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ABSTRACT Titanium alloys are widely preferred in the healthcare sector as biocompatible materials due to their superior properties
such as low density and exceptional mechanical strength. Their low density provides lightweight solutions, and their density is closer to
that of human bone compared to other metallic alloys with similar strength. This similarity facilitates a balanced load distribution between
the bone and the implant, enhancing biomechanical compatibility. This study investigates the effects of alloying elements on the density of
titanium-based biomedical materials using a computational materials science approach. A total of 72 different compositions of Ti-Al-V
alloys were modeled using JMatPro software, and their densities were simulated at room temperature (25°C). The simulation produced a
comprehensive dataset, which was utilized to train an explainable artificial intelligence (XAl) model. Advanced interpretability techniques,
including SHAP (SHapley Additive exPlanations), LIME (Local Interpretable Model-agnostic Explanations), and Partial Dependence
Plots (PDP), were employed to elucidate the influence of each alloying element on the density. The dataset was analyzed using an
XAl-based regression model implemented with the Atrtificial Neural Network (ANN) algorithm. The interpretability graphs provided insights
into the individual contributions of the alloying elements, revealing their positive or negative effects on the density. The findings offer a
deeper understanding of the role of alloying elements in optimizing the performance of titanium-based biomedical materials, particularly in
achieving lightweight designs. This study highlights the potential of integrating computational material modeling with explainable Al to
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advance the design and development of high-performance lightweight materials for biomedical applications.

INTRODUCTION

Titanium and its alloys are widely recognized for their superior
properties, such as low density, excellent mechanical strength,
high corrosion resistance, and outstanding biocompatibility, which
make them ideal candidates for biomedical applications. Among
metallic materials, titanium'’s similarity in density to human bone
allows for better load distribution, significantly enhancing its
biomechanical compatibility as an implant material (Niinomi 2008).
Over the years, extensive research has been conducted to improve
the performance of titanium alloys by modifying their chemical
compositions with alloying elements, focusing on achieving opti-
mized mechanical properties and enhanced biological compatibil-
ity (Madalina Simona et al. 2019; Ikedaa et al. 2020).

Alloying elements such as niobium (Nb), tantalum (Ta), and zir-
conium (Zr) have been shown to positively influence the properties
of titanium alloys. These elements not only reduce the elastic mod-
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ulus, which minimizes the stress shielding effect, but also improve
the alloys’ strength, wear resistance, and corrosion resistance. This
is particularly important in biomedical contexts where the implant
material must integrate effectively with surrounding tissues while
maintaining structural integrity under physiological loads (Zhou
et al. 2007; Hayyawi et al. 2022). For instance, beta-titanium alloys
incorporating Nb and Ta exhibit low Young’s modulus and excel-
lent biocompatibility, making them ideal for orthopedic and dental
applications (Phume et al. 2012; Ivanov et al. 2018).

The development of titanium-based biomedical materials also
addresses concerns regarding the cytotoxicity of conventional al-
loys such as Ti-6Al-4V, where the presence of vanadium and alu-
minum may pose health risks. Research has shifted towards creat-
ing non-toxic titanium alloys by incorporating elements such as
niobium and zirconium, which maintain high mechanical perfor-
mance while eliminating adverse biological effects (Manojlovi¢ and
Markovié¢ 2023; Li et al. 2011). Furthermore, advanced manufactur-
ing techniques like additive manufacturing enable the production
of patient-specific implants, providing opportunities to tailor the
properties of titanium alloys to meet specific clinical needs (Alqat-
tan et al. 2020; Niinomi et al. 2016).
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Recently, computational materials science and machine learn-
ing approaches have emerged as powerful tools for exploring the
effects of alloying elements on the performance of titanium alloys.
Explainable Artificial Intelligence (XAI) methods, such as SHAP
and LIME, provide valuable insights into how each alloying ele-
ment contributes to key properties, guiding the development of
lightweight and biocompatible titanium materials (Barbinta et al.
2013; Togagar et al. 2022, 2021). By integrating experimental and
computational findings, researchers are now better equipped to de-
sign high-performance titanium alloys for biomedical applications,
further advancing the field of implant materials science.

