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ABSTRACT This study presents a modified Transmission Line Modelling (TLM) method for simulating bioheat transfer in biological
tissues, with a particular focus on accounting for non-unidirectional blood flow. While the Pennes bioheat equation has been widely used
for such problems, it assumes unidirectional perfusion and may overlook important thermal effects introduced by non-unidirectional blood
flow. To address this limitation, a TLM-based formulation of the Klinger bioheat equation known for incorporating flow directionality is
developed and implemented for one-dimensional (1D) problems. A novel TLM cell model is introduced to represent the governing equation
and its associated boundary conditions. Validation is performed through a 1D multilayer human tissue model exposed to electromagnetic
(EM) fields at multiple 4G carrier frequencies. Comparative results with the Finite Element Method (FEM) show strong agreement,
especially under steady-state conditions. Furthermore, the proposed model reveals that the impact of non-unidirectional blood flow
becomes more pronounced in thicker tissue layers, confirming the importance of incorporating convective terms. This work demonstrates
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that the modified TLM approach provides a stable, efficient, and more physiologically accurate method for bioheat simulations.

INTRODUCTION

Bioheat transfer plays a critical role in understanding thermal
interactions within biological tissues (Singh 2024; Ostadhossein
and Hoseinzadeh 2024), with wide-ranging applications in medi-
cal diagnostics (D’Alessandro et al. 2024; Akulova and Sheremet
2024), hyperthermia-based therapies (Jiang 2024; Sherief et al. 2024),
and cryosurgery studies (Barman et al. 2021; Kumar and Rai 2022)
among others. Traditional models, such as Pennes’ bioheat equa-
tion (Pennes 1948), have provided a foundational framework for
analysing heat conduction in perfused tissues. However, these
models often assume simplified blood flow patterns, typically uni-
directional and spatially averaged perfusion, which may not ade-
quately capture the complexity of heat transmission in biological
tissues (Hristov 2019; Tucci ef al. 2021).

The Transmission Line Modelling (TLM) method has gained at-
tention in the literature as a robust numerical technique for solving
the wave equation, the diffusion equation and the linear combina-
tion of both wave and diffusion types of partial differential equa-
tions (PDEs) (Christopoulos and Christopoulos 1995; Aricioglu
and Ferikoglu 2021; Johns 1977). A key advantage of the TLM
method lies in its unconditional stability and the fact that it does
not require matrix inversion for time-domain solutions, making
it both efficient and scalable for large and complex simulations
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(Milan and Gebremedhin 2018).

In this study, a modified TLM method is presented for simu-
lating bioheat transfer, extending the classical framework by in-
corporating non-unidirectional blood flow effects. The Pennes
bioheat equation is one of the most commonly used models in the
literature for solving bioheat transfer problems (Ostadhossein and
Hoseinzadeh 2022; Abro et al. 2021; El-Sapa et al. 2024; Ezzat et al.
2014; Ferras et al. 2015). However, as noted by H.G. Klinger, the
Pennes equation neglects the effects of non-unidirectional blood
flow, which may lead to inaccuracies (Klinger 1974). Therefore,
this study employs the Klinger bioheat equation as an alterna-
tive. To implement this, a new TLM cell model was developed
that accounts for non-unidirectional blood flow. To the best of the
author’s knowledge, there is currently no TLM-based implemen-
tation of the Klinger bioheat equation in the literature. Thus, the
TLM model for the Klinger equation constitutes the novel contri-
bution of this work. For simplicity, only the one-dimensional (1D)
case is considered.

The remainder of the paper is organized as follows: Section 2
presents the materials and methods. Section 3 provides numerical
simulations and results. Finally, Section 4 concludes the paper
with a summary of findings and perspectives for future work.

