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ABSTRACT Demand forecasting for medical and consumable supplies in healthcare institutions is a challenging
problem due to irregular usage patterns, seasonality, sudden demand spikes, and data sparsity, and inaccurate
forecasts may lead to stock-outs, excessive inventory costs, and disruptions in patient care. This study
proposes an anomaly-aware, hybrid and ensemble-based forecasting and decision support framework for
short-term hospital inventory demand prediction using real-world operational data obtained from a hospital
inventory management system. The proposed approach integrates density-based anomaly detection, material-
level behavioral feature extraction, supervised time series transformation, and a multi-model ensemble
architecture combining linear models, tree-based methods, and boosting-based learners, with model selection
and weighting performed via time-series cross-validation. To ensure operational robustness, a multi-layer
fallback strategy incorporating classical exponential smoothing and conservative heuristics is employed for
data-scarce scenarios, and an interpretable rule-based forecast confidence score together with an integrated
ABC–XYZ segmentation scheme is used to directly link forecasts with inventory control policies. Experimental
results on real hospital inventory data demonstrate that the proposed framework significantly improves
forecasting stability and accuracy compared to single-model approaches, particularly for heterogeneous and
irregular consumption patterns, while providing a practical, explainable, and operationally actionable solution
for hospital inventory management.
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INTRODUCTION

The effective and efficient operation of healthcare delivery systems
plays a critical role in today’s complex and dynamic healthcare
environment. In hospitals, having the right amount of medical and
consumable supplies in the right place at the right time is essential
for the uninterrupted delivery of patient care services (Joshi et al.
2025). Inventory management is an important component not only
in terms of operational efficiency, but also in terms of financial
performance, the quality of hospital services, and human health.
Incorrectly estimating the demand for medical and consumable
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supplies can have very serious consequences for hospitals. Exces-
sive stockpiling leads to increased storage costs, deterioration of
material quality, and significant financial losses, while insufficient
stock levels cause disruptions in patient care, reduced treatment
quality, and, in some cases, pose a threat to patient safety. There-
fore, demand forecast accuracy is a fundamental requirement for
optimizing hospital resources and delivering sustainable health-
care services (Umoren et al. 2025).

In previous years, traditional statistical methods and simple
heuristic rules were used in hospital inventory management. These
methods often produced inaccurate forecasts because they did not
adequately account for complex factors such as seasonal changes,
emergencies, disease outbreaks, and sudden fluctuations in de-
mand (Adedunjoye and Enyejo 2024). Over the past twenty years,
the rapid development of machine learning and time series analy-
sis methods has opened up new opportunities in medical demand
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forecasting. Algorithms such as tree-based methods (Random For-
est, Gradient Boosting, XGBoost, LightGBM), linear regression
approaches (Ridge, Lasso), and time series models (ARIMA, Ex-
ponential Smoothing) yield good results when used individually
(Darshan et al. 2025). Academic research and practical applications
have shown that a single model does not always deliver optimal
performance and may be insufficient in adapting to different data
patterns and changing conditions (Punnahitanond et al. 2025).

In recent years, hybrid and ensemble model combinations
have emerged as innovative solutions to the demand forecast-
ing problem, both in academic settings and industrial applications
(Mbonyinshuti et al. 2024). Hybrid models combine machine learn-
ing and time series methods, leveraging the strengths of each
technique, while ensemble approaches systematically combine the
forecasts of different models to obtain more stable and reliable
results (Vignesh and Vijayalakshmi 2025). Such combination meth-
ods capture non-linear relationships that cannot be addressed by
individual models, reveal hidden patterns in the data, and signifi-
cantly reduce prediction errors (Jahin et al. 2024). Particularly in
the healthcare sector, the use of hybrid and ensemble methods for
demand forecasting of hospital supplies has been limited, repre-
senting an important area that still needs to be researched (Donkor
et al. 2024).

The research problem of this study is whether the demand for
medical and consumable supplies in hospitals can be predicted
more accurately and reliably using hybrid and ensemble model
combinations under complex and variable conditions where single
prediction models fall short. The main objective of this study is to
demonstrate how hybrid and ensemble model combinations can
be effectively applied in the demand forecasting of medical and
consumable supplies used in hospitals, instead of single models.
In this study, historical inventory inflow and outflow data, time
series structure, and material usage patterns will be analyzed in
detail, and various combinations of tree-based machine learning
models, linear regression methods, and time series techniques
will be tested. This integrated approach is designed to overcome
the limitations of individual models and provide a more reliable,
sustainable, and successful forecasting framework for hospital
inventory management.

Research Objectives

The main objectives of this research are defined as follows:

• To individually evaluate the success of different machine
learning (Random Forest, Gradient Boosting, XGBoost, Light-
GBM, Ridge, Lasso) and time series models (ARIMA, Expo-
nential Smoothing) in forecasting hospital medical supply
demand and to perform a comparative analysis based on per-
formance metrics (MAE, RMSE, MAPE, R²).

• To design hybrid and ensemble model combinations that com-
bine different machine learning and time series methods in
order to overcome the limitations of single model approaches,
and to evaluate the prediction success of these combinations.

• Systematically analyze whether the proposed hybrid and en-
semble model combinations improve demand forecast accu-
racy compared to single models, and how they affect model
stability and forecast variance.

• To propose a more reliable, economical, and sustainable fore-
casting framework for inventory management applications
in hospitals; to provide recommendations on how this frame-
work can be integrated into practical applications.

Primary Contributions

The main contributions of this study can be summarized as follows:

• Tree-based machine learning models, linear regression meth-
ods, and classical time series techniques were comprehen-
sively compared in hospital supply demand forecasting. The
performance of each technique was evaluated using standard-
ized metrics.

• Innovative hybrid model combinations integrating machine
learning and time series methods have been developed. These
hybrid structures overcome the limitations of individual mod-
els, providing higher prediction accuracy.

• Various ensemble techniques (bagging, boosting, stacking,
weighted averaging) have been systematically applied to op-
timally combine the predictions of different models. These
strategies reduce prediction error and increase system stabil-
ity.

• Factors specific to the hospital environment, such as seasonal
changes, emergencies, and sudden fluctuations in demand,
were taken into account in model design. Thus, solutions
adapted to the healthcare sector were presented, unlike gen-
eral industry applications.

• Detailed recommendations regarding model selection criteria,
data preprocessing procedures, hyperparameter tuning, and
system integration enhance the practical applicability of the
study.

• The proposed hybrid and ensemble combinations significantly
improve prediction accuracy compared to individual mod-
els, thereby contributing to reduced inventory costs and opti-
mized hospital operations.

Structure of the Article

The structure followed in the article begins with the Related Work
section, which addresses existing academic studies on demand
forecasting techniques, their applications in hospital settings, and
the effectiveness of machine learning and ensemble methods. Sub-
sequently, the Materials and Methods section detail the dataset
used, data preprocessing steps, and the applied methodology, intro-
ducing tree-based models, linear regression methods, time series
techniques, and ensemble strategies. In the Hybrid Model De-
sign and Ensemble Strategies sections, combinations of different
techniques are systematically created and integrated, and the de-
sign principles of each hybrid architecture are compared with the
advantages and disadvantages of various ensemble combination
methods. In the Results and Discussion section, the performance of
all models is compared using standardized metrics (MAE, RMSE,
MAPE, etc.), performance improvements of hybrid and ensemble
models compared to individual models are presented, detailed
comparisons between different model categories are made, and the
implications of the findings for hospital operations are outlined
by explaining their meaning in the context of the healthcare sector.
Finally, the Conclusion section summarizes the main findings of
the research, highlights the contributions of the study, provides
practical recommendations for hospital managers and operational
staff, and outlines guidelines for future research.

RELATED WORK

The healthcare sector faces unique challenges in inventory man-
agement and demand forecasting due to its complex structure and
critical outcomes. The availability of medical supplies and consum-
ables has a direct impact on the quality and safety of patient care.
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Insufficient stock levels can lead to operational disruptions, ser-
vice interruptions, and even situations that threaten patient safety.
Excessive inventory, on the other hand, causes financial problems
such as expired shelf life, storage costs, and insufficient capital. In
this context, accurately forecasting the demand for medical and
consumable supplies in healthcare institutions is of critical strate-
gic importance for cost optimization, operational efficiency, and,
most importantly, the provision of uninterrupted, high-quality
patient care. In this context, recent literature has been reviewed
thematically.

Traditional Time Series Approaches and Their Limitations

Among the classical time series methods commonly used in the
literature for forecasting demand for medical and consumable
supplies in the healthcare sector are Moving Average (MA), Ex-
ponential Smoothing (ES), and Autoregressive Integrated Moving
Average (ARIMA) models (Shih and Rajendran 2019; Khalid 2024).
While these methods demonstrate a certain degree of success in
forecasting future demand based on historical data (Luo et al. 2017),
they fail to adequately model external factors arising from the dy-
namic nature of the healthcare sector (Khalid 2024). Particularly
in demand series with non-linear relationships and high volatility,
the forecasting performance of these models may decline and they
may be insufficient in capturing complex patterns (Kolambe 2024;
Dachepalli 2025).

