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ABSTRACT Skin cancer represents an escalating global public health challenge where early detection is paramount,
potentially increasing five-year survival rates to 99%. While dermoscopy improves diagnostic sensitivity, its effectiveness
often depends on clinician experience and is subject to inter-observer variability. To address these limitations, this study
presents a rigorous comparative analysis of four state-of-the-art Vision Transformer (ViT) architectures, DeiT III-Base,
Swin-Base, ViT-Base, and PiT-B, for the automated classification of pigmented skin lesions. We utilized the HAM10000
dataset (n=10,011) and implemented a stratified 70-15-15 split to ensure balanced training, validation, and testing phases.
Images were resized to 224×224 pixels and normalized using ImageNet parameters, while transfer learning was employed
to stabilize training and enhance generalization. Experimental results indicate that DeiT III-Base achieved superior
diagnostic efficacy, reaching an accuracy of 92.04% and an F1-score of 85.44%. Furthermore, computational evaluation
revealed that DeiT III-Base and ViT-Base offered highly efficient clinical throughput with sub-millisecond inference times
(0.5674 ms and 0.5459 ms, respectively), whereas PiT-B exhibited the lowest computational workload (21.1067 GFLOPs).
These findings underscore the viability of attention-based paradigms as robust real-time Computer-Aided Diagnosis
(CAD) tools. Future research will explore the integration of multi-modal patient data and Explainable AI (XAI) to foster
transparency and clinical trust.
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INTRODUCTION

Skin cancer constitutes a significant and escalating public health
challenge globally, accounting for a substantial proportion of all
diagnosed malignancies. With incidence rates rising steadily due
to factors such as increased exposure to ultraviolet (UV) radiation,
environmental changes, and aging populations, the burden on
healthcare systems continues to grow. Among the various types,
melanoma represents the most aggressive and lethal form, char-
acterized by a high potential for metastasis (Gloster Jr and Neal
2006; Armstrong and Kricker 1995; Madan et al. 2010). However,
prognosis is strongly correlated with the stage at diagnosis; early
detection can increase the five-year survival rate to nearly 99%,
whereas delayed diagnosis significantly diminishes treatment suc-
cess and patient survival. Consequently, the development of rapid,
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accessible, and precise diagnostic mechanisms is not merely a clin-
ical preference but a vital necessity to reduce mortality rates and
improve patient outcomes (Gloster Jr and Brodland 1996).

Traditionally, the diagnosis of pigmented skin lesions relies on
visual examination followed by dermoscopy, a non-invasive imag-
ing technique that visualizes subsurface skin structures. While der-
moscopy significantly enhances diagnostic sensitivity compared
to naked-eye examination, its efficacy remains heavily dependent
on the clinician’s experience and training (Siegel et al. 2024; Jerant
et al. 2000). The visual similarity between benign lesions (e.g., nevi,
benign keratosis) and malignant tumors (e.g., melanoma, basal cell
carcinoma) often leads to diagnostic ambiguity, resulting in either
unnecessary biopsies or missed malignancies. Factors such as clin-
ician fatigue, inter-observer variability, and the sheer volume of
patients further complicate the manual diagnostic process. These
limitations have necessitated the integration of Computer-Aided
Diagnosis (CAD) systems to provide objective, consistent, and
"second opinion" support for dermatologists.

In the last decade, the landscape of medical image analysis
has been revolutionized by Deep Learning (DL), particularly Con-
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volutional Neural Networks (CNNs) (ThangaPurni and Braveen
2025; Ozdemir and Pacal 2025; Çakmak and Pacal 2025; Cakmak
and Maman 2025). Architectures such as ResNet, DenseNet, and
EfficientNet have established themselves as the gold standard in
skin lesion classification, demonstrating the ability to learn hierar-
chical feature representations directly from raw images (Karthik
et al. 2024; Cakmak and Pacal 2025; Pacal and Cakmak 2025a,b).
Despite their success, traditional CNNs primarily focus on local
features due to their receptive field limitations, potentially missing
long-range dependencies and global contextual information cru-
cial for differentiating complex lesions. This limitation has paved
the way for the adoption of Vision Transformers (ViTs) and hybrid
architecture. Unlike CNNs, ViTs utilize self-attention mechanisms
to capture global relationships across the entire image, offering a
robust alternative for capturing fine-grained morphological details.