MATERIALS AND METHODS

In this section, the application of the TLM method to 1D bioheat
problems is explained. The TLM method can be used to solve
wave equations, diffusion equations, or any combination of the
two. The general thermal diffusion equation is:
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Here, k is the thermal conductivity (W/mK), T is the temper-

ature (K), p is the density (kg/ m?), Cis the specific heat capacity

(J/kgK), and Q is the heat source term (W/ m3). In biological tis-

sues, thermal diffusion described by the Pennes bioheat equation

is given by (Pennes 1948)

kV2T = pC—

JaT
kTva = pTCTE =+ wab(T — Tb) — Qmet — Qg. (2)

Here, k7 is the thermal conductivity of the tissue (W/m-K), T is
the temperature (K), pr is the tissue density (kg/ m3), Cr is the spe-
cific heat capacity of the tissue (J/kg-K), wy, is the blood perfusion
rate (kg/m°s), Cy is the specific heat capacity of blood (J/kg-K),
Ty, is the initial temperature of blood (K), Qyef is the metabolic
heat generation rate (W/ m®), and Q, is the power absorbed by the
tissue from an external heat source (W/m?). The Klinger bioheat
equation is (Klinger 1974):

oT -

krV2T = prCr—- + (prCr) (i VT) = Qmet = Qe-  (3)
The term (orCr)(if - VT) represents the effect of blood flow ve-
locity on heat distribution within the tissue, where if is the velocity
vector (m/s). In this model, the physical properties of the tissue
are assumed to be constant, and the blood flow is considered as an

incompressible.

The new transmission line model for Klinger bioheat equation

The 1D transmission line that models the Klinger bioheat equation
is shown in Figure 1
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Figure 1 The 1D TLM circuit for the Klinger bioheat model.

In Figure 1, the current source models the metabolic and other
heat sources (Milan and Gebremedhin 2018; Desai et al. 1992; Mi-
lan et al. 2014; Milan and Gebremedhin 2016), while the voltage-
controlled voltage source represents the effect of blood flow on the
bioheat distribution. Applying the Kirchhoff’s Voltage Law (KVL)
to the circuit in Figure 1 yields.

oV Al Al oI, Al
T2 Woltao TRk
If (4) is rearranged and both sides of the equation are divided

by Al/2, then the following is obtained

—V=0. @)

IV 2a 8

Applying Kirchhoff’s Current Law (KCL) at node V in Figure 1
gives:

alz Al Al Al QV B
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If (6) is rearranged and both sides are divided by L yields:
dly oV 2Ig
5. = -GV — Cﬁ + = AL (7)

Taking the derivative of (5) with respect to z, and the derivative
of (7) with respect to ¢, then combining the two yields:

ichiJr(LGJrRC)a—VJrRGV =
922 e ot Al 2z Al ot Aés')

209V L dls RIg

(8) contains both wave and diffusion terms. Since the bio-
heat equation is fundamentally a diffusion equation, the diffu-
sion terms should dominate. This is ensured by the condition:
LG + RC > wLC where R, L, G, and C denote the resistance,
inductance, conductivity, and capacitance per unit length of the
transmission line, and w is the angular frequency. A simple way
to satisfy this condition is by setting L = 0, which eliminates the
wave term in (8). When L = 0, (8) simplifies to:

2V 1% 209V RIg
92 RO TRV G T A ©)

By comparing (3) with (9), the equivalence relations shown in
Table 1 can be established.

For the transmission line shown in Figure 1, the resistance R
is selected as 1/kt. The remaining lumped parameters are then
calculated accordingly, based on this choice. The corresponding
values of the lumped elements for the 1D transmission line, ex-
pressed in terms of the tissue’s thermal properties, are summarized
in Table 2.

Boundary Condition Models in the TLM Used for Bioheat Prob-
lems

Heat transfer problems, including those involving bioheat transfer,
typically involve four types of boundary conditions: interface
boundary conditions, Dirichlet boundary conditions, Neumann
boundary conditions, and convection boundary conditions. For
simplicity in modeling these conditions, the effect of blood flow
velocity on heat transfer is neglected at the boundaries.

