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ABSTRACT Diabetes continues to be a complicated and prevalent metabolic illness, providing a serious
burden to public health. While machine learning approaches like extreme gradient boosting (XGBoost) provide
intriguing options for diabetes prediction, their ’black-box’ nature typically limits clinical interpretability. To
overcome this gap, our work applied SHapley Additive exPlanations (SHAP) to give insights into the XGBoost
model’s predictions. The dataset utilized in this research comprised of 253,680 patients and contained 21
parameters, such as General Health Status, High Blood Pressure Status, Age, and Body Mass Index. After
feature selection using Recursive Feature Elimination (RFE), 15 important characteristics were discovered. In
the test set, the XGBoost model obtained an accuracy of 86.6%, precision of 54.1%, recall of 17.0%, and an
F1-score of 25.9% for the Original dataset. For the RFE dataset, the model displayed an accuracy of 86.6%,
precision of 54.9%, recall of 16.5%, and an F1-score of 25.3%. SHAP analysis found that General Health
Status, High Blood Pressure Status, Age, and Body Mass Index were the most important characteristics in
both the Original and RFE datasets. This work provides as a platform for transparent and clinically applicable
predictive modeling, assisting in early diabetes identification and preventive healthcare.
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INTRODUCTION

Diabetes, marked by chronic high blood sugar levels, is a pressing
global health concern. Its prevalence continues to rise, leading to
increased risks of cardiovascular diseases and other severe health
issues. The World Health Organization (WHO) states that around
1.28 billion adults aged 30–79 years suffer from diabetes, predomi-
nantly in low- and middle-income nations (Diabetes - World Health
Organization (Organization et al. 2019). Yet, less than half receive
proper diagnosis and treatment, with a mere one in five effectively
managing their condition (Mihai et al. 2022). Such disparities high-
light the pressing need for better diabetes prevention, diagnosis,
and management.

In the last decade, the allure of machine learning in refin-
ing predictive models for diabetes has captivated researchers

Manuscript received: 24 April 2024,
Revised: 10 May 2024,
Accepted: 15 May 2024.

1mkutlu@subu.edu.tr (Corresponding author)
2 turkerberkdonmez@yahoo.com
3 cf@ecs.soton.ac.uk

(Lin et al. 2022; Gómez-Peralta and Abreu 2022; Qin et al. 2022;
Shankaracharya 2017; Afsaneh et al. 2022). This has given birth to
innovative methods for predicting various outcomes related to di-
abetes, from individualized risk evaluations to disease behaviour.
These methods provide crucial insights into risk factors, pushing
the frontier of tailored healthcare. However, many machine learn-
ing tools are criticized for their opaque "blackbox" methodologies
(Carreras et al. 2021). For diabetes prediction, this opacity means
healthcare professionals might struggle to grasp the biomarkers
and elements that drive predictions. Considering the intricate re-
lationships between diabetes risk factors, this lack of clarity can
limit the models’ clinical and public health value.

Several biomarkers critical to diabetes’ onset and progression
are recognized in medical literature (Gómez-Peralta and Abreu
2022). Dyslipidemia, notable for its impact on cholesterol, is a
recognized cardiovascular risk, and its ties with diabetes are well-
documented (Gutch et al. 2017). Other factors, like electrolyte
imbalances (high sodium, low potassium), iron metabolism, vi-
tamin B12, and HbA1c levels, are also significantly linked with
diabetes (Hasan et al. 2021).
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To enhance model transparency, the research community has
pivoted towards explainable artificial intelligence (XAI) method-
ologies (Hasan et al. 2021). Notably, SHapley Additive exPlanations
(SHAP) have risen in prominence which demystifies both global
and local feature significance, offering a clearer understanding
of diabetes risk factors, and aiding more informed medical and
public health decisions (Gong et al. 2022).