However, the rapid evolution of DL has precipitated a shift
from pure convolutional networks to sophisticated attention-based
paradigms. Consequently, there remains a critical need to rigor-
ously evaluate how these distinct architectural strategies perform
within the specific domain of skin cancer classification. In this
study, we propose a comprehensive comparative analysis of ad-
vanced ViT architectures to identify the most effective mechanisms
for skin lesion diagnosis. Rather than employing a broad spec-
trum of legacy models, our experimental framework rigorously
benchmarks four distinct transformer-based methodologies that
represent the state-of-the-art in attention mechanisms: the Data-
efficient Image Transformer (DeiT III-Base), the standard ViT-Base,
the hierarchical Swin Transformer (Swin-Base), and the Pooling-
based Vision Transformer (PiT-B). Through this targeted evalua-
tion, we aim to assess these architectures under unified conditions,
providing critical insights into their generalization capabilities and
clinical applicability for early skin cancer detection.

RELATED WORK

To overcome the locality bias of CNNs, researchers have increas-
ingly adopted ViTs to model global context within dermoscopic
images. Aruk et al. (2026) conducted a comprehensive compara-
tive study evaluating 15 different CNNs against 15 ViT variants,
including Swin and BeiT architectures, under identical training
conditions. Their extensive analysis revealed that ViT models, par-
ticularly the Swin Transformer, consistently outperformed CNNs
in classification accuracy, albeit at the cost of higher parameter
counts and computational demands. Addressing the data-hungry
nature of transformers, novel training paradigms have been intro-
duced to improve robustness. Chaurasia et al. (2025) developed
a multi-resolution model utilizing the DINOv2 self-supervised
learning method to classify skin cancer subtypes from whole slide
images (WSIs). By training on histological patches at various mag-
nifications (10x to 400x), their model effectively captured multi-
scale features, achieving an F1-score of 0.898 on external validation
datasets.

Furthermore, specific architectural modifications have been pro-
posed to tailor ViTs for the nuances of skin lesion analysis. Manju
et al. (2025) proposed a preprocessing-optimized ViT model that
integrates contrast enhancement and lesion segmentation directly
into the workflow to remove artifacts before tokenization. This
attention-enhanced model achieved an AUC-ROC score of 0.97,
proving that feeding cleaner, segmented data into self-attention
mechanisms significantly boosts diagnostic performance. Finally,
the challenge of class imbalance in transformer training has been
rigorously addressed. Sakib et al. (2025) introduced "LEVit," a
framework that combines a hybrid ViT with extensive data aug-

mentation and oversampling techniques to ensure uniform class
distribution. Their approach not only achieved an F1 score of
98.11% on the ISIC 2019 dataset but also integrated Grad-CAM to
generate class-specific heatmaps, ensuring the model’s decisions
were interpretable.

Building on the theme of architectural refinement for dermato-
logical assessment, the literature has further evolved to address the
synergy between localized features and global spatial reasoning.
Pacal et al. (2024) advanced this structural capacity by propos-
ing a Swin Transformer model that incorporates hybrid shifted
window-based multi-head self-attention. Their methodology uti-
lizes SwiGLU-based MLP layers to more effectively synchronize
localized texture orientations with global spatial cues, thereby en-
hancing the network’s sensitivity to minute malignant patterns
that often elude standard convolutional filters. Beyond individual
architectural optimizations, the focus has shifted toward improv-
ing decision robustness through multi-model integration. Bruno
et al. (2025) expanded upon these gains by introducing a multi-
scale attention and ensemble framework designed to aggregate
features from diverse transformer-based learners. Their research
demonstrates that combining multiple attention mechanisms effec-
tively overcomes the inherent biases of single-architecture systems,
leading to superior classification stability even in the presence of
noisy or heterogeneous dermatoscopic data.

Finally, ensuring that these sophisticated models are both trust-
worthy and clinically viable has become a primary objective. Dag-
naw et al. (2024) addressed this by integrating ViTs with Explain-
able Artificial Intelligence (XAI) to bridge the gap between high-
performance computing and clinical transparency. By providing
dermatologists with interpretable saliency maps, their framework
ensures that the diagnostic logic of the transformer is both visible
and verifiable, fostering the necessary confidence for the adoption
of automated screening tools in high-stakes medical environments.