Interface Boundary Condition The interface boundary condition is
used in structures composed of multiple different materials. For
the interface boundary condition to be valid, the following two
conditions must be satisfied:

¢ The surfaces of the two different materials in contact must be
at the same temperature.
¢ The interface must not store any energy.

The interface boundary condition can be defined as in (10).

—k71 aaT —k12 %TZ (10)
Here, k1 and kt; represent the thermal conductivities of two
different tissues, while T; and T, denote the temperature distri-
butions in the two different tissues. This boundary condition
demonstrates the applicability of the TLM method in solving bio-
heat transfer equations for heterogeneous media. When examining
the equivalencies given in Table 2, it is observed that the inverse of
thermal conductivity is the R parameter of the transmission line,
while the voltage corresponds to temperature. Therefore, when
applying (10), the interface boundary condition can be represented
as shown in Figure 2.
In Figure 2, at the surface where the two tissues are in contact,
i.e., where the transmission line models are connected, the voltages
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Table 1 Equivalence between the 1D Transmission Line and Klinger Bioheat Equation.

1D Transmission Line

Klinger Bioheat Equation

V (V) T (K)

RC (Q-F/m?) % (J-kg/m?)

20 m) er2r i)

RG (1/m?) “’Ii’—TCh (W/m3-K)

% (Vim?) wyCy Ty, -i;(TQmet + Q. (K/m?)

Table 2 Equivalence between 1D Transmission Line Lumped Parameters and Thermal Properties dependent Parameters of Tissue.

1D Transmission Line Lumped Parameters

Thermal Properties dependent Parameters of Tissue

1
R (©)/m) — (K-m/W)
kt
C (F/m) prCr (J/m3-K)
G (1/Q/m) wy,Cpy (W/m3-K)
o prCr|ii|Al
kr
Is (A) (wpCy Ty + Qmet + Qe )AL (W/m?)
Interface Boundary but the surface temperature remains constant as the solid or liquid
| undergoes phase change.
R, Vi R, I, I R, Vo R, In bioheat transfer problems, the Dirichlet boundary condition
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Figure 2 The circuit model for interface boundary condition in the
TLM.

are equal, and there is no circuit element that stores energy at the
interface. This satisfies the two conditions required for the interface
boundary condition. The currents I; and I, in the figure are equal
and can be calculated as in (11).

LM
1= Rlax'

1 9V,
Lh=——=—2 11
2 R, o1 (11)
el _ 1%
== Rlax_ RzaX.

Dirichlet Boundary Condition In heat transfer problems, the Dirich-
let boundary condition indicates that the surface temperature re-
mains constant. An example of this boundary condition occurs
when the surface is in contact with a melting solid or a boiling
liquid. In both cases, heat transfer occurs at the contact surface,
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can be implemented in the TLM method by connecting a fixed
voltage source at the end of the TLM cell to satisfies the Dirichlet
condition. The modelling of this boundary condition is shown in
Figure 3.

Dirichlet boundary

RV R I

Tissue

Figure 3 The circuit model for the Dirichlet boundary condition in the
TLM.

Neumann Boundary Condition In heat transfer problems, the Neu-
mann boundary condition is applied when the rate of temperature
change, or the heat flux, at the boundary surface is known. This
situation is mathematically expressed as in (12).

aT
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Here, gy is the heat flux at the boundary surface (W/m), and kt
is the thermal conductivity of the tissue (W/m:-K). The Neumann
boundary condition in the TLM model is shown in Figure 4.

Neumann Boundary

Tissue

Figure 4 The circuit model for the Neumann boundary condition in
the TLM.

In Figure 4, I; and Iy are equal, and can be calculated as follows:

oo LoV
N="Rox

In the Neumann boundary condition, the case where the heat
flux at the boundary surface is zero is a special case and is also
referred to as the insulated (adiabatic) boundary condition. This
situation is mathematically expressed as in (14).