This study delves deep into the existing literature on diabetes
prediction, emphasizing transparent machine learning methods.
SHAP is employed to elucidate an XGBoost model’s predictions,
utilizing a commonly available diabetes dataset from The Behav-
ioral Risk Factor Surveillance System. Study involves 253.680
participants with their diabetes status and relevant clinical data.
This includes chronic illnesses, medications, and other markers.
Firstly, one of the tree-based machine learning models called XG-
Boost is selected due to its better performance. This is followed
by employing SHAP explanations to uncover novel links between
diabetes risk and biomedical parameters. This work enriches the
understanding of machine learning models in diabetes prediction
and sets the stage for transparent, clinically pertinent predictive
modeling in diabetes research and care. The paper is structured as
follows:

• The Methodology section delves into our research design,
discussing data gathering, analytical methods, the XGBoost
model, RFE(Recursive Feature Elimination) feature selection
method and the use of SHAP for enhancing interpretability.

• The Results section shows our results, concentrating on the
performance measures of the XGBoost model in both the Orig-
inal and RFE datasets. It also digs into the SHAP analysis,
emphasizing the most relevant factors like General Health
Status, High Blood Pressure Status, Age, and Body Mass In-
dex in both datasets. The section further covers the modest
differences in accuracy, precision, recall, and F1-score between
the Original and RFE sets, proving the efficiency of our feature
selection approaches like RFE in diabetes prediction.

• A comprehensive discussion interprets our results, underlin-
ing the significance of transparent machine learning in dia-
betes research and healthcare choices in Discussion section.

• Finally, Conclusion section highlights the benefits of trans-
parent machine learning in diabetes prediction, addresses
constraints, and suggests future research directions to elevate
diabetes risk evaluation, ultimately aiming for superior dia-
betes care and preventive medicine for better public health.

METHODOLOGY

In this work, two variations of the Behavioral Risk Factor Surveil-
lance System (BRFSS) dataset, a yearly telephone survey conducted
by the Centers for Disease Control and Prevention (CDC), were
subjected to a thorough statistical analysis. The original dataset
has two categorical outcome classes: ’0,’ which denotes the lack
of diabetes or the presence of gestational diabetes alone, and ’1,’
which denotes either prediabetes or diabetes. There were origi-
nally 21 feature variables in this dataset, which included a variety
of behavioral and health characteristics. Recursive Feature Elimi-
nation (RFE) was used as a feature selection strategy to narrow the
feature space and improve the model’s ability to forecast. A second
dataset was created as a result, however only 15 of the most useful
features were kept. On both the original and the RFE-selected
datasets, subsequent SHapley Additive exPlanations (SHAP) stud-
ies were performed to clarify the impact of each variable on the
predictive model. This divided method provided a sophisticated

assessment of feature relevance and offered insightful informa-
tion on the characteristics most responsible for the likelihood of
developing prediabetes or diabetes. These findings provide health-
care professionals with a strong analytical framework that enables
more focused interventions based on the recognized important
variables.

70% of the dataset is allocated for training, while the remaining
30% is used for testing, leading to a 70/30 data split. The ’Discus-
sions’ section also presents findings from a tenfold cross-validation,
providing insights into the model’s stability. Model interpretation
is further enhanced using SHAP (SHapley Additive exPlanations).

Model Training
In this section, a detailed description of the classifier that has been
implemented for the purpose of categorizing the diabetes dataset
has been presented. A classifier, a fundamental machine learning
algorithm, is utilized to partition the input data into predefined cat-
egories. In our specific context, the classifier employs the patient’s
features as input to discern the presence or absence of diabetes.

High levels of accuracy in predicting diabetes based on a wide
range of attributes, including high blood pressure status, high
cholesterol levels, cholesterol check status, Body Mass Index,
stroke status, heart disease or attack status, physical activity status,
heavy alcohol consumption, general health status, mental health
status, difficulty walking or climbing stairs, gender, age category,
education level, and income level are delineated in Table 1. Mod-
els like XGBoost, AdaBoost, Random Forest, and other tree-based
standards provided excellent and comparable outcomes in the
studies. XGBoost has been chosen as the main model despite al-
ternative models having equivalent performance that has been
demonstrated. XGBoost is regarded as the outstanding model due
to its usability and practical efficiency, which are especially well-
suited to the study objectives. It is the best option for addressing
the complexity faced in our work in diabetes forecasting because of
its exceptional computational speed mixed with strong predictive
skills.

eXtreme Gradient Boosting (XGBoost)
The XGBoost classifier builds upon the Gradient Boosting classifier,
which also emphasizes speed and performance. One of the no-
table features of XGBoost is its regularized learning, which helps
to smooth out the final learned weights and prevent overfitting.
Overfitting occurs when the model performs well on the train-
ing data but poorly on the testing data due to learning both the
information and noise from the training data (Fitriyani et al. 2020).