MATERIALS AND METHODS

This study investigates the effects of alloying elements on the
density of titanium-based biomedical materials through a compu-
tational and data-driven approach. A total of 72 different compo-
sitions of Ti-Al-V alloys were modeled using JMatPro software,
enabling accurate simulation of material densities at room tem-
perature (25°C). The simulation results formed a comprehensive
dataset, which was subsequently used to train an Artificial Neural
Network (ANN)-based explainable AI (XAI) model. Advanced
interpretability techniques, including SHAP (SHapley Additive
exPlanations), LIME (Local Interpretable Model-agnostic Expla-
nations), and Partial Dependence Plots (PDP), were applied to
analyze the influence of individual alloying elements on density.
This integrated methodology combines computational material
science and machine learning to provide insights into the relation-
ship between composition and material properties, guiding the
optimization of lightweight titanium alloys for biomedical applica-
tions.

Dataset Preparation

The dataset utilized in this study comprises 72 different Ti-Al-V-
based alloy compositions, which were modeled within the compo-
sitional ranges provided in Table 1. The titanium content ranged
from 77% to 94%, while aluminum (Al) and vanadium (V) varied
between 3-7% and 2.5-5.4%, respectively. Trace elements such as
tin (Sn), zirconium (Zr), and molybdenum (Mo) were included
within limited ranges (0-2%, 0-4%, and 0—4%). These specific
composition ranges were selected based on their prominence in
biomedical alloy design, particularly to achieve optimal density
and mechanical properties (Brusewitz Lindahl et al. 2015). Each of
the 72 alloy compositions was modeled using JMatPro software,
and the density values at room temperature (25°C) were calculated
and recorded for each entry.

The choice of these composition ranges stems from the
widespread use of titanium-based alloys, particularly Ti-Al-V com-
binations, in biomedical applications such as orthopedic and dental
implants (Kartamyshev et al. 2020). Titanium, as the base mate-
rial, offers excellent biocompatibility, corrosion resistance, and a
density closer to that of human bone (Li et al. 2024). Aluminum is
included to stabilize the a-phase, providing strength and reducing
weight, while vanadium contributes to the p-phase, improving the
alloy’s flexibility and toughness (Luan et al. 2017). However, exces-
sive amounts of V and Al may lead to biocompatibility concerns,
prompting exploration of their optimal content (Bodunrin et al.
2020). Elements like Zr, Sn, and Mo were introduced to further
enhance specific properties, such as strength, corrosion resistance,
and stability, without compromising biocompatibility (Sun and Mi
2023). The simulation of density values at room temperature was
essential to evaluate the lightweight nature of the modeled alloys.
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Room temperature properties are particularly relevant for biomed-
ical applications where implants must retain consistent structural
and mechanical integrity under physiological conditions (Alipour
et al. 2022). By systematically analyzing 72 alloy compositions, this
study provided a comprehensive dataset for training an explain-
able Al model to elucidate the contributions of individual elements
to the density of titanium-based materials. Such insights are crit-
ical for advancing the design of lightweight, high-performance
biomedical materials optimized for biomechanical compatibility
(Wan et al. 2020).

Development of the Explainable Artificial Intelligence Model In
this study, an Artificial Neural Network (ANN)-based regression
model was employed to predict the density of titanium-based
biomedical materials, replacing conventional machine learning
algorithms such as XGBoost. ANNs are widely recognized for
their capability to model complex, non-linear relationships in high-
dimensional datasets, making them ideal for applications in ma-
terial science where properties depend on intricate compositional
interactions (Valipoorsalimi 2023). The use of ANN ensures robust
predictions by simulating material density for the 72 compositions
of titanium alloys. This approach was particularly advantageous
given the non-linear and multivariable nature of the relationship
between alloying elements and material properties (Maitra et al.
2024).

The ANN regression model was trained on a comprehensive
dataset generated through simulations using JMatPro software,
where the density values of titanium-based alloys were computed
at room temperature (25°C). The network architecture was op-
timized by fine-tuning hyperparameters such as the number of
hidden layers, neurons per layer, activation functions, and learning
rates to minimize errors and improve generalization capability (Ha-
gan et al. 2014). To prevent overfitting, regularization techniques
such as dropout and L2 weight penalties were incorporated, en-
suring that the ANN model remained robust across the dataset.
The high predictive accuracy achieved by the ANN highlights
its suitability for capturing complex relationships within the data
(Goodfellow et al. 2016).