L = (13)

qy = _kTE =0. (14)

The adiabatic boundary condition in the TLM model is shown
in Figure 5. In the figure, since the transmission line is terminated
with an open circuit, the value of current I; is zero. Thus, the
condition given in (14) is satisfied.

Adiabatic Boundary

Tissue

Figure 5 The circuit model for the adiabatic boundary condition in
the TLM.

Convection Boundary ConditionIn heat transfer problems, the
convection boundary condition is also known as Newton’s bound-
ary condition states that the heat transfer at the boundary surface
is obtained from the conservation of energy at the surface. It is
assumed that no energy is stored at the boundary surface. There-
fore, the net heat flux entering the surface is equal to the net heat
flux leaving the surface. Mathematically, the convection boundary
condition is expressed as in (15).
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Here, kt is the thermal conductivity of the tissue (W/m-K), T is
the temperature in the tissue (K), & is the heat transfer coefficient
at the boundary surface (W/m), and Tr is the temperature on the
other side of the boundary surface. The model for the convection
boundary condition is shown in Figure 6.

—kr h(Tr —T). (15)

Convection Boundary

R |4 R I I, RT
+
v Ax
C V+ a7z E Vr
- Tissue 7

Figure 6 The circuit model for the convection boundary condition in
the TLM model.

In Figure 6, the currents I; and I; are equal and can be written
as follows.

L _L1ov
= "Roax’
1
L=~ R*(V - Vr), (16)
T
10V 1
L=hL=--2— _(v-v.
1=Dh R 3 RT( T)

In Table 3, the modelling of boundary conditions of the heat
transfer problems in TLM is summarized.

SIMULATIONS AND RESULTS

In the simulation a 1D bioelectromagnetic problem is considered.
In the problem a 1D multilayer human body tissue model selected
for the study. The multilayer human body tissue model used in
this work is shown in Figure 7. The model consists of skin, fat,
and muscle tissues, with thicknesses of 1 mm, 4 mm, and 10 mm,
respectively (Lin 1986).

EM field

::> skin fat

Imm 4mm 10mm

muscle

Figure 7 Multilayer human body tissue model.

In this section, the resulting temperature rise due to EM expo-
sure in a one-dimensional (1D) multilayered human body tissue
model were obtained using both the Transmission Line Modelling
(TLM) method and the Finite Element Method (FEM). For the
tissue model presented in Figure 7, the distribution of EM fields
within the tissues was calculated at various 4G frequencies. The
carrier frequencies considered were 700 MHz, 900 MHz, 1800 MHz,
2100 MHz, and 2600 MHz. The incident electric field intensity was
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Table 3 The relationship between boundary conditions and the parameters of the TLM models.

TLM Heat Transfer Problem
Vi T
. V2 T,
Interface Boundary Condition
1/Rq ky
1/R; ka
Dirichlet Boundary Condition (Constant Vp Tp
Surface Temperature)
Neumann Boundary Condition In qy
Adiabatic Boundary Condition Open Circuit gy =0
. . Vr Tr
Convection Boundary Condition
1/Rp h

set to 10 V/m for all 4G frequencies. This selected field intensity is
below the general public exposure limits specified by the ICNIRP
(International Commission on Non-Ionizing Radiation Protection)
guidelines for all the given frequencies (ICNIRP 2009). The expo-
sure duration used in the temperature rise calculations was set to
2 hours.

Figure 8 shows the simulation setup for the 1D bioelectromag-
netic problem. In the figure, the lossy transmission lines labelled
Ts;, Trj, and Ty, represent the skin, fat, and muscle tissues, respec-
tively. In the simulation, the skin tissue is divided into 10 equal
segments, the fat tissue into 6 equal segments, and the muscle
tissue into 4 equal segments. The lengths of the TLM cells repre-
senting the skin, fat, and muscle tissues are 0.1 mm, 0.67 mm, and
1 mm, respectively. The impedance, denoted as Z; in the figure,
is chosen to be as open circuit. In other words, the simulation is
terminated with adiabatic boundary condition for simplicity.