The objective function L(θ) of the XGBoost can be written as:

L(θ) =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk) (1)

where n is the number of training instances, yi is the actual
value for the ith training instance, ŷi is the predicted value for the
ith training instance, l(yi, ŷi) is the training loss, which measures
the difference between the predicted and actual values for each
training instance, K is the number of trees, fk is the kth tree, and
Ω( fk) is the regularization term for the kth tree, which penalizes
the complexity of the model to avoid overfitting.

The regularization term Ω( fk) can be further defined as:

Ω( fk) = γT +
1
2

λ∥w∥2 (2)

Where T is the number of leaf nodes in the kth tree, w is the
vector of scores on the leaf nodes in the kth tree, and γ and λ
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■ Table 1 Model Metrics and Confusion Matrixes

Model Accuracy Precision Recall F1-Score Confusion Matrix

XGBoost 0.8656 0.5413 0.1701 0.2588
64092 1513

8713 1786

Adaboost 0.8650 0.5402 0.1955 0.2871
63858 1747

8446 2053

Random Forest 0.8599 0.4788 0.4789 0.1748
63608 1997

8663 1836

Decision Tree 0.7979 0.2930 0.3289 0.3099
57274 8331

7045 3454

E. Boosting Machine 0.8654 0.5662 0.1664 0.2573
64266 1339

8751 1748

Naive Bayes 0.7718 0.3166 0.5647 0.4057
52809 12796

4570 5929

Logistic Regression 0.8652 0.5395 0.5395 0.1585
64184 1421

8834 1665

KNN 0.8468 0.3948 0.2066 0.2713
62279 3326

8329 2170

SVM 0.7798 0.2088 0.2184 0.2106
57117 8488

8264 2235
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■ Table 2 Variable names, their indications, and value scales along with patient data.