In a study predicting hospital admissions during the COVID-
19 pandemic, ARIMA and Exponential Smoothing models were
used, but limitations in their performance were observed due
to the dynamic and non-linear nature of the pandemic (Perone
2021). Similarly, despite the use of models such as ARIMA in
forecasting demand in the blood product supply chain, difficulties
are encountered in managing the uncertainties arising from the
short shelf life and highly variable usage rates of these products
(Motamedi et al. 2024). Although traditional time series methods
have advantages such as usability and low computational cost,
especially in short-term forecasting, their inability to fully grasp the
complex structure of demand in healthcare services is a significant
limitation (Luo et al. 2017; Fatima and Rahimi 2024).

These studies demonstrate that classical time series methods
have certain advantages in demand forecasting in the healthcare
sector; however, they also reveal that nonlinear structures, sudden
demand spikes, and material-based heterogeneous usage patterns
cannot be adequately captured. In this study, in order to overcome
these limitations, a hybrid and ensemble approach integrating ma-
chine learning-based models was adopted instead of using classical
time series models alone. The goal was to produce more flexible
and reliable forecasts for complex demand structures where tradi-
tional methods fall short.

The Rise of Machine Learning-Based Approaches

In recent years, machine learning (ML) algorithms have emerged
as a powerful alternative for time series forecasting problems and,
in particular, demand forecasting in the healthcare sector (Kon-
topoulou et al. 2023). Ensemble learning models such as Random
Forest (RF), Gradient Boosting (GBM), XGBoost, and LightGBM
stand out for their ability to model complex and non-linear rela-
tionships (Qiu et al. 2019; Erdebilli and Devrim-Tenba 2022). These
models can provide higher prediction accuracy compared to tra-
ditional methods and can include a large number of explanatory
variables, such as hospital capacity, patient numbers, and seasonal
indices, in the analysis (Shern et al. 2024).

In predicting peak demand days for cardiovascular diseases,

the LightGBM model stood out with a higher AUC value (0.940)
compared to other ML models such as logistic regression and SVM
(Qiu et al. 2019). Similarly, in a study on medical waste prediction,
an ensemble consensus regression model using algorithms such as
Random Forest, Gradient Boosting, and AdaBoost demonstrated
superior performance with a lower RMSE value compared to sin-
gle models (Erdebilli and Devrim-Tenba 2022). Such tree-based
models generally demonstrate strong capabilities in analyzing and
predicting complex data structures (Gldoan et al. 2023).

Studies using linear models such as Ridge and Lasso also offer
limited but valuable contributions, particularly in the context of
feature selection and preventing overfitting (Abdul-Rahman et al.
2021). The literature emphasizes that machine learning methods
are more flexible and adaptable than traditional statistical methods,
especially when dealing with complex and high-dimensional data
(Fatima and Rahimi 2024). These developments support more
accurate decision-making and increased operational efficiency in
demand management in the healthcare sector.

Hybrid and Ensemble Models: Potential and Gaps in the Litera-
ture

In order to overcome the limitations of single models, hybrid and
ensemble modeling approaches have recently gained attention.
Combining the strengths of different model families, these ap-
proaches generally exhibit superior forecasting performance com-
pared to models used alone (Perone 2021). Ensemble models offer
the potential to reduce forecast variance, correct bias, and create
more generalizable models by bringing together multiple base
learners (Fatima and Rahimi 2024). Such model combinations are
particularly promising for demand series in the healthcare sector,
which often involve heterogeneous data structures. For example,
in a study on energy demand forecasting, hybrid combinations
of different time series and machine learning models significantly
outperformed individual models.

While much of the existing literature focuses on optimizing
the performance of a single model, studies that systematically
combine multiple models and comprehensively evaluate their fore-
casting success are limited (Kontopoulou et al. 2023). Particularly
in the healthcare sector, there is a need for in-depth analysis of
the effectiveness of combinations using different model families
in forecasting medical and consumable demand. This points to a
significant gap in the literature, as the complex and highly variable
demand structures in the healthcare sector suggest that a single
model may not always provide the best solution (Qiu et al. 2019).

This study aims to fill this gap in the literature by focusing on
medical and consumable supply demand forecasting in the health-
care sector. Rather than demonstrating the superiority of a single
model, it will compare the forecasting performance of different
combinations of classical time series, machine learning, and hybrid
approaches. This approach has the potential to contribute to the
development of stronger and more consistent forecasting models
in healthcare supply chain management, thereby increasing opera-
tional efficiency and minimizing costs (Aifuwa et al. 2020). Thus, it
is assumed that by bringing together complementary information
obtained from different model families, more robust and reliable
forecasting systems that better adapt to the unique dynamics of
the healthcare sector can be created.

Although these machine learning-based studies have made sig-
nificant progress in capturing non-linear relationships in demand
forecasting in the healthcare sector, they mostly focus on individual
model performance and address the potential for using different
model families together to a limited extent. Unlike the existing
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literature, this study aims to provide an integrated forecasting
framework by systematically combining tree-based methods with
linear models, complementing the strengths and weaknesses of
individual models.

METHODOLOGY

This section details the methodological framework of the fore-
casting and decision support system used in hospital inventory
management. The primary objective of the study is to generate
short-term (three-month) demand forecasts for the future by utiliz-
ing historical consumption records on a material-warehouse basis
and to convert these forecasts into outputs that can be directly inte-
grated into operational decision-making processes. In this context,
all steps, from raw data processing to the creation of monthly time
series, from multi-model forecasting approaches to reliability as-
sessment, and from ABC-XYZ segmentation to optimal stock level
calculations, are addressed under a comprehensive methodology.
The method followed aims to reduce model fragility in healthcare
inventories with different consumption regimes, ensure the physi-
cal and operational suitability of forecasts, and make the results
suitable for internal auditing and reporting (Silva-Aravena et al.
2020; Karamshetty et al. 2022; Subramanian 2021).

Problem Definition and Notation
The fundamental problem addressed in this study is the accurate
and reliable prediction of future short-term consumption behavior
for each material based on hospital warehouses. Specifically, the
objective is to estimate consumption (output) quantities for the
next three months for each material-warehouse combination and
to use these estimates to generate decision support outputs for
inventory management. The generated forecasts are not merely nu-
merical predictions; they also form the basis for advanced analyses
such as ABC-XYZ segmentation, optimal stock level calculation,
and automatic identification of problematic materials. This ap-
proach directly links the forecasting process to operational policy
generation (Balkhi et al. 2022; Feibert et al. 2019; Polater and Demir-
dogen 2018).

The system generates monthly consumption time series from
raw material movement records and analyzes these time series
using an ensemble forecaster. Only physically meaningful move-
ment types are considered in the forecasting process; in this context,
transactions in the raw data set are filtered only as G (input) and C
(output). Thus, the model operates on a data structure that repre-
sents the actual effect of stock movements on inventory levels.

The mathematical notation used throughout this section is de-
fined as follows. Here, m represents the material ID and corre-
sponds to the HASTANE_MALZEME_ID field in the application. Simi-
larly, d represents the warehouse ID and is represented by the AD

field. The time dimension t is defined in terms of the timestamp
corresponding to the beginning of the month. The expression ym,d,t
used in Equation (1) indicates the output, i.e., the consumption
quantity of material m in warehouse d in month t. The forecast
horizon is expressed by the parameter h, which in this study covers
three-month forward forecasts with h = 1, 2, 3.

Data Source and Transformation
The raw dataset used in this study consists of detailed material
movement records obtained from a real-world hospital inventory
management system through an institutional collaboration. The
dataset was provided under a confidentiality agreement. Due to
data security and institutional privacy policies, the identity of the
data-providing institution and the raw dataset itself cannot be

publicly disclosed. The dataset includes fields such as material ID,
receipt date, transaction type (inbound or outbound), transaction
quantity, and warehouse information.

In order to obtain consistent and reproducible results in fore-
casting and decision support processes, the raw data was first
subjected to a systematic transformation process. In this process,
fields unnecessary for analysis were eliminated, numerical vari-
ables were converted to appropriate data types, and date fields
were converted to timestamp format to ensure temporal consis-
tency (Merkuryeva et al. 2019; Subramanian 2021).

To create monthly consumption time series, the exit transactions
for each material-warehouse combination were aggregated on a
monthly basis. As shown in Equation (1), the consumption quan-
tity for a given month t for a specific material m and warehouse d
is defined as the sum of all exit transactions occurring within that
month (Mbonyinshuti et al. 2022):

ym,d,t = ∑
i∈I(m,d,t)

MIKTARi (only ISLEM_TUR = C) (1)

The time series created using the monthly consumption values
obtained in Equation (1) were converted to a fixed monthly fre-
quency to make them suitable for the analysis and forecasting pro-
cess. During this conversion process, the time axis was reindexed
in monthly periods for each material-warehouse combination, and
it was checked whether there were any outflow transactions in
specific months.

This process was carried out as shown in Equation (2). Accord-
ingly, if a consumption observation exists for the relevant month,
the time series value is retained as is; if there is no discharge oper-
ation in the relevant month, the consumption quantity is assigned
a value of zero:

yt ← asfreq(MS), yt =

yt, if there is consumption

0, otherwise
(2)

In Equation (2), the expression asfreq(MS) represents the re-
sampling of the time series to a monthly start frequency. As a result
of this process, the time series is converted into a regular monthly
structure, and missing months are explicitly identified. Assign-
ing a value of zero when there is no consumption in the relevant
month prevents “no usage” situations from being implicitly lost
in the data and allows the model to learn irregular or infrequent
usage patterns.