TSi
% o ﬁz)ﬁs@;
o o o
TF1 TF
o o o o
™1 TMk
Jﬁ LOSSY e o o ﬁ LOSSY
o o o o To

Figure 8 The simulation setup for the 1D bioelectromagnetic prob-
lem.

TS1

40 | Arncioglu and Ferikoglu

The average temperature rise in the body tissue model after 2
hours of exposure to the EM field is shown in Figure 9. In Figure 9,
the temperature rise calculation is performed using both the TLM
method and the FEM method. Additionally, the ambient tempera-
ture is chosen to be 25°C for the temperature rise calculations.

When the results of both methods are compared, the temper-
ature rises obtained by both methods are quite similar. The total
average temperature rise in the tissue model decreases monoton-
ically with frequency at 4G frequencies. Even in the worst-case
scenario, the total average temperature rise is less than 0.1°C (~
0.07°C).

Figure 10 shows the temperature increases at both boundaries
of the muscle tissue in the analyses conducted using the Klinger
bioheat transfer equation-based FEM and TLM, the Pennes bioheat
transfer equation-based TLM method at 2600 MHz. The muscle
tissue was selected for this analysis because it is the thickest layer
in the model.

As seen in Figure 10, the temperature increases at both bound-
aries of the muscle tissue appear to be very similar between the
Klinger bioheat transfer equation-based TLM and the FEM method,
particularly in the steady-state condition. The temperature differ-
ence at both and of the muscle tissue is about Im°C. On the
other hand, the results obtained using the Pennes bioheat transfer
equation-based TLM show nearly identical temperature increases
at both ends of the muscle tissue. This difference arises because the
effect of blood flow velocity on temperature variation is neglected
in the Pennes bioheat transfer equation. As a result, more accurate
results were obtained using the newly developed Klinger bioheat
transfer equation-based TLM.

Computers and Electronics in Medicine
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Figure 9 The average temperature rise due to exposure to 4G fre-
quencies in a multilayered tissue model (top) TLM based method,
(bottom) FEM based method.
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Figure 10 Temperature increases obtained at observations points
in the muscle tissue using the Klinger and Pennes bioheat transfer
equations-based FEM and the TLM method.
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CONCLUSION

In this study, a modified Transmission Line Modelling (TLM)
method was developed and applied to bioheat transfer prob-
lems by incorporating the effects of non-unidirectional blood flow
through the Klinger bioheat equation. The method was validated
through simulations of a multilayer human body tissue model
exposed to 4G electromagnetic fields, with temperature rise pre-
dictions compared against those from the Finite Element Method
(FEM). The results demonstrate strong agreement between the pro-
posed TLM method and FEM, especially under steady-state condi-
tions. While the Pennes-based TLM model showed nearly symmet-
ric temperature distributions, the Klinger-based TLM method cap-
tured directional differences at tissue boundaries, underscoring the
importance of modelling convective transport. The observed total
average temperature rise remained below critical safety thresholds
in all test cases, supporting compliance with ICNIRP exposure
guidelines.

However, several limitations must be acknowledged. The as-
sumption of homogeneous tissue properties simplifies the geom-
etry and may not fully capture the complexities of real biolog-
ical structures. Additionally, the model neglects temperature-
dependent perfusion, which can influence thermal behavior in
vivo. Despite these simplifications, the study lays important
groundwork for extending TLM-based techniques to more anatom-
ically realistic geometries and heterogeneous tissue conditions in
future research. Overall, the Klinger-based TLM approach offers
enhanced accuracy and flexibility for modelling complex bioheat
transfer phenomena, particularly in scenarios where blood flow
directionality plays a significant role.
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