Variable Name What It Indicates Value Scales Pt6 Pt156 Pt34 Pt265

Diabetes_binary Diabetes Status 0=no dia-
betes, 1=predi-
abetes/diabetes

0.0 1.0 1.0 0.0

HighBP High blood pres-
sure status

0 = no high BP, 1 =
high BP

1.0 1.0 1.0 1.0

HighChol High cholesterol lev-
els

0 = no high choles-
terol, 1 = high
cholesterol

0.0 1.0 1.0 0.0

CholCheck Cholesterol check
status

0 = no check in 5
years, 1 = yes

1.0 1.0 1.0 1.0

BMI Body Mass Index Continuous Scale 30.0 47.0 24.0 36.0

Smoker Smoking status 0 = no, 1 = yes 1.0 1.0 1.0 1.0

Stroke Stroke status 0 = no, 1 = yes 0.0 0.0 0.0 0.0

HeartDiseaseorAtc Heart disease or at-
tack status

0 = no, 1 = yes 0.0 0.0 0.0 1.0

PhysActivity Physical activity sta-
tus

0 = no, 1 = yes 0.0 0.0 0.0 0.0

Fruits Fruit consumption 0 = no, 1 = yes 0.0 1.0 0.0 1.0

Veggies Vegetable con-
sumption

0 = no, 1 = yes 0.0 0.0 0.0 1.0

HvyAlcoholCons Heavy alcohol con-
sumption

0 = no, 1 = yes 0.0 0.0 0.0 0.0

AnyHealthcare Healthcare cover-
age

0 = no, 1 = yes 1.0 1.0 1.0 1.0

NoDocbcCost Avoided doctor due
to cost

0 = no, 1 = yes 0.0 0.0 0.0 0.0

GenHlth General health sta-
tus

1=excel, 2=very
good, 3=good,
4=fair, 5=poor

3.0 3.0 2.0 3.0

MentHlth Mental health sta-
tus

1-30 days 0.0 0.0 0.0 0.0

PhysHlth Physical health sta-
tus

1-30 days 14.0 0.0 0.0 2.0

DiffWalk Difficulty in walking 0 = no, 1 = yes 0.0 1.0 0.0 1.0

Sex Gender 0 = female, 1 = male 0.0 0.0 0.0 0.0

Age Age category 1 = 18-24, 9 = 60-
64, 13 = 80 or older

9.0 11.0 12.0 11.0

Education Education level 1 = Never attended,
6 = College gradu-
ate

6.0 6.0 3.0 5.0

Income Income level 1 = less than
$10,000, 8 =
$75,000 or more

7.0 5.0 3.0 4.0
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are regularization parameters that control the complexity of the
model. Large weights are penalized by the regularization term,
which also encourages the model to have more streamlined and
comprehensible structural elements. The goal of the model is to
minimize this loss over the entire training set. Given that our
dataset is also noisy, XGBoost is one of the appropriate classifiers
for it Shao and Hu (2022). The values of the hyperparameters are
given in Table 3.

Recursive Feature Elimination (RFE)

Finding the ideal subset of features for a particular machine learn-
ing study is the goal of the feature selection method known as
recursive feature elimination (RFE)Zhang et al. (2022). When using
RFE, a model is fitted to the data, and the features are then ranked
according to how important or relevant they are to the prediction.
The least significant characteristics are then gradually removed
by RFE until the target number of features is obtained or a stop-
ping requirement is satisfied. By lowering the dimensionality and
complexity of the data, as well as by removing noise and multi-
collinearity among features, RFE can enhance the effectiveness and
performance of machine learning models.Chen and Jeong (2007)

Recursive Feature Elimination (RFE) is a feature selection
algorithm commonly employed in machine learning for iden-
tifying a subset of most predictive features. Given a dataset
D = {(x1, y1), . . . , (xn, yn)} with n samples, where each xi ∈ Rd

is a d-dimensional feature vector and yi is the corresponding
label, RFE aims to minimize a loss function L( f (x; θ), y) by se-
lecting the most relevant features. The optimization objective is
θ∗ = arg minθ ∑n

i=1 L( f (xi; θ), yi). The algorithm starts by fitting
a predictive model f : Rd → R parameterized by θ to the entire
feature set. It then ranks the features based on their importance,

often calculated as Importance(j) =
∣∣∣ ∂L

∂xj

∣∣∣ for each feature j, and
recursively eliminates the least important ones. This process con-
tinues iteratively until the desired number of features is retained.
The computational complexity of RFE is generally O(d × p), where
p is the complexity of the base estimator used for ranking features.
RFE is particularly useful when model interpretability and sim-
plicity are as crucial as predictive performance, although it can be
computationally expensive for high-dimensional data.

Several machine learning models that offer some kind of feature
importance metric can be used with recursive feature elimination
(RFE). This comprises linear models with coefficients, tree-based
techniques with feature significance scores, and support vector
machines (SVMs) with their support vectors. It’s important to keep
in mind, though, that RFE functions as a wrapper technique and
requires the fitting of a new model for each subset of characteristics.
This might require a lot of work and increase the risk of model
overfitting. Table 2 provides more information on the 15 relevant
parameters that were chosen for our investigation using RFE.

Model Interpretation with SHAP

To augment the transparency of our XGBoost model and provide
clinically meaningful interpretations, we employed SHapley Ad-
ditive exPlanations (SHAP) as an interpretability tool. SHAP is
rooted in cooperative game theory, aiming to fairly allocate "pay-
outs" or contributions among features for a given prediction. Math-
ematically, the Shapley value ϕi of a feature i is computed as:

ϕi( f ) = ∑
S⊆N\{i}

|S|! · (|N| − |S| − 1)!
|N|! [ f (S ∪ {i})− f (S)]

where f (S) is the prediction of the model for feature subset S,
and N is the set of all features. These Shapley values represent
the marginal contribution of each feature to a specific prediction,
enabling us to decipher both global and local feature importance.