MATERIALS AND METHODS

Dataset and Data Preprocessing

In this research, we worked with the HAM10000 dataset, which
is essentially the gold standard collection used in the ISIC 2018
challenge (HAM 2025). It contains 10,011 dermoscopic photos
covering seven different types of skin conditions, ranging from
harmless moles to dangerous cancers like melanoma. If you look
at Figure 1, you can see why this is such a difficult task: many of
these lesions look incredibly similar to the untrained eye, making
manual diagnosis a real challenge.

When setting up our experiments, we didn’t just split the data
randomly. We used a stratified split to make sure the balance of
diseases remained consistent across our training and testing sets.
We settled on a 70-15-15 distribution, which gave us 7,005 images
to train our models, 1,498 to fine-tune them, and a final 1,508 to
test how well they actually perform on "unseen" cases. You can see
the exact breakdown of these numbers in Table 1.

To get the images ready for the AI, we resized everything to
224×224 pixels. We also normalized the colors based on ImageNet
standards. This step is vital because it helps the model ignore
background "noise" like lighting differences and instead focus
strictly on the textures and patterns that actually matter for a
correct diagnosis.

Vision Transformers (ViTs)

To address the inherent limitations of local receptive fields in convo-
lutional networks, this study leverages ViTs to model long-range
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Figure 1 Representative dermoscopic samples from the HAM10000 dataset illustrating the seven skin lesion classes used in this study (AKIEC,
BCC, BKL, DF, MEL, NV, and VASC).

■ Table 1 Distribution of the HAM10000 dataset across the seven diagnostic categories for training, validation, and testing subsets.

Class Name Total Train Val Test

BKL 1099 769 164 166

DF 115 80 17 18

VASC 142 99 21 22

AKIEC 323 226 48 49

MEL 1113 779 166 168

BCC 514 359 77 78

NV 6705 4693 1005 1007

Grand Total 10011 7005 1498 1508

dependencies and global semantic context, which are essential
for distinguishing the subtle morphological variations in skin le-
sions. Our methodological framework rigorously benchmarks four
distinct attention-based paradigms to evaluate their efficacy in
dermoscopic analysis: the standard ViT-Base (Dosovitskiy et al.
2020), serving as a pure self-attention anchor; the DeiT III-Base
(Touvron et al. 2022), selected for its superior data efficiency and
refined training strategies suitable for medical datasets; the Swin
Transformer (Swin-Base) (Liu et al. 2021), which introduces a hier-
archical architecture with shifted windows to capture multi-scale
features; and the Pooling-based Vision Transformer (PiT-B) (Ren
et al. 2024), which incorporates spatial dimension reduction to
bridge the gap between transformer flexibility and the structural
abstraction of CNNs. By deploying this diverse set of architectures,
we aim to dissect how specific structural innovations, ranging from
hierarchical attention to pooling mechanisms, impact diagnostic
precision in skin cancer classification.

Transfer Learning

Training high-capacity DL architectures, particularly Vision Trans-
formers, from scratch necessitates massive volumes of annotated
data to overcome the lack of inherent inductive biases found in
convolutional networks. Given the intrinsic scarcity of labeled
medical imaging datasets compared to general-domain reposito-
ries, initializing models with random weights often leads to poor
convergence and significant overfitting. To mitigate this challenge,
we adopted a transfer learning strategy by leveraging models
pre-trained on the ImageNet-1K dataset. This approach allows
our network to inherit robust hierarchical feature representations,
ranging from low-level edge detection to high-level semantic ab-
stractions, learned from millions of natural images. By transferring
this prior knowledge to the dermatological domain, we effectively
bypass the computational burden of learning fundamental visual
patterns de novo, thereby accelerating training stability and en-
hancing generalization performance on dermoscopic images (Ren
et al. 2022).
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In the implementation phase, the architectural adaptation in-
volved replacing the original classification head, designed for the
1,000 distinct classes of ImageNet, with a task-specific Multi-Layer
Perceptron (MLP) tailored to our seven diagnostic categories. We
employed an end-to-end fine-tuning protocol rather than merely
using the backbone as a fixed feature extractor. This allowed the
pre-trained weights to be subtly adjusted via backpropagation,
facilitating the domain adaptation process. By doing so, the mod-
els could recalibrate their attention mechanisms to focus on the
specific, fine-grained morphological details pertinent to skin le-
sions, such as pigment networks and vascular structures, while
retaining the robust generalization capabilities acquired during
the pre-training phase (Bengio 2012).