To ensure the transparency and interpretability of the developed
ANN model, Explainable Artificial Intelligence (XAI) methods,
including SHAP (SHapley Additive exPlanations), LIME (Local In-
terpretable Model-agnostic Explanations), and Partial Dependence
Plots (PDP), were integrated into the analysis. XAI techniques
address the "black-box" nature of neural networks, providing in-
sights into how the input features (alloying elements) influence
the model’s predictions (Lundberg and Lee 2017). This step is
particularly crucial in material design and biomedical applications,
where understanding the effect of alloying elements on density can
guide the development of lightweight, high-performance materials
(Ribeiro et al. 2016).

SHAP was utilized to quantify the contribution of each alloying
element to the predicted density. By leveraging Shapley values
from cooperative game theory, SHAP ensures fair attribution of
feature importance to the model’s predictions (Scavuzzo et al. 2022).
This method offers both local (individual predictions) and global
(model-wide) interpretability, enabling a detailed analysis of how
elements like aluminum, vanadium, zirconium, and tin influence
the material density. For example, it was observed that increasing
the vanadium content consistently reduced density, while alu-
minum showed a more complex interaction, stabilizing density
within a specific range (Sun and Mi 2023).

LIME was implemented to further enhance local interpretability
by generating simplified surrogate models for individual predic-
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Table 1 Elemental Composition Ranges of Alloys in the Dataset (values represent wt%)

Ti (%) Al (%) V (%) Sn (%) Zr (%) Mo (%) Fe (%) N (%) C (%) H (%) 0O (%)
7794 3-5-7 2.5-3.54.5 0Oand 2 0and 4 0Oand 4 0.3 0.05 0.08 0.015 0.2
tions. LIME creates perturbations around specific alloy composi- Predicted value negative
tions and fits an interpretable model, such as linear regression, to 367 ] 490 Ti = ;2-51
approximate the behavior of the ANN model locally (Ferdib-Al- (min) 4.60 (max) .0.98 < Zr <= 1.02

Islam et al. 2023). This approach allowed for a clearer understand-
ing of the decision-making process for specific alloy compositions,
ensuring that model predictions aligned with physical and chem-
ical principles. The combination of SHAP and LIME provided a
multi-faceted view of model behavior, improving confidence in
the ANN predictions.

Finally, Partial Dependence Plots (PDPs) were employed to vi-
sualize the global effects of individual features on the predicted
density. PDPs reveal the average influence of an alloying element
while holding other elements constant, enabling the identification
of critical compositional ranges for density optimization (Fried-
man 2001). By integrating PDPs into the analysis, it was possible to
uncover non-linear dependencies and interactions, offering valu-
able insights into the optimal ranges for alloying elements. For
example, Zr and Sn demonstrated significant effects on density
only within specific intervals, highlighting their potential for fine-
tuning material properties.

RESULTS AND DISCUSSION

In this study, the influence of alloying elements on the density
of titanium-based biomedical materials was analyzed using an
explainable artificial intelligence (XAI) approach. The ANN-based
regression model demonstrated high predictive accuracy for den-
sity values, supported by advanced interpretability techniques
such as SHAP, LIME, and Partial Dependence Plots (PDP). These
methods provided comprehensive insights into the individual and
combined effects of alloying elements, enabling the identification
of critical ranges and interactions. The results revealed that cer-
tain alloying elements, such as zirconium (Zr) and tin (Sn), play
a significant role in enhancing the density, while others, such as
molybdenum (Mo) and vanadium (V), contribute to reducing the
density. These findings underline the potential of integrating com-
putational materials science with XAI to optimize the design of
lightweight titanium alloys for biomedical applications.

The results of the XAI analysis are illustrated in Figure 1, which
presents the predicted density value and the contribution of each
alloying element. The predicted density of the alloy composition
is approximately 4.60 g/cm?, as shown on the horizontal bar. The
SHAP plot highlights the positive (orange) and negative (blue)
contributions of individual elements. Notably, Zr (0.98 < Zr < 1.02
wt%) and Sn (-0.95 < Sn < 1.05 wt%) exhibit the most significant
positive effects on density, while Mo and Al negatively impact the
overall density. This visualization underscores the critical role of
individual alloying elements and their optimized compositions in
achieving the desired material properties for biomedical applica-
tions.

