-gaze–based skill
assessment (Shafiei et al. 2023a,b, 2024b), discourage broad data-
sharing. Even successful attempts to fuse multiple data modalities
(e.g., vision, kinematics, and textual records) can be hampered by
incompatible data formats, sensor noise, or incomplete metadata
(Wu et al. 2020). The net effect is that many DL models are trained
on small, nonrepresentative samples, limiting generalizability.

Real-Time Performance and Resource Constraints: DL algorithms
used for tasks such as AR overlays, surgical-phase detection, or
skill evaluation must produce sub-second updates. For instance,
sensorless haptic feedback systems (Yilmaz et al. 2024) or real-
time stress measurement (Takács et al. 2024) require tight latency
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bounds for closed-loop control. Yet many robotics labs still rely
on external graphics processing units or slower CPUs not specifi-
cally tuned to handle real-time inference. Even modest delays can
disrupt surgical flow. Moreover, models of this class, such as the
deep-transformer pipeline "Bert-BiLSTM" used for adverse-event
classification (Li et al. 2024), typically require considerable compute
resources. Balancing model complexity with real-time feasibility is
an ongoing struggle.

Transfer Learning and Algorithm Generalizability: Neural net-
works often degrade when applied to new surgical environments,
different endoscopic hardware, or novel tissue types (Egert et al.
2020; Hatcher et al. 2025). Similarly, skill classifiers that excel in sim-
ulator tasks (Rivero-Moreno et al. 2023) may stumble in real-world
surgery with unfamiliar lighting conditions or tool usage patterns.
Bridging simulation to reality remains a major hurdle. For in-
stance, the realism of biomechanical simulations was improved
by integrating real vision and kinematics data (Wu et al. 2020), al-
though differences between controlled phantom data and anatom-
ical variance in patients still limit direct transfer. Approaches to
domain adaptation (ranging from augmented training sets to semi-
supervised learning) are essential if we want robust models that
generalize well across procedures and platforms.

Interpretability and Surgeon Acceptance: Black-box deep mod-
els trained on massive data can be difficult to interpret, thereby
reducing surgeon trust. The necessity of transparent and easily
digestible metrics for surgical performance has been emphasized
in prior work (Egert et al. 2020). Similarly, it has been shown
that while EEG or eye-tracking data can accurately gauge skill
level, explaining why a model produces a particular skill rating
remains challenging (Shafiei et al. 2023a,b, 2024b). Surgeons or
medical trainees often rely on step-by-step guidance and immedi-
ate feedback; purely numerical or "black-box" predictions might be
undervalued if they cannot be explained in a clinically meaningful
manner. Fostering trust may require "explainable AI" methods
(Setchi et al. 2020) to highlight relevant video frames, tissue edges,
or motion trajectories that drive each inference.

Workflow Integration and Educational Gaps: Even when DL out-
puts are accurate, they can disrupt the robotic workflow if deliv-
ered through clunky interfaces or if they add cognitive load. Ob-
jective skill metrics such as the dVLogger-based ORI are presently
reviewed post-hoc (Lyman et al. 2021); if such feedback were ever
pushed into real time, an unfiltered stream of notifications could
overwhelm surgeons. Likewise, the "Bert-BiLSTM" classifier de-
veloped to label da Vinci adverse-event reports remains a bench
prototype (Li et al. 2024), and its clinical deployment would re-
quire careful alert management. At the same time, most residency
programmes still lack dedicated AI or data-science instruction, cre-
ating a literacy gap that slows adoption (Hatcher et al. 2025; Egert
et al. 2020). Reviews consequently stress the need for intuitive user-
interface design and formal curricula that teach clinicians how to
interpret and respond to algorithmic recommendations (Rivero-
Moreno et al. 2023). Without such human–machine-interface re-
finements, even high-performing models may remain sidelined.

Regulatory, Ethical, and Liability Considerations: Regulatory
frameworks for AI-driven surgical systems are still evolving (Egert
et al. 2020). Tools that automate or partially automate tasks such
as trocar placement or tissue retraction face extra scrutiny, since
errors can have severe ramifications (Attanasio et al. 2020). Liabil-
ity is another gray area (Marcus et al. 2024): if a trained model or
algorithm misclassifies an adverse event or suggests an ill-advised

maneuver, it is unclear whether the responsibility lies with the
surgeon, the device manufacturer, or the hospital system. Data
privacy is yet another consideration particularly for advanced ana-
lytics involving EEG, eye-gaze, or physiologic signals (Hashemi
et al. 2023; Shafiei et al. 2024b). Without robust, standardized gov-
ernance, it is challenging to deploy advanced AI functionalities at
scale.

Proposed Conceptual Framework for a Multi-Modal Surgical Deci-
sion Support System
In light of previous studies (as discussed in the Results section) that
focused on isolated aspects of robotic surgery, this study proposes a
conceptual framework (Figure 4) that integrates these components
into a unified, closed-loop system. The need for such a framework
arises from the growing complexity of robotic surgical procedures
and the demand for real-time, comprehensive decision support
that enhances both surgical performance and training.

Figure 4 Proposed conceptual framework for the da Vinci system.
This figure illustrates the interaction between the four core compo-
nents: data acquisition and fusion, deep learning-based analysis,
adaptive control and feedback, and continuous skill assessment. 3D,
Three-Dimensional; CNN, Convolutional Neural Network; EEG, Elec-
troencephalography; HD, High-Definition; LSTM, Long Short-Term
Memory; RNN, Recurrent Neural Network.

Framework Components and Their Functions: The framework
is composed of several interconnected components designed to
capture, analyze, and act upon multi-modal data. Each compo-
nent plays a vital role in ensuring that information is processed
efficiently and utilized effectively to support surgical decision-
making and continuous skill improvement.