The application of SHAP to our XGBoost model adhered to a
systematic methodology. Initially, specific data preprocessing steps
tailored for SHAP analysis were executed. Utilizing the SHAP
library, Shapley values for each feature across all data points were
computed. These values were aggregated to form global feature
importance metrics, which can be mathematically represented as:

Global Importance(j) =
1
n

n

∑
i=1

|ϕij|

where ϕij is the Shapley value of feature j for data point i, and
n is the total number of data points. This provided an overarching
view of the most and least impactful features in diabetes prediction.
Interestingly, our analysis revealed that certain biomarkers, tradi-
tionally not emphasized in diabetes literature, played a significant
role in model predictions.

SHAP also excels in local interpretability, enabling us to dissect
individual predictions. For example, in case studies of specific
patients, the SHAP values highlighted the biomarkers that were
instrumental in classifying them as high-risk or low-risk for di-
abetes. This local interpretability is invaluable for clinicians, as
it provides personalized insights into each patient’s risk factors.
Mathematically, local interpretability can be examined through the
individual Shapley values ϕij, providing a nuanced understanding
of how each feature contributes to a specific prediction.

In XGBoost, SHAP values may be particularly useful for com-
prehending how various characteristics interact with one another.
The authors’ modification of SHAP values to take interaction ef-
fects into consideration led to the idea of SHAP interaction values.
These interaction values guarantee the explanations of each of
XGBoost’s unique estimations for interaction effects. In order to
highlight important interactions that XGBoost captures but that
could otherwise go undetected, SHAP interaction values discrimi-
nate between main effects and interaction effects for specific model
predictions.He et al. (2023)

An efficient tool for understanding XGBoost models is the
SHAP values. They constitute a significant theoretical break-
through by overcoming consistency problems and permitting the
separate assessment of main and interaction effects for individual
model predictions.This might highlight important interactions that
XGBoost has recorded but that were otherwise missed. Data sci-
entists are now better prepared to develop models that are more
clear and intelligible thanks to the introduction of SHAP values in
XGBoost.Gao et al. (2023)

RESULTS

Results of Classifications
First, two separate sets were created from the original dataset after
a data preparation step. The original collection, referred known as
the "Original Set," had 253,680 samples and kept all 21 features. The
second set, referred to as the "RFE Set," was created by choosing 15
important features from the initial 253,680 samples using recursive
feature elimination (RFE).

RFE was used to improve feature selection and reduce model
complexity. This approach chose 15 characteristics, which are listed
in Table reftab:attributes, including high blood pressure status,
high cholesterol levels, cholesterol check status, body mass index,
and others.
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■ Table 3 Hyperparameter values for the model.

Hyperparameter Value

eta (learning rate) 0.3

n_estimator (number of gradient-boosted trees) 100

Gamma (min split loss) 0

Max depth 6

Min child weight 1

Max delta step 0

subsample 1

Sampling method Uniform

The two sets—’Original’ and ’RFE’—were each put through an
XGBoost classifier separately to evaluate the precision and robust-
ness of our feature selections, as shown also in Table reftab:analysis-
results. Despite some variations in the measures, the classifier
performed well on both sets of data.

The classifier’s performance for the ’Original’ set was accuracy
of 86.6%, precision of 54.1%, recall of 17.0%, and F1-score of 25.9%.

Similar results were obtained for the ’RFE’ set, where the classi-
fier’s accuracy was 86.6%, precision was 54.9%, recall was 16.5%,
and F1-score was 25.3%.

These findings validate the efficacy of our feature selection
approaches by showing that both feature sets are useful for clas-
sification, although with minor changes in accuracy and recall
measures.