Thanks to this approach, continuous, regular, and comparable
monthly time series are obtained for each material-warehouse com-
bination; at the same time, zero consumption periods are preserved
as a meaningful signal in statistical and behavioral analyses. Thus,
the time series created provide a suitable input structure for both
classical time series methods and feature-based machine learning
models.

Data Cleaning and Outlier Management
This subsection details how data quality issues that could affect
the reliability of forecasting and inventory decisions are addressed.
Health inventory data, being derived from operational processes,
may contain missing records, incorrect date information, and con-
sumption values that are statistically extreme. Since such problems
can lead to misleading patterns and unstable model behavior, es-
pecially in time series-based forecasting models, a systematic data
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cleaning and outlier management process was applied prior to
analysis (Karamshetty et al. 2022; Gurumurthy et al. 2021).

During the preprocessing stage, records with missing informa-
tion in fields required for analysis were first removed from the
dataset. These fields include basic variables such as material ID,
warehouse information, transaction date, and transaction amount.
Subsequently, quantity fields were converted to appropriate nu-
merical data types, and values with logical inconsistencies were
checked. Finally, date fields were parsed into timestamp format,
and records with invalid or incorrect date information were elimi-
nated from the dataset, thus ensuring the chronological integrity
of the time series.

During the outlier management phase, a top-end trimming
(minorize-like) approach was adopted to prevent records with ex-
tremely high values, which are rarely observed in consumption
amounts, from disproportionately affecting the modeling process.
In this approach, the distribution of raw consumption quantities
was considered, and the 99.9th percentile value was set as the
threshold. As shown in Equation (3), this threshold value is repre-
sented by τ, and only observations below this value are retained
in the analysis:

τ = Q0.999(x), x∗i =

xi, xi ≤ τ

remove, xi > τ
(3)

In Equation (3), xi represents the raw consumption (transac-
tion amount) value, while Q0.999(x) represents the upper 99.9th
percentile of the entire consumption distribution. According to
this definition, observations satisfying the condition xi ≤ τ are
retained in the data set, while extreme outliers above the thresh-
old value are excluded from the analysis. This method aims to
prevent the model from developing excessive sensitivity without
completely suppressing the effect of outliers, while preserving the
overall structure of the distribution.

This outlier cleaning strategy offers a balanced solution that
maintains both statistical robustness and operational realism, par-
ticularly in healthcare inventory data where high-volume outputs
are rarely used but occasionally observed. Thus, the resulting time
series achieve a more stable and reliable input structure for both
classical statistical analyses and machine learning-based forecast-
ing models (Ingle et al. 2021; Kim et al. 2023).

Material-Based Statistical and Behavioral Feature Extraction
This subsection explains how statistical and behavioral features
that quantitatively summarize the past consumption behavior of
each material are extracted. The aim is to improve prediction per-
formance and generalizability by including attributes that reflect
the general usage character of the material in the model, rather
than using only the past values of the time series. This approach
enables the differentiation of materials that have the same lagged
values but exhibit different usage patterns (Kim et al. 2023; Subra-
manian 2021).

For each material–storage combination, basic descriptive statis-
tics such as total number of entries and exits, average consumption
amount, maximum and minimum values, and standard deviation
were calculated. However, the coefficient of variation (CV) was
used to evaluate consumption behavior independently of scale.
As shown in Equation (4), CV is defined as the ratio of the stan-
dard deviation to the mean and measures the relative variability
in consumption:

CV =
σ(y)
µ(y)

(µ(y) > 0) (4)

In Equation (4), σ represents the standard deviation of monthly
output quantities, while µ represents the mean value of the same
series. The CV metric prevents absolute variance from being mis-
leading in materials with low averages, enabling a comparative
assessment of consumption stability.

Seasonality strength is defined to quantitatively express the
degree of seasonal fluctuation in consumption throughout the year.
In this context, the seasonality indicator is obtained by normalizing
the variability of average consumption values by month. As shown
in Equation (5), this metric is calculated based on the ratio of the
variation between monthly averages to the overall average:

S =
σ(ȳay)

µ(ȳay)
(µ > 0) (5)

Here, ȳay represents the average consumption calculated for
each month, while ȳ represents the overall average obtained
throughout the entire period. Higher S values indicate strong
seasonal fluctuations and show that the forecasting process is rela-
tively more complex.

The trend slope was obtained by applying linear regression to
the monthly total consumption values in order to determine the
general upward or downward direction of the consumption series
over time. As shown in Equation (6), the slope of the consumption
values against the time variable is used as a trend indicator:

yt = β0 + β1t + εt (6)

In this equation, the coefficient β1 represents the trend slope, in-
dicating whether consumption shows an increasing or decreasing
trend over time.

Finally, the regularity score is defined to measure the degree to
which a material is used regularly. As shown in Equation (7), regu-
larity is calculated as the ratio of the months in which consumption
occurred to the total number of months:

R =
Number of months consumption was observed

Total number of months
(7)

This metric plays a critical role in both prediction reliability and
inventory policy design by enabling the differentiation of irregular
and infrequently used materials.

Time Series Feature Engineering
This subsection details the feature engineering process applied to
transform monthly consumption time series into an input space
suitable for supervised learning models. In time series forecasting
problems, the direct use of past observations is often insufficient; in-
stead, derived features representing temporal dependencies, short-
term trends, and calendar effects must be included in the model.
Within the scope of this study, a comprehensive feature vector
consisting of lagged values, rolling statistics, short window trends,
and calendar variables was created for each month (Kim et al. 2023;
Ingle et al. 2021).

The feature vector created for each time step primarily includes
calendar components. In this context, the variables “month(t)”,
“year(t)”, and “quarter(t)” are used to enable the model to learn
monthly, yearly, and quarterly seasonal effects. Additionally, the
variable k, an increasing index starting from the beginning of the
time series, is defined to represent long-term trends through a
linear time indicator.

To capture temporal dependencies, lagged values of past con-
sumption for each month are added to the feature vector. In this
study, consumption amounts from one-, two-, and three-months
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prior were defined as yt−1, yt−2, and yt−3, respectively, and the
short-term autocorrelation structure was targeted for transfer to
the model.

Rolling statistics were calculated to represent the short-term
consumption level and volatility. As shown in Equation (8), the
three-month rolling average RM3(t) is defined as the arithmetic
mean of the previous three observations, including the relevant
month:

RM3(t) =
1
3

2

∑
i=0

yt−i (8)

In Equation (8), yt−i represents the consumption amount i
months prior to time t. This metric represents the short-term
consumption level in a smoothed form, reducing the impact of
sudden spikes.

Additionally, a three-month rolling standard deviation was
calculated to measure short-term consumption volatility. As shown
in Equation (9), the RS3(t) value is defined as the square root of the
average of the squares of deviations around the rolling average:

RS3(t) =

√√√√1
3

2

∑
i=0

(yt−i − RM3(t))
2 (9)

Equation (9) quantitatively expresses the magnitude of short-
term consumption fluctuations and enables the model to distin-
guish between stable and volatile periods.

The short window trend is defined to capture the direction of
increase or decrease in the recent past. In this context, the slope
value obtained by applying a linear regression on the last three
observations is expressed as Trend3(t) as shown in Equation (10):

Trend3(t) = slope(yt, yt−1, yt−2) (10)

This slope value represents the recent consumption direction
independently of long-term trends and ensures that short-term
changes are incorporated into the forecasting process.

All features defined in this subsection are explicitly generated
within the system and are perfectly aligned with the feature space
used during the training phase. The same feature generation
scheme is maintained for forecasts covering the next three months;
feature vectors for future periods are created using lagged values
derived from the latest observations, rolling statistics, and trend
components. This ensures structural consistency between the train-
ing and forecasting phases, enhancing the model’s stability and
generalizability.

Multi-Model Forecasting and Ensemble Combination
This subsection details how monthly consumption time series are
handled within a multi-model forecasting framework and how
models with different learning biases are combined to obtain more
stable forecasts. Health inventory consumption data can exhibit
heterogeneous behaviors such as high variation, irregular usage,
sudden spikes, and regime shifts, making a forecasting approach
based on a single model family often insufficient. Therefore, the
study adopts an ensemble structure that combines linear, tree-
based, and boosting-based models (Chien et al. 2023; Sina et al.
2023).

The system uses XGBoost and LightGBM models when appro-
priate libraries are available in the working environment; if these
libraries are not available, it constructs an equivalent ensemble
space using Random Forest and Gradient Boosting algorithms rep-
resenting the same model class. Additionally, linear-regularized

models such as Ridge and Lasso are included in the ensemble
to capture linear components in consumption behavior. This ap-
proach aims to achieve more balanced prediction performance
across different consumption regimes through model diversity.

Converting Time Series to Regression (Supervised TS Formula-
tion): This subsection explains the process of converting monthly
consumption time series into a structure that can be processed by
supervised learning algorithms. In time series forecasting prob-
lems, it is known that each observation is not solely based on past
values; it must also be considered alongside calendar effects, short-
term statistics, and local trend information. Therefore, in this study,
the time series problem is transferred to a regression framework
by defining a comprehensive feature vector for each time step.