The data acquisition and fusion component is critical for collecting
and synchronizing diverse data sources to provide a comprehen-
sive view of the surgical environment:

• Visual Data: HD 3D endoscopic imaging is captured by the da
Vinci system. This data is used for AR overlays and real-time
segmentation and registration of surgical sites.

• Kinematic Data: Detailed movement data from robotic arms
and instruments, recorded via tools such as the dVLogger,
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provides insights into instrument trajectories and motion pat-
terns.

• Physiological Data: Wearable sensors collect metrics such
as EEG, eye-tracking information, and stress indicators. This
information reflects the surgeon’s cognitive and emotional
state during procedures.

• Fusion Mechanism: A central data fusion module synchro-
nizes these diverse data streams into a unified dataset, ensur-
ing that all modalities contribute to real-time analysis.

The deep learning-based analysis component leverages advanced
DL models to interpret the fused data and extract actionable in-
sights:

• Image Processing: CNNs are used to process visual data.
These networks perform tasks such as object detection, seg-
mentation, and 3D model alignment, thereby enhancing the
visual context provided to the surgeon.

• Temporal Analysis: Recurrent neural network- or LSTM-
based models analyze the kinematic and physiological data
over time. This analysis supports dynamic skill assessment
and monitors the surgeon’s state throughout the procedure.

• Predictive Analytics: Machine learning algorithms integrate
the fused data to predict surgical outcomes, provide alerts,
and recommend adjustments based on historical performance
and real-time trends.

The adaptive control and feedback component enables the system
to dynamically adjust surgical parameters and provide real-time
guidance based on continuous data analysis:

• Control Adjustments: Reinforcement learning algorithms
enable the system to make semi-autonomous control adjust-
ments. These adjustments can optimize instrument move-
ments and camera positioning during surgery.

• Real-Time Feedback: The framework provides continuous
feedback to the surgeon via the da Vinci console. This feed-
back may be visual, auditory, or haptic in nature, ensuring
that the surgeon is informed of any deviations or potential
improvements. Additionally, model interpretation (MI), such
as through Shapley value-based approaches (Dean Pelegrina
and Siraj 2024), helps the system deliver intelligible feedback
(e.g., highlighting why a control adjustment is recommended).

The continuous skill assessment component focuses on evaluating
and tracking surgeon performance over time to support targeted
training and improved outcomes:

• Performance Metrics: Automated performance metrics are
extracted from the fused data, allowing for an objective evalu-
ation of surgical proficiency.

• Skill Profiling: This component continuously updates a skill
profile for each surgeon. The profile is used to identify
strengths, weaknesses, and trends in performance, which in
turn supports targeted training interventions.

• Outcome Correlation: The framework correlates real-time
performance data with surgical outcomes, contributing to a
feedback loop that helps refine both the control system and
the training protocols. Additionally, MI helps visually and
numerically explain how specific data (e.g., instrument tra-
jectories, EEG patterns) influence performance assessments.
The two-sided connection provides an adaptive relationship
between the component and MI (e.g., emphasizing temporal
motion irregularities if fine motor control is a known issue).
This transparency enables surgeons and educators to digest
complex analytics in an intuitive and actionable manner.

Interactions Between Components: The proposed framework
functions as an interconnected system in which each component
reinforces and informs the others. In this system, the data acquisi-
tion module collects multi-modal information (including visual,
kinematic, and physiological data) and feeds it into the DL-based
analysis module, which interprets these data and subsequently
informs the adaptive control system that provides real-time feed-
back to the surgeon. Meanwhile, the continuous skill assessment
module monitors performance metrics and updates the surgeon’s
skill profile, which in turn is used to refine control strategies and
training protocols. By integrating these diverse data streams into a
unified framework, this approach bridges gaps observed in previ-
ous research, enhancing intraoperative decision-making and foster-
ing a continuous learning environment that ultimately improves
surgical outcomes and training efficiency. Additionally, the system
integrates MI-based explanations that help visualize how specific
inputs influence assessment outcomes. These explanations support
clearer decision-making, promote user understanding of AI-driven
suggestions, and contribute to more informed adjustments during
both training and live procedures.

CONCLUSION

This study systematically reviewed recent advances in integrating
DL with the da Vinci Surgical System, highlighting key innova-
tions in autonomous instrument control, real-time image-guided
navigation, skill assessment, and sensorless haptic feedback. These
developments show great promise, yet challenges persist in data
standardization, real-time performance, domain adaptation, and
model interpretability. To address these challenges, the review
organized recent DL applications into a comprehensive conceptual
framework that supports real-time feedback, adaptive control, and
continuous skill assessment, providing a foundation for future
development and validation in RAS. As DL advances alongside
sensing technologies, user-interface research, and evolving regula-
tory guidance, the framework can steer innovation toward safer,
more autonomous, and intelligent surgical systems that improve
both clinical practice and surgical education.

Although this preliminary framework is an important step to-
ward a multi-modal DSS for RAS, further research and rigorous
validation remain essential to assess real-world feasibility, optimize
each component, and fully unlock the benefits of this integrated
approach. The included studies vary methodologically, and many
were conducted in simulated or controlled settings rather than
operating rooms. Future work should prioritize clinical validation
through well-designed prospective trials and enhance model trans-
parency to foster surgeon trust and ensure robustness under real-
world conditions. Ongoing updates to the da Vinci platform must
be tracked to keep the framework compatible and clinically rele-
vant. Progress will require close collaboration among engineers,
surgeons, data scientists, and regulators to translate laboratory
prototypes into safe, widely adopted clinical tools.
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