Explaining Model with SHAP

Machine learning algorithms have emerged as effective tools for
disease prediction in the evolving healthcare landscape. However,
the ’black-box’ nature of these models often makes it challenging to
interpret their predictions and understand the relative importance
of different input factors. To address this issue, interpretability
tools as SHAP have gained popularity. SHAP values provide a
nuanced understanding of the factors influencing illness risk by
quantifying the impact of specific attributes on the model’s pre-
diction. In this context, we explore the intricate network of health
factors affecting the likelihood of developing hypertension, a com-
mon and complex cardiovascular disease. Our goal is to analyze
the interaction of various health metrics, ranging from medication
use and standard risk factors to less obvious influencers, and how
they collectively influence the model’s predictions using patient-
specific SHAP values. This investigation highlights how machine
learning interpretability tools can enhance our understanding of
disease prediction and potentially guide therapeutic decisions.

study highlights the primary factors impacting hypertension
across various dataset modifications through the analysis of global
SHAP values. Several common trends and intriguing variances
are observed. The average magnitude of the SHAP values for each
feature over the entire dataset is evaluated, as depicted in Figure
1a.

To acquire a better understanding of how each feature effects
the model’s predictions, SHAP (Shapley Additive Explanations)

values were generated. Among all the characteristics, General
Health Status, High Blood Pressure Status, Age, and Body Mass
Index emerged as the most significant in both the Original and RFE
datasets. In the Original dataset, the SHAP values were notably
0.674 for General Health Status, 0.523 for High Blood Pressure
Status, 0.413 for Age, and 0.401 for Body Mass Index. Similarly,
in the RFE dataset, the comparable SHAP values were 0.673 for
General Health Status, 0.530 for High Blood Pressure Status, 0.411
for Age, and 0.404 for Body Mass Index as also shown in figure 1.
These values provide as a quantifiable indication of the average in-
fluence each of these qualities has on the model’s output, therefore
underlining their relevance in diabetes prediction.

These results validate the success of our feature selection tech-
niques by showing the resilience of the chosen features in predict-
ing diabetes, regardless of the feature set employed.

A more sophisticated knowledge of the model’s prediction abil-
ity is revealed when the individual SHAP values are thoroughly
analyzed and compared to the actual health situations of partic-
ular patients. Negative SHAP values for General Health Status
were seen starting with Patient 6, who was correctly identified
as not having diabetes (True Negative),as shown in the Figure 2,
-1.3621 in the "Original" set and -1.4022 in the "RFE" set. These
data support the model’s accurate prediction of a decreased risk
of diabetes, together with a negative SHAP value for high blood
pressure status (-0.5726 in "Original" and -0.5969 in "RFE").

Patient 156 had substantial positive SHAP values for BMI,
0.9521 in the "Original" set and 0.8867 in the "RFE" set, and was ap-
propriately diagnosed as having diabetes (True Positive).As shown
in the figure 2, positive SHAP values for High Blood Pressure Sta-
tus (0.5819 in ’Original’ and 0.6005 in ’RFE’) are confirmed to have
a significant influence in the model’s ability to diagnose diabetes
accurately.

However, the model’s forecasts did not show infallibility. Pos-
itive SHAP readings for High Blood Pressure Status were found
in both sets for Patient 34, who was incorrectly diagnosed as not
having diabetes (False Negative), as shown in the Figure 3, namely
0.5234 in the "Original" and 0.5418 in the "RFE". These were coun-
tered by a negative SHAP value for General Health Status (-0.5440
in ’Original’ and -0.4934 in ’RFE’), indicating that these competing
signs may have caused the inaccurate prediction to be confused.