For the monthly consumption series yt, the feature vector cre-
ated at each time step t is defined as shown in Equation (11):

xt =
[

month(t), year(t), quarter(t), k︸ ︷︷ ︸
calendar + index

, yt−1, yt−2, yt−3︸ ︷︷ ︸
delays

, µt(3), σt(3)︸ ︷︷ ︸
rolling

, st(3)︸︷︷︸
short trend

]
(11)

The variables month(t), year(t), and quarter(t) in Equation
(11) ensure that the monthly, annual, and quarterly seasonal effects
on consumption are incorporated into the model. The k variable
represents the increasing time index from the beginning of the
time series and allows long-term trends to be learned through
a linear time indicator. The lagged variables yt−1, yt−2, yt−3 re-
flect the short-term autocorrelation structure, ensuring that past
consumption information is directly included in the model.

Short-term statistical properties are calculated based on the last
three observations. The three-month moving average µt(3) and
moving standard deviation σt(3) are defined as shown in Equation
(12):

µt(3) =
1
3

2

∑
i=0

yt−i, σt(3) =

√√√√1
3

2

∑
i=0

(yt−i − µt(3))
2 (12)

These metrics represent the short-term level and volatility of
consumption, ensuring that sudden spikes and temporary fluctua-
tions are incorporated into the model in a balanced manner.

The short-window trend is defined by the slope value obtained
by applying a linear fit to the last three observations. This process
is performed as shown in Equation (13):

yt−i ≈ ai + b (i = 0, 1, 2), st(3) = a (13)

Equation (13), where a represents the trend coefficient reflecting
the short-term consumption trend. This value ensures that the
recent upward or downward direction is incorporated into the
model independently of long-term trends.

In practice, this structure was implemented through the vari-
ables lag_1�3, rolling_mean_3, rolling_std_3, and trend_3. In
addition, attributes such as the coefficient of variation (CV) repre-
senting material behavior, seasonality score, long-term trend slope,
and regularity were also added numerically to the feature vector.
In this way, the consumption context of different materials with
the same lag values is clearly presented to the model, enabling the
model to learn material-specific behaviors (Kim et al. 2023).

Mathematical Foundations of the Models Used
This subsection presents the mathematical foundations of the pre-
diction models used in the study. The models were selected to
have different learning biases and positioned within the ensemble
structure to complement each other.
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In linear regression models, the objective is to estimate the
coefficients representing the linear relationship between the input
features and the target variable. This fundamental relationship can
be expressed as shown in Equation (14):

ŷ = XT β (14)

In this model, β represents the coefficient vector to be estimated.
In high-dimensional and correlated feature spaces, the classical
least squares approach can lead to overfitting. Ridge and Lasso
regularizations have been used to mitigate this problem.

Ridge regression adds a penalty term based on the L2 norm to
limit the magnitude of the coefficients. As shown in Equation (15):

min
β

n

∑
i=1

(yi − xT
i β)2 + λ∥β∥2

2 (15)

This approach reduces the model’s variance by bringing the
coefficients closer to zero, thereby producing more stable estimates.

Lasso regression, on the other hand, produces sparse solutions
using a penalty term based on the L1 norm. This indirectly pro-
vides a feature selection mechanism by setting the coefficients of
unimportant features to zero. Equation (16) illustrates this struc-
ture:

min
β

n

∑
i=1

(yi − xT
i β)2 + λ∥β∥1 (16)

Ridge and Lasso models form a strong baseline, particularly
in feature spaces containing partially linear relationships such as
calendar variables, lagged consumption values, and rolling statis-
tics. Using these models in conjunction with tree-based methods
allows the balanced capture of linear and nonlinear components
in the ensemble structure (Kim et al. 2023).

Random Forest, one of the tree-based methods used in this
study, has been included in the ensemble structure to obtain stable
estimates, especially for high-variance and noisy consumption
time series. Since health inventory consumption data can contain
sudden usage spikes and irregular usage periods, models based
on a single decision tree often face high variance problems. The
Random Forest approach aims to mitigate this limitation through
bootstrap sampling and averaging mechanisms (Mbonyinshuti
et al. 2022; Kim et al. 2023).

The Random Forest model produces the final output by averag-
ing the predictions of numerous decision trees trained on different
subsets of data created using the bootstrap method. This structure
is expressed as follows, as shown in Equation (17):

ŷRF(x) =
1
T

T

∑
t=1

ft(x) (17)

Equation (17) shows that ft(x) represents the prediction gener-
ated by the t-th decision tree for the input feature vector x, while
T denotes the total number of trees in the ensemble. Each decision
tree is trained on a different subset of the original dataset, sam-
pled using the bootstrap method; additionally, randomly selected
feature subsets are used in the splitting operations at tree nodes.
These two randomness mechanisms significantly reduce the vari-
ance of the ensemble average by lowering the correlation between
trees.

While a single decision tree typically exhibits low bias but high
variance, the Random Forest ensemble suppresses this high vari-
ance through averaging. This feature enables more stable and reli-
able predictions, especially in health inventory time series where
consumption amounts fluctuate irregularly, very high values are

rarely observed, and the noise level is high. Therefore, the Random
Forest model plays a critical role as a variance-reducing component
within the ensemble structure.

Gradient Boosting, another tree-based method used in this
study, was included in the ensemble structure to gradually cor-
rect systematic errors that arise in consumption estimation. While
the Random Forest approach focuses on reducing variance, the
Gradient Boosting model primarily aims to reduce bias and gradu-
ally learns the error components that previous models could not
explain. This feature provides a significant advantage, especially
in complex consumption patterns where trends, seasonality, and
lagged interactions are observed together (Sina et al. 2023; Kim et al.
2023).

The Gradient Boosting approach builds the model incremen-
tally. In the first step, an initial model that minimizes the loss
between observed values and predictions is defined. This process
is expressed as shown in Equation (18):

L(yi, c) (18)

In Equation (18), L(yi, c) represents the loss between the actual
consumption value yi and the constant estimate c. Following the
initial model, the model is updated incrementally. At each step, a
new weak learner is added that attempts to explain the residuals
(negative gradients) of the previous model. This update process is
shown in Equation (19):

Fm(x) = Fm−1(x) + νhm(x) (19)

Here, hm(x) represents the new weak learner attempting to
explain the error component that the previous model could not
predict, while ν represents the learning rate. The learning rate
reduces the risk of overfitting by controlling the extent to which
each new model contributes to the ensemble output. Thanks to
this stepwise structure, the Gradient Boosting model gradually
captures components that could not be explained in previous steps
and systematically improves prediction accuracy.

Due to these characteristics, Gradient Boosting plays an im-
portant role as a bias-reducing component within the ensemble
structure.

XGBoost and LightGBM are enhanced versions of the Gradient
Boosting approach in terms of regularization and computational
efficiency. These models are designed to offer stronger generaliza-
tion performance, particularly in high-dimensional feature spaces
and complex interaction structures. In this study, these models
were included in the ensemble structure to more effectively capture
nonlinear and interactive consumption dynamics (Cao and Gui
2019; Kim et al. 2023).

The optimization process in XGBoost and LightGBM is based
on jointly minimizing the loss function, which measures data fit,
and a regularization term that penalizes model complexity. This
objective function is generally defined as shown in Equation (20):

L = ∑
i

L(yi, ŷi) + ∑
k

Ω( fk) (20)

In Equation (20), L(yi, ŷi) represents the loss between the actual
consumption value and the model estimate, while the term Ω( fk)
represents the model complexity of the k-th tree. A typical regu-
larization function used for tree complexity is given in Equation
(21):

Ω( f ) = γT +
1
2

λ∥w∥2 (21)
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In this expression, T represents the number of leaves in the
tree, w represents the weights associated with leaf nodes, and γ
and λ represent the regularization coefficients that penalize model
complexity. These penalties imposed on the number of leaves
and weights prevent the model from learning overly complex
structures, thereby improving its generalization ability.

Thanks to this regularization mechanism, XGBoost and Light-
GBM can effectively model complex consumption dynamics such
as interactions between consumption values, seasonal effects, and
irregular usage patterns. On the code side, if these libraries are
not available in the working environment, the model is preserved
by substituting Random Forest or classic Gradient Boosting algo-
rithms representing the same model class.

Time Series Cross-Validation (TS-CV) and Model Selection with
MAE
This subsection explains how the performance of prediction mod-
els is evaluated in a manner appropriate to the nature of time
series. In time series problems, classical shuffled cross-validation
approaches can cause information about the future to influence
past model parameters, a situation referred to in the literature as
“data leakage”. Since such leakage can cause model performance
to appear more optimistic than it actually is, this study adopts
a time-axis-sensitive validation strategy (Shaub 2020; Kim et al.
2023).

In this context, the system gradually expands the training win-
dow along the time axis using the TimeSeriesSplit approach and
positions the validation set chronologically ahead of the training
set at each fold. Thus, observations after time t are not used in
learning the model’s parameters at time t, and the forward predic-
tion scenario is simulated realistically.

Mean Absolute Error (MAE) was chosen as the error metric
for evaluating model performance. Equation (22) provides the
mathematical definition of MAE:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (22)

In Equation (22), yi represents the observed actual consumption
value, while ŷi represents the estimate generated by the model.
The MAE metric provides a more robust measure than MSE against
singular jumps in time series that may contain extreme values, such
as stock consumption, because it does not involve squaring. This
feature makes MAE a suitable performance criterion, especially for
healthcare inventory data where both high-volume consumption
and zero consumption can occur.