Experimental Design and Training Protocol

To ensure the reproducibility and rigor of our comparative anal-
ysis, all DL architectures were implemented using the PyTorch
framework on a high-performance workstation equipped with an
NVIDIA GPU. The dataset was partitioned using a stratified sam-
pling strategy to maintain the inherent class distribution across sub-
sets, resulting in a split of approximately 70% for training (n=7,005),
15% for validation (n=1,498), and 15% for testing (n=1,508). Prior
to feeding the networks, all images underwent standardization,
including resizing to uniform dimensions compatible with the
pre-trained transformer backbones (typically 224×224) and normal-
ization using ImageNet mean and standard deviation parameters.
This rigorous preprocessing pipeline was essential to stabilize the
training dynamics and ensure that the attention mechanisms could
effectively attend to lesion-specific features without being swayed
by lighting or resolution inconsistencies.

The training phase was conducted using the Cross-Entropy
Loss function to penalize classification errors across the seven
diagnostic categories. To optimize the network weights, we em-
ployed the AdamW optimizer, widely recognized for its efficacy
in training transformer models, initialized with an empirically
tuned learning rate and weight decay to prevent overfitting. We
utilized a dynamic learning rate scheduler (Cosine Annealing) to
progressively reduce the learning rate, allowing the model to settle
into sharper minima as training converged. The best-performing
model weights were saved based on the validation loss metric to
avoid the pitfalls of overfitting during extended epochs. Finally,
the quantitative evaluation was performed on the unseen test set
using standard metrics, including Accuracy, Precision, Recall, and
F1-Score, to provide a holistic view of each model’s diagnostic
capability.

Performance Evaluation Metrics

To truly understand how these models hold up, we didn’t just look
at their accuracy. We used a multi-layered approach to evaluate
them, looking at how well they handle different skin diseases and
how they would actually run in a real-world clinic. We tracked
standard scores like Accuracy, Precision, Recall, and the F1-Score
to see how reliable the diagnoses are. However, for a model to be
useful in a hospital, it also needs to be efficient. That’s why we
also measured "Params" to see how much memory the model takes
up, "GFLOPs" to calculate the raw processing power required,
and "Inference Time" to see how many milliseconds it takes for a
doctor to get a result. You can see how all these factors compare
for each model in Table 2. The formulas we used to calculate these
results are shown above. Accuracy (Eq. 1) gives us the big picture
of correct guesses, while Precision (Eq. 2) tells us how often the
model is right when it flags a lesion as concerning. Recall (Eq. 3) is

perhaps the most important for patients because it measures how
many actual cancer cases the model caught without missing any.
Finally, the F1-Score (Eq. 4) helps us find the sweet spot between
being precise and being thorough, which is vital since some types
of skin cancer in our dataset are much rarer than others.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-Score = 2 × Precision × Recall
Precision + Recall

(4)

RESULTS

Quantitative Performance and Comparative Analysis

The empirical evaluation of the four benchmarked ViT architec-
tures reveals distinct trade-offs between diagnostic precision and
computational efficiency. As summarized in Table 2, the DeiT III-
Base model achieved the highest overall performance, reaching
an accuracy of 92.04% and an F1-score of 85.44%. This superior
performance suggests that the data-efficient training strategies and
refined attention mechanisms of DeiT III are particularly effective
for capturing the fine-grained morphological features necessary for
skin lesion classification. Swin-Base followed closely with an accu-
racy of 91.64%, demonstrating the benefit of hierarchical feature
extraction in dermoscopic analysis.

In terms of computational complexity, PiT-B exhibited the high-
est efficiency regarding memory footprint and processing work-
load, utilizing only 72.75M parameters and 21.1067 GFLOPs. How-
ever, this reduction in GFLOPs did not translate to the fastest
execution; PiT-B recorded the highest Inference Time (1.5418 ms),
likely due to its unique pooling-based architecture which may hin-
der parallelization compared to the standard transformer blocks.
Conversely, ViT-Base and DeiT III-Base provided the most rapid
predictions with inference times of 0.5459 ms and 0.5674 ms, re-
spectively, making them the most suitable candidates for high-
throughput clinical screening.

Analysis of Model Predictions and Error Patterns

To dissect the model’s decision-making process, we analyzed the
confusion matrix for the top-performing DeiT III-Base model, as
shown in Figure 2. The diagonal elements indicate high sensitivity
for the most prevalent class, Melanocytic Nevi (NV), with 977
correct predictions. However, notable confusion exists between
Actinic Keratoses (AKIEC) and Benign Keratosis (BKL), as well
as between Melanoma (MEL) and NV. This reflects the inherent
"visual mimicry" described in clinical literature, where benign and
malignant lesions share overlapping pigment patterns.