Similar positive SHAP readings as shown in the figure 3, for
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■ Table 4 Attribution of the dataset and patient details with RFE Selection

No. Attribution Variable RFE Pt6 Pt156 Pt34 Pt265

1 High blood pressure HighBP Picked 1.0 1.0 1.0 1.0

2 High cholesterol levels HighChol Picked 0.0 1.0 1.0 0.0

3 Cholesterol check status CholCheck Picked 1.0 1.0 1.0 1.0

4 Body Mass Index BMI Picked 30.0 47.0 24.0 36.0

5 Smoking status Smoker 1.0 1.0 1.0 1.0

6 Stroke status Stroke Picked 0.0 0.0 0.0 0.0

7 Heart disease or attack HeartDorA Picked 0.0 0.0 0.0 1.0

8 Physical activity status PhysActivity Picked 0.0 0.0 0.0 0.0

9 Fruit consumption Fruits 0.0 1.0 0.0 1.0

10 Vegetable consumption Veggies 0.0 0.0 0.0 1.0

11 Heavy alcohol consmp. HvyAlcoholC Picked 0.0 0.0 0.0 0.0

12 Healthcare coverage AnyHealthcr 1.0 1.0 1.0 1.0

13 Avoided doctor due to cost NoDocbcCos 0.0 0.0 0.0 0.0

14 General health status GenHlth Picked 3.0 3.0 2.0 3.0

15 Mental health status MentHlth Picked 0.0 0.0 0.0 0.0

16 Physical health status PhysHlth 14.0 0.0 0.0 2.0

17 Difficulty in walking or climbing stairs DiffWalk Picked 0.0 1.0 0.0 1.0

18 Gender Sex Picked 0.0 0.0 0.0 0.0

19 Age category Age Picked 9.0 11.0 12.0 11.0

20 Education level Education Picked 6.0 6.0 3.0 5.0

21 Income level Income Picked 7.0 5.0 3.0 4.0
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(a) Global SHAP Values (b) Global SHAP Values (RFE)

Figure 1 Comparison of Global SHAP Values

(a) Local SHAP values for original dataset (b) Local SHAP values for RFE dataset

(c) Local SHAP values for original dataset (d) Local SHAP values for RFE dataset

Figure 2 Comparison of local SHAP values for Patient 6 and 156

BMI (0.5051 in ’Original’ and 0.5029 in ’RFE’) and High Blood Pres-
sure Status (0.5122 in ’Original’ and 0.4965 in ’RFE’) were reported
in the case of Patient 265 who was misdiagnosed as having dia-
betes (False Positive). Despite these signs, the model overestimated
the danger, which led to an inaccurate prognosis.

These distinct studies confirm the robustness of the feature
selection while also highlighting potential areas where more model

fine-tuning may be necessary for more precise and dependable
predictions.

SHAP Dependences for Variables

In the study, the clarification of how individual features influence
the model’s predictions was provided by SHAP dependence plots.
Additionally, how these relationships are modulated by other in-
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(a) Local SHAP values for original dataset (b) Local SHAP values for RFE dataset

(c) Local SHAP values for original dataset (d) Local SHAP values for RFE dataset

Figure 3 Comparison of local SHAP values for Patient 34 and 265

teracting variables was indicated by the color of each point on the
plots. A comprehensive understanding of the key variables and
their interactions that drive the model’s decisions was offered by
these plots.

Two distinct sets were utilized for this analysis: the ’Original’
set, which encompasses all 21 variables, and the ’RFE’ set, a refined
subset containing 15 selected features. In both sets, the identifi-
cation of the most impactful features was made: General Health
Status (GenHlth), High Blood Pressure Status (HighBP), Age, and
Body Mass Index (BMI), listed in descending order of their impor-
tance. A more comprehensive understanding of the implications
of these critical variables was enabled by the utilization of both
sets, thereby enriching the interpretability of the model.

It must be noted that rigorous statistical analysis has not been
applied to the SHAP values, which are intended to provide an
initial understanding of the relationships between the variables
and diabetes risk. For example, a greater likelihood of diabetes
was suggested by higher SHAP values for General Health Status
and High Blood Pressure Status in both sets, as illustrated in the
dependence plots.

Regarding Age, an increase in the risk of diabetes as age in-
creases was indicated by the SHAP values. This is consistent with
broader medical understanding, in which older age is linked to
a higher likelihood of developing chronic conditions, including
diabetes.

Similarly, a link between elevated Body Mass Index (BMI) val-

ues and a higher risk of diabetes was established, corroborating
existing medical literature that associates obesity with diabetes.