Figure 2 highlights the contributions of key alloying elements to
the density of titanium-based biomedical materials. The analysis
reveals that zirconium (Zr), tin (Sn), and aluminum (Al) have the
most significant positive impacts, with feature values of 1.02, 1.05,
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0.13
-0.09 <Al<=1.14
o.12

-0.95 < Sn <= 1.05
0.09

Mo <=-1.09
0.04H

-1.32 <V <=-0.09
0.00)
0<=0.00

Fe <=-0.00

H <=-0.00

Figure 1 Predicted density and SHAP-based contributions of alloy-
ing elements in titanium-based biomedical materials

and 1.14, respectively. These elements play a vital role in opti-
mizing the density while maintaining the mechanical properties
of the alloy. Conversely, molybdenum (Mo) and vanadium (V)
exhibit slight negative contributions (-1.09 and -0.09), reflecting
their density-reducing characteristics. Titanium (Ti), as the base
element, demonstrates a moderate negative impact (-0.80), consis-
tent with its lightweight nature. The negligible contributions of
other elements (O, Fe, N, C, H) suggest their minimal influence on
the alloy’s density within the studied composition. These insights
provide a comprehensive understanding of how specific elements
contribute to achieving desired material properties for biomedical
applications.

Feature Value
Al 1.14
Mo -1.09
V -0.09
(0] 0.00
Fe -0.00
N 0.00
C -0.00
H -0.00

Figure 2 Contributions of Alloying Elements to Density

Figure 3 presents the LIME (Local Interpretable Model-Agnostic
Explanations) analysis for the contributions of individual alloying
elements to the density of a specific titanium-based composition.
Positive contributions are shown in green, while negative ones
are indicated in red. Tin (Sn) and aluminum (Al) are the most
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significant positive contributors, with their effects observed within
the ranges -0.95 < Sn < 1.05 and -0.09 < Al < 1.14, respectively.
Titanium (Ti) also exhibits a moderate positive impact. Zirconium
(Zr) shows a neutral to slightly positive influence, whereas molyb-
denum (Mo) and vanadium (V) contribute negatively, reducing
the density. Elements such as oxygen (O), iron (Fe), nitrogen (N),
carbon (C), and hydrogen (H) display negligible contributions,
highlighting their limited role in this specific alloy composition.
These results provide localized insights into the effects of alloying
elements, enabling targeted optimizations for biomedical material
design.

LIME Explanation for Instance 1

-0.95 < Sn <= 1.05
-0.09 < Al <= 1.14 1
Ti <=-0.51+

-0.98 < Zr <= 1.02 4
Mo <= -1.09 4

-1.32 <V <= -0.09 I
0 <=0.00 -

Fe <= -0.00 -

N <= 0.00 -

C <=-0.00+

H <=-0.00 1

—001 000 001 002 003 004

Figure 3 LIME Explanation of Alloying Element Contributions

Figure 4 presents the SHAP dependence plots for various alloy-
ing elements, providing insights into their individual contributions
to the predicted density of titanium-based biomedical materials.
The plots reveal that aluminum (Al) and tin (Sn) have strong posi-
tive effects on density, showing a direct relationship as their values
increase. Zirconium (Zr) exhibits a nonlinear contribution, with its
optimal effect occurring within a specific range. Conversely, vana-
dium (V) and molybdenum (Mo) contribute negatively, reducing
density as their values increase. Elements like oxygen (O), nitrogen
(N), carbon (C), and hydrogen (H) show negligible SHAP values,
indicating minimal influence on density. These results highlight
the importance of optimizing the composition of critical elements
such as Al, Sn, and Zr to achieve desired density properties in
biomedical applications.

Figure 4 SHAP Dependence Plots for Alloying Elements
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CONCLUSION

This study investigated the effects of alloying elements on the
density of titanium-based biomedical materials using a compu-
tational materials science approach integrated with explainable
artificial intelligence (XAI). The findings demonstrated that spe-
cific elements, such as aluminum (Al), tin (Sn), and zirconium (Zr),
play a critical role in enhancing density, while others like molybde-
num (Mo) and vanadium (V) reduce it. SHAP and LIME analysis
provided valuable insights into the contributions of individual
elements, revealing their importance in achieving optimal density
for lightweight and biocompatible materials. The integration of
computational modeling with XAI enables precise evaluation of
complex relationships between alloy compositions and material
properties, offering a systematic approach to improving implant
designs.

Future studies should explore a broader range of alloying ele-
ments and their interactions to optimize additional properties such
as mechanical strength, corrosion resistance, and biocompatibility.
Advanced machine learning techniques combined with experi-
mental validation can further enhance the reliability of predictions
and provide a more comprehensive understanding of material
performance under physiological conditions. The adoption of such
data-driven methodologies holds significant potential for advanc-
ing the development of high-performance titanium alloys tailored
for specific biomedical applications.
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