A qualitative assessment of these results is provided in Figure 3,
which visualizes both successful and erroneous predictions along-
side their confidence scores. True predictions often correspond to
lesions with clear, well-defined diagnostic structures, such as the
distinct vascular patterns in VASC or the characteristic symmetry
in NV. In contrast, misclassified cases, such as a MEL predicted as
AKIEC with 49.3% confidence, often involve ambiguous textures
or peripheral artifacts that challenge the self-attention mechanism.
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■ Table 2 Performance comparison of the benchmarked ViT architectures on the HAM10000 test set, evaluated by predictive metrics and
computational efficiency.

Models Accuracy Precision Recall F1 Score Params (M) Gflops Inference Time
(Ms)

DeiT III-Base 0.9204 0.8794 0.8348 0.8544 85.82 33.6955 0.5674

ViT-Base 0.8952 0.8508 0.7704 0.8060 85.80 33.6955 0.5459

Swin-Base 0.9164 0.8703 0.8356 0.8508 86.75 30.3375 0.7927

PiT-B 0.9072 0.8677 0.8599 0.8606 72.75 21.1067 1.5418

Figure 2 Confusion matrix for the top-performing DeiT III-Base
model, illustrating class-specific diagnostic performance and inter-
class misclassification patterns.

Figure 3 Qualitative analysis of model predictions showing rep-
resentative examples of successful classifications and erroneous
predictions with their corresponding confidence scores.

DISCUSSION

Interpretation of Key Findings
The results of this study underscore the effectiveness of ViTs in
overcoming the locality bias of traditional CNNs. The top per-
formance of DeiT III-Base and Swin-Base confirms that modeling
global contextual relationships is vital for differentiating complex
lesions. Specifically, the self-attention mechanism allows these

models to attend to subtle, long-range dependencies across the
lesion surface, which are often missed by the localized receptive
fields of standard convolutional filters. Furthermore, the use of
Transfer Learning from ImageNet-1K was essential in stabilizing
training and achieving high accuracy despite the limited size of
medical datasets compared to natural image repositories.

Clinical Implications, Limitations, and Future Directions
From a clinical perspective, the high accuracy and sub-millisecond
inference times of models like DeiT III-Base suggest their viability
as real-time CAD tools. Such systems could provide a critical "sec-
ond opinion," potentially reducing the rate of unnecessary biop-
sies for benign lesions while ensuring that early-stage melanomas
are not overlooked. However, this study has limitations. The
HAM10000 dataset is significantly imbalanced, with NV account-
ing for over 60% of the samples. As seen in the confusion matrix
(Figure 2), this imbalance can bias models toward predicting the
majority class. Future research should focus on incorporating
multi-modal data, such as patient age, anatomical location, and
clinical history, to further refine diagnostic precision. Addition-
ally, exploring Explainable AI (XAI) techniques, beyond the visual
samples in Figure 3, will be crucial for building clinician trust and
ensuring the transparency of DL models in high-stakes medical
environments.

CONCLUSION

This study demonstrates the efficacy of advanced ViT architec-
tures in the automated classification of pigmented skin lesions
using the HAM10000 dataset. By leveraging global self-attention
mechanisms to model long-range dependencies, our framework
successfully overcame the locality limitations of traditional CNNs,
with the DeiT III-Base architecture emerging as the superior model,
achieving a peak accuracy of 92.04% and an F1-score of 85.44%.
The comparative analysis revealed that while hierarchical struc-
tures like Swin-Base offer competitive diagnostic precision, the
data-efficient strategies of DeiT III provide an optimal balance be-
tween predictive sensitivity and computational throughput, char-
acterized by sub-millisecond inference times suitable for real-time
clinical screening. Furthermore, the integration of transfer learning
from large-scale natural image repositories was essential for stabi-
lizing training and achieving high performance despite the inher-
ent class imbalances within the dermoscopic data. Ultimately, these
findings underscore the potential of transformer-based paradigms
as robust CAD tools in dermatology. Future research will focus on
the integration of multi-modal data, such as patient history and
anatomical location, alongside XAI techniques to ensure the trans-
parency and clinical reliability of DL deployments in high-stakes
healthcare environments.
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