In summary, the validation of the efficacy of the feature selec-
tion process was achieved through the SHAP dependence plots
generated from both the ’Original’ and ’RFE’ sets. Nuanced in-
sights into how these selected variables interact to influence the
model’s predictive capabilities were also offered.

DISCUSSION

In the current work, the efficacy of machine learning methods in
predicting diabetes risk was examined, with a special emphasis on
the XGBoost classifier. Two unique datasets were employed: the
’Original’ set, encompassing all 21 variables, and the ’RFE’ set, a
refined subset of 15 chosen characteristics. The SHAP dependent
charts were developed to give subtle insights into the correlations
between various variables and the model’s prediction capabilities.
It was discovered that General Health Status (GenHlth), High
Blood Pressure Status (HighBP), Age, and Body Mass Index (BMI)
were the most impacting factors in both groups. These results
accord with current research, strengthening the assumption that
these characteristics are key markers of diabetes risk.

The investigation also demonstrated that the XGBoost classifier
performed with a high degree of accuracy on both the ’Original’
and ’RFE’ sets. However, it should be noted that the model’s perfor-
mance indicators, such as accuracy and recall, differed marginally
across the two sets. This implies that although feature selection
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Figure 4 Dependence plots in original dataset for variables a) General health status, b) High blood pressure, c) Age, d) Body Mass Index (BMI)

strategies like RFE may be efficient in decreasing model complex-
ity, they may not necessarily lead to a substantial gain in predictive
accuracy. Therefore, the option between employing all accessi-
ble data or a subset of chosen features should be made carefully,
considering the unique aims and restrictions of the study.

One of the disadvantages of this research is the absence of com-
prehensive statistical analysis done to the SHAP values. While
the SHAP dependency plots give helpful early insights into the
correlations between factors and diabetes risk, they are not a re-
placement for a complete statistical study. Future study might
benefit from a more in-depth investigation, potentially adding
additional statistical approaches to confirm the results further.

In conclusion, this work adds to the expanding corpus of re-
search on the application of machine learning algorithms in health-
care. It reveals that XGBoost, when trained on well chosen char-

acteristics, may be a strong tool for predicting diabetes risk. The
insights gathered from the SHAP dependent plots give an extra
layer of interpretability to the model, making it more transparent
and perhaps more trustworthy in a clinical environment. Further
study is required to confirm these results across diverse demo-
graphics and healthcare systems.

CONCLUSION

In our comprehensive research journey into the domain of machine
learning interpretability, an emphasis on diabetes risk assessment
was pronounced, leveraging the usability of SHAPley analysis.
Drawing from the Behavioral Risk Factor Surveillance System
(BRFSS) dataset, the study precisely analyzed two distinct vari-
ations (original and feature selected) of the dataset, which is a
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renowned annual telephone survey collected by the Centers for
Disease Control and Prevention (CDC). The dataset presented a
separation in its outcome classes, defining the presence of diabetes,
offering a granular understanding of this pervasive disease. Firstly,
encompassing 21 varied feature variables, the dataset provided a
kaleidoscopic view of a many of behavioural and health character-
istics. Identifying the potential for refinement, we harnessed RFE
as a strategic tool for feature selection. This not only rationalised
our feature space but significantly augmented our model’s pre-
diction ability. In conclusion our efforts underscore the enormous
benefits of adopting a transparent machine learning paradigm,
especially in the diabetes prediction.

The horizon of future endeavours, our study gazed into sev-
eral areas of research. The profound depth of the BRFSS dataset
hints at the potential for uncovering more intricate patterns and
correlations, thereby exploring diabetes risk prediction. While our
current methodologies have proven the usability, the dynamic na-
ture of healthcare mandates continuous evolution. This could clear
in the form of integrating more sophisticated machine learning
algorithms, or perhaps investigating the distinctions of SHAP to
loosen more complex model behaviors. Collaborative research
performed with medical professionals could surface the real-world
results for the application of our models, offering concrete benefits
to patients. It is aspired by amalgamating feedback from the clinics,
refining methodologies, and developing innovation, to redefine
the landscape of machine learning in diabetes risk assessment.
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