Selecting the Top 3 Models and Weighted Ensemble
As a result of the time series cross-validation process, MAE-based
performance scores were obtained for each candidate model. Using
these scores, the models with the lowest error values were selected
and used to create the ensemble structure. Specifically, as shown in
Equation (23), the first three models with the smallest MAE values
were determined:

B = Top3
(

arg min
j

MAEj

)
(23)

In Equation (23), B represents the set of models that will be
included in the ensemble, while MAEj denotes the error score
obtained from the cross-validation of the j-th model.

The predictions of the selected models are combined using a
performance-based weighting approach. The weights are defined

as inversely proportional to the error, as shown in Equation (24)
(Pawlikowski and Chorowska 2020; Shaub 2020):

wj =
1

MAEj + ε
(24)

Here, ε represents a small constant value added to ensure nu-
merical stability and prevent division by zero. The obtained
weights are normalized, and the final ensemble estimate is cal-
culated as shown in Equation (25):

ŷ(x) =
∑j∈B wj ŷj(x)

∑j∈B wj
(25)

The statistical interpretation of this approach is that models
with low MAE values have smaller overall error levels and are
therefore targeted to reduce the expected absolute error by receiv-
ing higher weights in the combination process.

Constraining Negative Predictions (Physical Feasibility)

Since consumption quantities cannot take negative values by na-
ture, a one-sided constraint has been applied to all model predic-
tions to preserve the physical meaningfulness of the prediction
outputs. This constraint ensures that predicted values below zero
are clipped to zero, as shown in Equation (26):

ŷ← max(ŷ, 0) (26)

This process can be interpreted as a non-negativity constraint
applied in the output space and is applied both in individual
model forecasts and in the ensemble output vector. This ensures
that stock and consumption forecasts are consistent with physical
reality.

Multi-Step (H = 3) Forecast Generation

In this study, the forecast horizon is set to H = 3 months. To
generate forecasts for future periods, feature vectors for future
periods are constructed using lagged values derived from the
latest observations, rolling statistics, and trend components. These
feature vectors are defined as xt+1, xt+2, xt+3, respectively (Cao
and Gui 2019).

The selected ensemble model directly produces multi-step fore-
casts based on these feature vectors. This process can be expressed
as shown in Equation (27):

[ŷt+1, ŷt+2, ŷt+3] = Ensemble(xt+1, xt+2, xt+3) (27)

The code creates a future_df for the next three months
and aligns it with the training feature space using X_test =

future_df[X_train.columns].

Robust Fallback Strategies

Health inventory consumption series can exhibit heterogeneous
behaviors such as sparse usage, sudden spikes, institution/clinic-
driven regimen changes, and seasonal fluctuations. Therefore,
relying on a single model family increases the risk of “single-model
fragility” (the model becoming fragile under certain data regimes).
In this study, the prediction engine is designed with a multi-layered
fallback architecture (Sina et al. 2023; Kim et al. 2023).
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Primary Layer: Ensemble Learning: When the length of the time
series created at monthly frequency is T ≥ 6 months, the system
primarily performs prediction through a feature-based ensemble
learning architecture. At this stage, the time series is modeled
not directly from raw values but through an explanatory feature
space representing the series’ temporal structure and short-term
dynamics. The feature vector created for each time step includes
calendar information (month, year, and quarter), the time index,
lagged variables representing past consumption (values from the
last one, two, and three months), local statistics such as the rolling
average and standard deviation for the last three months, and the
local trend slope calculated over a short window. Additionally,
statistical measures summarizing the historical usage behavior
of the relevant material, such as the coefficient of variation (CV),
regularity of usage, and seasonality indicator, are also included in
this feature space as numerical attributes. This ensures the model
is sensitive not only to the latest values in the time series but also
to the material’s long-term behavioral characteristics.

Multiple learners are trained in parallel on this expanded fea-
ture space. Gradient-boosted tree-based methods such as XGBoost
and LightGBM are used in the application environment whenever
possible; when these libraries are not available, Random Forest and
Gradient Boosting algorithms, which represent the same model
family, are used as backups. The fundamental purpose of this
model diversity is to capture nonlinear interactions, sudden jumps,
or smoother trend structures that may arise in different consump-
tion regimes using models with different biases.

Model selection and performance evaluation are performed us-
ing a TimeSeriesSplit-based cross-validation approach to prevent
information leakage in time series. In this method, the training
window is gradually expanded along the time axis, and each val-
idation step is performed using only historical data. The Mean
Absolute Error (MAE) is preferred as the error metric, and the most
successful models are determined based on the average validation
error obtained for each model. The predictions of the models with
the lowest error are combined using weights inversely propor-
tional to the corresponding error values, thus yielding the final
ensemble prediction. This weighted combination strategy aims
to reduce the impact of systematic errors that a single model may
make under certain data regimes and to increase overall general-
ization capability by allowing more reliable models to contribute
more to the prediction.

Secondary Layer: Exponential Smoothing Backup: The ensemble
learning layer may fail in practice due to unexpected numerical
or structural errors during feature extraction, model training, or
prediction generation. In such cases, a complete halt in the pre-
diction process is unacceptable for operational decision support
systems. Therefore, the system incorporates the Holt–Winters Ex-
ponential Smoothing approach from classical time series methods
as a backup mechanism in the second layer. This method tends
to produce stable and interpretable results, especially for medium
and long-length series, thanks to its fewer parameters and its abil-
ity to directly model the level, trend, and, if necessary, seasonality
of the time series.

Whether or not the seasonality component is included in the
model is determined conditionally. If the time series is of sufficient
length (at least T ≥ 24 months in practice) and the seasonality
indicator, which shows a meaningful seasonal fluctuation in the
historical behavior of the series, is above a certain threshold value,
the seasonal component is added to the model. Otherwise, a
simpler structure working only with level and trend components
is preferred. The main objective of this approach is to ensure the

continuity of the system’s forecasting by compensating for the
breaks that may occur in machine learning-based methods when
the data is of medium or long length with a more classical and
stable time series model.

Third Layer: Simple Scaled Average / Last-Value Heuristic: When
the time series length is very short, i.e., especially in cases where
T < 6 months, the risk of both machine learning-based meth-
ods and parametric time series models overfitting or producing
unreasonably volatile predictions increases significantly. In such
data-starved scenarios, the system consciously adopts the prin-
ciple of “safe heuristics over complex modeling.” If at least a
few observations are available for the relevant material, the last
observed consumption value is scaled by a specific coefficient (ap-
proximately 50% in practice) to produce a fixed projection. If the
time series is effectively empty or there is no meaningful historical
data, the estimates are fixed to zero, and these outputs are also
reported with a very low confidence label.

While not numerically perfect, this approach ensures that the
system exhibits a more cautious operational behavior by prevent-
ing it from producing random or overly confident but unfounded
estimates in the absence of data.

When considered together, this three-layered structure presents
a robust prediction architecture that enables the system to behave
in an adaptable manner to data length and data quality without
being dependent on a single model family. Thus, the goal is for the
prediction pipeline to operate seamlessly and reliably in healthcare
inventories with heterogeneous consumption patterns.

Prediction Confidence Score:
Simply producing point estimates is not sufficient for prediction
outputs to be used in real-world inventory management and sup-
ply planning processes. It is also necessary to quantitatively ex-
press the conditions under which these predictions are made and
the degree to which they are based on reliable information. Espe-
cially in critical areas with high operational risk, such as healthcare
inventory, ignoring forecast uncertainty can lead directly to costly
outcomes such as stock-outs or excess inventory. Therefore, this
study defines a rule-based and explainable forecast confidence
score accompanying the forecasts generated for each material.

This score is not a machine learning output; it is designed as
an interpretable quality measure obtained by jointly evaluating a
set of statistical indicators that reflect the amount of data, behav-
ioral stability, timeliness, and seasonal complexity. Thus, decision-
makers can obtain a quantitative answer not only to the question
“How much will we consume?” but also to the question “How
much can I trust this forecast?”

Components and Normalization: In order to make the different
indicators calculated for each material comparable, the system first
reduces all components to the range [0, 1] and then calculates the
average of these values to produce the overall confidence score.
This approach allows criteria with different scales and meanings
to be combined under a single unified quality metric.

The first component of the confidence score is the data quantity
factor, which represents the amount of data on which the predic-
tion is based. This factor is defined in Equation (28) below, using T
to denote the length of the time series:

fdata = min
(

T
24

, 1
)

(28)

In this formula, T represents the number of monthly observa-
tions available for the relevant material. The value of 24 used in
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the denominator was chosen as an intuitive reference, assuming
that at least two years of observation history is a reasonable “suf-
ficiency threshold” to capture annual seasonal cycles. If the time
series length is 24 months or longer, this factor takes the value
1, and the data quantity is considered sufficient. Conversely, for
shorter series, this ratio remains below 1, and the confidence score
is suppressed downward due to data scarcity.

The second component represents regularity of use. This mea-
sure is derived from the “proportion of months with zero consump-
tion” in the monthly consumption series for the relevant material
and is used directly as a normalized value between 0 and 1. A high
regularity value indicates that the material is consumed regularly
in most months and therefore exhibits predictable behavior. Con-
versely, low regularity indicates that the series has infrequent and
irregular usage and that prediction uncertainty should naturally
be higher.

The third component is a measure representing the stability of
variation in the series and is based on the coefficient of variation
(CV). CV is a dimensionless statistic defined as the ratio of the
standard deviation to the mean, measuring the relative volatility of
the series. In this study, CV was converted into a confidence score
using a three-interval interval scoring method to enhance practical
interpretability, rather than being used directly as a continuous
function. If the CV value is below 0.5, the series is considered
relatively stable, and in this case, a score of 0.8 is assigned to this
component. If the CV is between 0.5 and 1.0, it is assumed to indi-
cate moderate volatility, and the component score is taken as 0.6.
In high volatility regimes where the CV is 1.0 or above, the series
is considered highly irregular, and this factor contributes only a
lower score of 0.3. This threshold directly reflects the assumption
that point estimates are naturally less reliable in high-variance
series.

The fourth component represents the recency of the data. The
magnitude ∆ used here indicates the number of days between the
last output process for the relevant material and the current date. If
a material has not been used for a very long time, predictions based
on its past behavior are less likely to reflect current operational
reality. Therefore, materials with a small ∆ value, i.e., those used
recently, receive a higher score. In practice, this factor is taken
as 1.0 for ∆ ≤ 90 days, reduced to 0.7 for values between 90 and
365 days, to 0.4 for values between 365 and 730 days, and to 0.1
for materials that have not been used for more than two years.
This gradual decrease directly integrates the concept of “temporal
decay” of information into the confidence score.

The fifth and final component is the indicator representing sea-
sonal complexity, denoted by S. This magnitude is a normalized
measure summarizing the relative intensity of seasonal fluctua-
tions in the series. In series with a weak seasonal effect, i.e., S < 0.3,
this factor takes a high value such as 0.8; in series with moderate
seasonality (0.3 ≤ S < 0.6), it drops to 0.6; and in series with
strong seasonal fluctuations (S ≥ 0.6), it is taken as 0.4. The basic
assumption here is that as seasonality increases, the behavior of the
series becomes more complex and, consequently, the uncertainty
of short-term forecasts rises.

Overall Score and Verb Levels: All of the components defined
above are combined to calculate a single composite confidence
score for each material. The overall confidence score C is defined
as the arithmetic mean of the total K components in Equation (29):

C =
1
K

K

∑
k=1

fk (29)

This expression defines fk as the normalized sub-scores corre-
sponding to data quantity, regularity, variation stability, timeliness,
and seasonal complexity, respectively, and K = 5 was used in this
study. The reason for choosing the arithmetic mean is to prevent
any single factor from overly dominating the score by giving equal
weight to all components and to obtain a more balanced reliability
assessment.

This calculated continuous value is then converted into four
ordinal confidence levels (e.g., “very high”, “high”, “medium”,
“low”, “very low”) for easier interpretation by decision-makers.
This conversion ensures that the system outputs are directly us-
able not only numerically but also in managerial and operational
reporting contexts (Subramanian 2021).

ABC–XYZ Segmentation

The outputs of the forecasting module are not limited to producing
total future consumption quantities; they also reveal a rich set of
information reflecting the extent to which the demand behavior of
each material is predictable. From an operational inventory man-
agement perspective, the question “how much of which material
will be consumed?” is not sufficient; it is also necessary to answer
the questions “which materials have more stable demand, and
which are more volatile and uncertain?” In order to address these
two dimensions together in this study, the ABC classification, com-
monly used in classical inventory literature, was combined with
the XYZ classification, which is based on demand predictability, to
create a combined ABC–XYZ segmentation for each material. The
application aims to ensure that the results obtained are transpar-
ent and reproducible in internal auditing, reporting, and decision
support processes, thanks to the “rule-based” and deterministic
definition of classification thresholds.

ABC: For each material in the ABC dimension, the sum of the esti-
mated consumption quantities for the next three months is used
as a proxy variable representing the relative “value” or “intensity”
of the relevant item in the inventory system. This total value, Vm,
is obtained by summing the three-month forecasts generated for
material m, and all materials are ranked from largest to smallest
according to this magnitude. Subsequently, the cumulative share
of each material in the total forecast is calculated, and the classifi-
cation is performed based on the position of this share within the
total.

In this approach, materials in the top group with a cumulative
share up to 80% of the total are labeled as Class A because they
represent a large portion of the total consumption volume. Materi-
als with a cumulative share between 80% and 95% form the Class
B group, which has a medium consumption profile. Materials
in the bottom 5% of the total, with a relatively low consumption
volume, are classified as Class C. The selection of these thresholds
is consistent with the classical ABC approach, which is based on
the Pareto principle, providing a prioritization logic that directs
resources and attention primarily to Class A items in inventory
management.

XYZ: The XYZ dimension aims to measure the stability and pre-
dictability of demand behavior rather than the consumption quan-
tity of materials. To this end, the coefficient of variation (CV)
calculated for each material and the regularity indicator represent-
ing usage regularity are used together. CV measures the relative
volatility of the series, while regularity reflects the degree of conti-
nuity in consumption over months. Evaluating these two metrics
together provides a more balanced classification that accounts not
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only for the magnitude of fluctuations but also for the structural
continuity of the series.

Within this framework, materials with a CV value below 0.5
and a regularity value above 0.7 are classified as Class X, as they
exhibit both low volatility and high usage continuity. This group
represents the most predictable demand and the most reliable
items for inventory planning. Materials with a CV value below 1.0
but a regularity value above 0.4 are labeled as Class Y, assuming
they have medium volatility and partial regularity. This group
represents a transition zone with medium uncertainty in terms
of predictability. Materials that do not meet these conditions, i.e.,
those with irregular and complex behavior due to high variation
or low regularity, are classified as Class Z and constitute the most
problematic group in terms of demand forecasting.

Calculating the Optimal Stock Level

ABC–XYZ segmentation is used in this study not only to classify
materials but also to systematically determine the stock manage-
ment policy to be applied for each segment. In other words, the
segment label obtained is treated directly as a “decision parame-
ter,” and different safety stock ratios, maximum stock levels, and
control frequencies are defined for each segment. This approach
ensures the establishment of an adaptable and risk-sensitive struc-
ture that takes into account both consumption volume and the
predictability of demand behavior, rather than applying a uniform
policy in inventory management. In practice, the matching be-
tween the segment and the inventory policy is defined through
a clear and deterministic dictionary structure, ensuring that the
results produced by the system are verifiable and easily integrated
into corporate procedures (Goncalves et al. 2020).

Demand Representation: The base demand level used in inventory
planning calculations for each material is obtained by taking the av-
erage of three-month forecasts representing the short-term forecast
horizon. This approach aims to mitigate the impact of short-term
volatility and produce a more balanced representation of “typical
monthly demand” by preventing excessive reliance on a single
month’s forecast value. Thus, both sudden spikes and temporary
declines do not disproportionately affect inventory level decisions;
instead, calculations are based on a more stable reference level.

Safety Stock, Maximum Stock and Reorder Point: The safety stock
and maximum stock level to be determined for each material are
calculated based on policy coefficients defined according to the
ABC–XYZ segment to which it directly belongs. In this context,
the segment label represents a kind of “risk profile”; for example,
higher safety margins are anticipated for segments that are both
high-volume and low-predictability, while more limited buffer
levels are considered sufficient for low-volume and more stable
segments.

The safety stock can be interpreted as a buffer level obtained
by applying a segment-based safety factor to the typical monthly
demand for the relevant material, while the maximum stock level
represents the upper limit that the stock is allowed to reach, ob-
tained by scaling the same reference demand size with a wider
multiplier.

The reorder point is defined in the system based on a rule that
is practical and operationally easy to implement. In this study,
the reorder threshold is considered as a fixed percentage of the
maximum stock level, and this percentage is directly applied as a
safety percent in practice. This choice aims to balance both the risk
of excessive stock accumulation and the risk of stock depletion by

automatically triggering an order when the stock level falls below
a certain safe margin.

Seasonality Adjustment: The consumption behavior of some ma-
terials involves significant seasonal fluctuations. In such cases,
stock levels determined by fixed coefficients may be insufficient
to meet seasonal demand peaks. Therefore, for materials with a
high seasonal effect, the safety stock and maximum stock levels
are adjusted upward by an additional multiplier. This adjustment
aims to reduce the risk of stock depletion, particularly in clinical
usage scenarios where sudden and intense demand spikes occur
during specific periods. Thus, the system indirectly reflects not
only the average demand level but also the structural fluctuations
in the temporal distribution of demand in its stock policies.

Problem Material Identification and Intervention Strategies
A critical step in operational decision support is to automatically
flag risky or problematic materials on the same line where forecasts
are generated. The system labels a material as “problematic” when
any of the following conditions are met ?:

• Low or very low reliability level
• Forecast quantity is zero
• CV > 1.5 (highly variable)
• Last use > 365 days (long period of non-use)

Behavioral Problem Groups: Problem materials are divided into
subgroups based on their typical behaviors to facilitate interven-
tion design:

• OLD_USE: Materials that have not been used for a very long
time.

• HIGH_VARIATION: Materials exhibiting very high con-
sumption volatility.

• IRREGULAR_USE: Materials with low regularity of usage.
• INSUFFICIENT_DATA: Materials with very few historical

outputs.
• COMPLEX_PATTERN: Materials that do not fit into the above

categories and exhibit complex or mixed behavior.

Action Recommendations and Prioritization: This subsection ex-
plains how actionable recommendations and priority levels are
generated for each problem group, going beyond the identifica-
tion of problematic materials. The goal is to transform forecasting
and classification outputs from merely descriptive reports into a
decision support layer that directly supports operational decision-
making processes. This approach elevates the system from a “pas-
sive reporting” level to an “active and directive decision support”
level.

The system determines the problem type by jointly evaluating
the forecast results, uncertainty indicators, behavioral character-
istics (variation, regularity, trend), and inventory classifications
(ABC–XYZ) obtained for each material–warehouse combination.
As a result of this comprehensive evaluation, predefined but data-
triggered action templates are activated for each problem type.

For example, for materials that exhibit long-term low or zero
consumption and whose predicted future consumption is also
negligible, removal from stock or evaluation of alternative uses
is recommended. Such materials, especially if they are in the C
or Z class, can negatively impact warehouse space efficiency and
inventory carrying costs. Therefore, the system flags this group
as a low operational priority but strategically important problem
requiring cleanup.
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In contrast, for materials exhibiting high variation and irregular
consumption behavior, action recommendations are generated to
increase safety stock (buffer levels) or re-adjust reorder points. In
such cases, the system proposes a more protective policy aimed
at minimizing stock-out risk, taking into account prediction error
and uncertainty levels.

When data length is insufficient or consumption patterns cannot
be modeled statistically reliably, the system flags these materials as
“high uncertainty” and adopts an approach that prioritizes expert
evaluation over automatic decision-making. The recommended
action plan for such materials is to initiate a manual review process
alongside temporary conservative stock policies.

Each generated action recommendation is labeled with a prior-
ity score, taking into account the operational impact of the relevant
problem, the expected risk level, and the potential cost outcome.
This prioritization enables managers to focus limited resources on
the most critical materials and systematizes the decision-making
process. Thus, the outputs obtained from the forecasting module
are transformed into actionable, traceable, and justifiable decision
recommendations.

RESULTS AND DISCUSSION

Medical supply demand forecasting in healthcare institutions is a
decision problem characterized by high uncertainty, dynamism,
and multiple factors. Sudden changes in patient numbers, emer-
gency department workloads, epidemic periods, updates to clinical
protocols, and administrative decisions directly and often unpre-
dictably affect consumption patterns. Therefore, healthcare inven-
tory data are often described in the literature as irregular, sparse,
highly variable, and prone to anomalies (Merkuryeva et al. 2019;
Subramanian 2021; Feibert et al. 2019; Silva-Aravena et al. 2020;
Balkhi et al. 2022)

The anomaly-aware and ensemble-based demand forecasting
architecture developed in this study aims to directly address these
structural challenges. The results obtained are interpreted by
jointly evaluating anomaly detection outputs, comparisons of para-
metric and non-parametric methods, time series structural analysis,
and operational impacts.

Forecast Model Types Distribution

In this study, the demand forecasting process was evaluated not
only based on forecast accuracy but also on which model types can
be preferred under which data conditions. Health inventory con-
sumption series exhibit a highly heterogeneous structure in terms
of frequency of use, continuity, variability, and clinical dependency.
This situation makes it difficult to apply a uniform forecasting ap-
proach for all materials and makes data adequacy a critical factor
in model selection (Subramanian 2021; Balkhi et al. 2022).

The model type distribution results obtained in this context
reveal that a significant portion of health inventory data lacks suf-
ficient and continuous data for model training. Particularly for
infrequently used, procedure-specific, or seasonally active medical
consumables, the short length of the historical observation win-
dow limits the ability of forecasting models to learn meaningful
patterns. The literature indicates that such irregular and intermit-
tent demand series specific to the health sector pose a significant
challenge for both statistical time series methods and machine
learning-based approaches (Silva-Aravena et al. 2020; Subrama-
nian 2021).

When examining cases where data adequacy is ensured, en-
semble approaches are seen to be more prominent than individual

models. Linear models (ridge, lasso) offer advantages in captur-
ing low-variance and more regular components; while tree-based
methods (gradient boosting, random forest, XGBoost) can more
effectively model non-linear relationships, sudden demand spikes,
and complex interactions. Bringing these different model families
together contributes to balancing prediction errors and obtaining
more generalizable results (Shaub 2020; Kim et al. 2023; Chien et al.
2023).

These findings show that, rather than searching for the “best
single model” in healthcare inventory demand forecasting, a flex-
ible, multi-model approach that can adapt to the data structure
is more rational. The model type distribution reveals that the
ensemble-based strategy adopted in the study is supported not
only theoretically but also by the data.

Figure 1 Distribution of the most commonly used prediction
model types (Top 10).

As shown in Figure 1, one of the first outputs of the applied es-
timation process is the model distribution, which indicates which
model types stand out in different material–unit pairs. Figure 1
presents the frequencies of the most commonly used estimation
model types. The clear dominance of the “Insufficient Data” cate-
gory in the graph indicates that a significant portion of the health
inventory consumption data lacks sufficient and continuous ob-
servations for model training. In a hospital setting, some medical
consumables are used infrequently, only in connection with spe-
cific clinical procedures, while others may be completely out of
use during certain periods. This situation leads to short, irregular,
and intermittent demand series, limiting the learning capacity of
both statistical and machine learning-based models (Subramanian
2021; Balkhi et al. 2022).

When examining results outside the Insufficient Data category,
it is observed that the most frequently preferred approaches are
predominantly ensemble model combinations. This finding in-
dicates that a single model family is insufficient to capture all
behavioral patterns in health inventory demand series. Linear
models (ridge, lasso) offer advantages in capturing regular and
low-variance components, while tree-based methods (gradient
boosting, random forest, XGBoost) can more effectively model
non-linear relationships, sudden jumps, and interactions. Ensem-
ble approaches, which combine these different strengths, produce
more stable and generalizable predictions by balancing errors (Kim
et al. 2023; Chien et al. 2023; Shaub 2020). Therefore, Figure 1 shows
that the multi-model and flexible prediction strategy adopted in
this study is also supported by the data.
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Forecast Reliability Levels
Another factor as important as error metrics in evaluating fore-
cast performance is the reliability level of the generated forecasts.
Since forecast results directly influence operational decisions in
healthcare inventory management, the question of how reliable the
forecasts are is of critical importance. Particularly in demand series
with high uncertainty, careful consideration should be given to
how forecast outputs can be used for decision support (Goncalves
et al. 2020). In this study, forecasts were classified under Very Low,
Low, Medium, High, and Very High Reliability levels. The dis-
tribution obtained indicates that forecast uncertainty is high in
a significant portion of healthcare inventory consumption data.
Short data windows, high variance, sudden demand spikes, and
irregular usage patterns widen the uncertainty intervals of forecast
models, thereby reducing their reliability. The literature empha-
sizes that demand forecasting in the healthcare sector inherently
involves high uncertainty and that this uncertainty must be explic-
itly managed (Subramanian 2021; Balkhi et al. 2022).

However, the presence of significant density in the Medium,
High, and Very High Reliability categories indicates that some ma-
terials exhibit more regular and predictable consumption behavior.
It has been observed that prediction reliability increases in series
with more pronounced trend and seasonality components, lower
coefficient of variation (CV), and higher observation continuity. In
such series, ensemble approaches in particular are seen to produce
more stable and reliable forecasts (Shaub 2020; Kim et al. 2023).This
differentiation in forecast reliability levels reveals that a uniform
forecasting strategy is not appropriate for all materials. While
prediction outputs for materials in the Very Low Reliability group
should be used only to a limited extent for decision support pur-
poses, greater weight can be given to prediction-based automatic
stock decisions for materials in the High and Very High Reliability
groups. This approach is consistent with the literature arguing that
prediction results in healthcare inventory management should be
differentiated based on reliability (Goncalves et al. 2020).

Figure 2 Distribution of prediction reliability levels.

Forecast performance has been evaluated not only through er-
ror metrics but also through the reliability levels of the forecasts.
Figure 2 shows the distribution of the generated forecasts accord-
ing to Very Low, Low, Medium, High, and Very High Reliability
levels. The dominance of the Very Low Reliability category in the
graph reveals that uncertainty is quite high in health inventory
consumption series. Short data windows, high variance, sudden
demand spikes, and irregular usage patterns widen the uncertainty
intervals of prediction models, thereby reducing reliability (Sub-

ramanian 2021).Nevertheless, a significant concentration is also
observed in the Medium, High, and Very High Reliability cate-
gories. This indicates that some materials have more regular con-
sumption behaviour and that prediction models can produce more
reliable outputs for these series. Prediction reliability increases
in series where trend and seasonality components are more pro-
nounced, the coefficient of variation (CV) is lower, and observation
continuity is higher. The fact that ensemble approaches produce
more successful results for materials in this group is consistent
with the properties of reducing error variance and increasing gen-
eralisability emphasised in the literature (Shaub 2020; Kim et al.
2023).

One of the most important contributions of Figure 2 is that it
shows that a single prediction strategy is not suitable for all mate-
rials. It is understood that prediction outputs should be used for
decision support purposes only to a limited extent for materials
in the Very Low Reliability group, whereas more weight should
be given to prediction-based automatic stock decisions for materi-
als in the High and Very High Reliability groups. This finding is
consistent with studies arguing that prediction results should be
differentiated based on reliability in healthcare inventory manage-
ment (Goncalves et al. 2020; Balkhi et al. 2022).

Anomaly Detection Findings and Their Effects on the Health
Inventory
The anomaly detection step applied prior to the forecasting pro-
cess is a critical pre-processing stage in health inventory demand
forecasting. The literature clearly states that feeding outliers and
irregular observations directly into the model increases estima-
tion errors, reduces model stability, and can lead to incorrect stock
decisions (Ingle et al. 2021; Kim et al. 2023; Subramanian 2021;
Merkuryeva et al. 2019).In this study, the DBSCAN algorithm is
preferred for anomaly detection. Thanks to its density-based struc-
ture, DBSCAN can produce effective results in complex and het-
erogeneous data sets without the need for predefined threshold
values or distribution assumptions.

Figure 3 Singular and high-impact anomaly detected in the
ADSH -1 Ground Floor Inventory and Biomedical Storage con-
sumption series using the DBSCAN algorithm.

As observed in Figure 3, the DBSCAN algorithm clearly de-
tected a high-volume singular anomaly in the consumption series
belonging to the central storage facility. It can be seen that the
consumption amount during the relevant period was significantly
above the historical average. Such sudden and sharp consumption
spikes are generally associated with urgent clinical needs, unex-
pected patient surges, or operational planning-out usage scenarios
in the context of healthcare inventory (Feibert et al. 2019; Subra-
manian 2021).The literature emphasises that such singular but
highly impactful anomalies create a disproportionate disruptive
effect on prediction models. Particularly when error metrics have
a squared structure (e.g., RMSE), such outliers can significantly
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degrade model performance (Merkuryeva et al. 2019; Ingle et al.
2021).Therefore, identifying and separating these anomalies prior
to the prediction process facilitates the model’s learning of the
overall behaviour.

The most significant contribution of the DBSCAN algorithm
in this example is its ability to successfully distinguish sudden
changes in consumption intensity without relying on distribution
assumptions or using fixed threshold values. This clearly demon-
strates why density-based approaches are more suitable for hetero-
geneous and irregular data structures such as health inventories
(Balkhi et al. 2022).

Figure 4 Multiple and irregular anomalies detected in the con-
sumption series of the Güzeloba ADSP Laboratory unit using the
DBSCAN algorithm

As shown in Figure 4, the consumption series of the laboratory
unit contains multiple and irregular anomalies. Such consumption
patterns are frequently observed in healthcare institutions because
laboratory services are directly linked to patient profiles and clini-
cal demand. Fluctuations in diagnostic and examination processes,
in particular, can cause changes in consumption series intensity
(Polater and Demirdogen 2018; Feibert et al. 2019).

The most important point to note in Figure 4 is that anomalies
appear not only at a single point but at different time intervals and
at different density levels. This explains why parametric methods
based on fixed thresholds can be inadequate. The DBSCAN algo-
rithm has successfully modelled this complex structure thanks to
its ability to distinguish between different density regions. The lit-
erature indicates that consumption series for laboratory and imag-
ing units in healthcare supply chains are typically multimodal and
irregular (Balkhi et al. 2022; Subramanian 2021). In this context, Fig-
ure 4 visually supports why the DBSCAN-based approach should
be preferred in complex systems such as healthcare inventory.

Comparative Evaluation of Parametric and Non-Parametric
Anomaly Approaches
In order to evaluate the effectiveness of the DBSCAN-based ap-
proach more comprehensively, a comparative analysis was per-
formed with the Z-Score, a classical parametric method. The Z-
Score method is based on the assumption that the data follows
an approximate normal distribution and identifies outliers using
fixed threshold values.

Figure 5 shows the anomaly detection results obtained using
the Z-Score method for the same central storage facility. Although
the Z-Score method was able to detect significant outliers, it could
only capture structural fluctuations and intensity changes in the
consumption series to a limited extent. This situation stems from

Figure 5 Anomalies detected in the ADSH -1 Ground Floor In-
ventory and Biomedical Storage consumption series using the
Z-Score method.

the Z-Score’s dependence on the distribution assumption. Health
inventory consumption data often do not satisfy the normal dis-
tribution assumption; instead, they exhibit skewed, multimodal,
and seasonally varying structures (Merkuryeva et al. 2019; Sub-
ramanian 2021).It is frequently emphasised in the literature that
methods based on fixed thresholds in such data structures can
only detect extreme observations but may overlook more complex
anomalies (Ingle et al. 2021; Kim et al. 2023).

In this context, Figure 5 clearly illustrates the limitations of the
Z-Score method in the health inventory context and supports why
non-parametric approaches such as DBSCAN offer more flexible
solutions (Silva-Aravena et al. 2020).

Figure 6 Results of anomaly detection performed on the con-
sumption series of the ADSM A17 X-ray unit using the Z-Score
method.

Figure 6 clearly shows that the Z-Score method can completely
miss anomalies in some periods. The consumption series for the
X-ray unit exhibits structural breaks over time due to changing
clinical demands and patient profiles. The performance of methods
based on fixed thresholds is significantly reduced in such series.

The literature indicates that consumption series for imaging
and diagnostic units typically contain seasonality, trends, and sud-
den increases in demand (Feibert et al. 2019; Balkhi et al. 2022).
In this context, Figure 4 illustrates why parametric methods are
limited in the healthcare inventory context and why approaches
based on distribution assumptions do not always produce reli-
able results. This finding directly aligns with studies explaining
why non-parametric methods and density-based approaches are
increasingly preferred in the healthcare supply chain literature
(Merkuryeva et al. 2019; Subramanian 2021).

Following anomaly cleaning, the time series decomposition
method was applied to enable a more in-depth analysis of the
fundamental behavioural characteristics of the consumption series.
This analysis allows for the separate examination of the trend,
seasonality, and residual components.

Figure 7 shows the time series decomposition results obtained
for material 17380. While a long-term increasing structure is ob-
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Figure 7 Time series decomposition analysis for material 17380:
trend, seasonality and residual components.

served in the trend component, pronounced fluctuations are no-
ticeable in the seasonal component. This indicates that the con-
sumption of the relevant material exhibits both an increasing trend
over time and is influenced by seasonal factors. The irregularities
observed in the residual components reveal that this series has
a structure susceptible to anomalies. The literature emphasises
that single forecasting models are generally inadequate for such
complex time series, and that ensemble approaches produce more
successful results (Kim et al. 2023; Chien et al. 2023; Sina et al. 2023;
Shaub 2020).

In this context, Figure 5 is one of the key figures that visually
supports why ensemble and hybrid forecasting approaches are
necessary.

Figure 8 Time series decomposition analysis for material 17305:
trend, seasonality and residual components.

Figure 8 presents the decomposition results obtained for a ma-
terial with a high-volume and complex consumption structure. In
addition to the trend and seasonality components, the high vari-
ance observed in the residual components indicates that this series
is both prone to anomalies and difficult to forecast. The literature
indicates that such high-volume and irregular series cannot be

effectively predicted using simple statistical models; instead, mul-
tiple model combinations provide more stable results (Sharma et al.
2021; Sina et al. 2023). Therefore, Figure 6 is of critical importance
in justifying the proposed ensemble-based approach.

CONCLUSION

The findings obtained within the scope of this study not only
present results related to statistical prediction accuracy but also
demonstrate that the developed anomaly-aware and ensemble-
based prediction architecture produces outputs that can be directly
integrated into the operational and strategic decision-making pro-
cesses of healthcare institutions. As frequently emphasised in the
literature, healthcare inventory data has an irregular, sparse, highly
variable, and anomaly-prone structure necessitated the design of
the developed system to directly address these structural chal-
lenges (Merkuryeva et al. 2019; Subramanian 2021; Feibert et al.
2019; Silva-Aravena et al. 2020; Balkhi et al. 2022).The anomaly-
aware forecasting process enables unexpected demand spikes to
be detected at an early stage, contributing to reducing the risk
of stock depletion, preventing excessive inventory costs, and en-
suring service continuity (Karamshetty et al. 2022; Goncalves et al.
2020). The generated forecasts are not only reported as point values
but are also presented with an explainable reliability score calcu-
lated based on indicators such as the amount of data, behavioural
stability, timeliness, and seasonal complexity for each material.
Thus, decision-makers can obtain a quantitative answer not only
to the question ‘how much will we consume?’ but also to the
question ‘to what extent can I trust this forecast?’ (Subramanian
2021).

Situation indicates that a uniform stock and forecasting policy
for all materials will not be effective and necessitates the integrated
use of ABC classification, commonly used in classical inventory
literature, and XYZ classification, which is based on demand pre-
dictability (Aktunc et al. 2019; Babai et al. 2015; Demiray Kirmizi
et al. 2024).Thanks to the combined ABC–XYZ segmentation devel-
oped within the scope of the study, while stock removal or alterna-
tive usage evaluations are recommended for materials exhibiting
low and irregular consumption, more protective policies such as
increasing safety stock and redefining reorder points are system-
atically developed for critical materials exhibiting high variation.
In cases where the data length is insufficient or the consumption
pattern cannot be modelled in a statistically reliable manner, a
conservative approach prioritising expert assessment is adopted
instead of automatic decision-making. This holistic structure en-
ables the evolution of forecasting outputs into actionable, traceable,
and justifiable decision recommendations, demonstrating the prac-
tical application of integrated forecasting–classification approaches
advocated in the literature for healthcare inventory management
(Feibert et al. 2019; Subramanian 2021).
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