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ABSTRACT The identification of effective inhibitors targeting 3-site amyloid precursor protein cleaving enzyme-1 (BACE-1) is crucial
for developing therapeutic strategies for Alzheimer’s disease. This study developed a structure-based computational framework for
predicting BACE-1 inhibitory activity using both deep learning and conventional machine learning techniques. A publicly available BACE-1
dataset with chemical structures defined in SMILES (Simplified Molecular Input Line Entry System) format was subjected to feature
extraction using the RDKit program. Global molecular characteristics and substructural information were captured using both molecular
fingerprint representations and physicochemical descriptors. Circular (Morgan/ECFP4) fingerprints, RDKit fingerprints, and MACCS keys
were used to encode molecular substructures into binary vectors. Subsequently, Support Vector Machines (SVM), k-Nearest Neighbors
(kNN), deep neural networks (DNN), and enhanced deep neural networks were trained and validated using these features under the
same experimental conditions. Confusion-matrix analysis and standard classification metrics (accuracy, precision, recall, and F1-score)
were used to assess the model’s performance. Deep learning models outperformed traditional machine learning techniques in capturing
intricate nonlinear structure—activity correlations, according to comparison research. The proposed enhanced DNN demonstrated
balanced precision and recall across both classes and achieved an accuracy of 0.99 on a test set of 303 molecules, including 138
active inhibitors and 165 inactive non-inhibitors. All things considered, these results imply that deep learning models, in conjunction
with molecular fingerprints, offer a robust and reliable approach to BACE-1 inhibitor prediction and could accelerate early-stage virtual
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screening. All experiments were conducted using a fixed random seed and a held-out random split to ensure reproducibility.

INTRODUCTION

The most common cause of dementia globally, Alzheimer’s disease,
is a progressive neurological condition that primarily affects older
persons (Knopman et al. 2021). Memory and other cognitive abili-
ties gradually deteriorate because of the illness, which eventually
affects independence and day-to-day activities. Alzheimer’s dis-
ease has a significant macroeconomic impact on healthcare systems
in addition to its dramatic effects on patients and caregivers. The
need for more potent disease-modifying therapies is highlighted
by the fact that, despite symptomatic therapies, current therapeutic
options remain limited in their ability to prevent or reverse disease
progression.

The build-up of B-amyloid (B) peptides is one of the main
pathogenic characteristics of Alzheimer’s disease at the molec-
ular level (Hampel et al. 2023). The amyloidogenic processing of
the amyloid precursor protein, involving multiple cleavage events,
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results in the production of B (Hampel et al. 2023). The first cleav-
age step that commits amyloid precursor protein to B synthesis is
catalysed by p-site amyloid precursor protein cleaving enzyme-1
(BACE-1, B-secretase). As a result, pharmacological inhibition of
BACE-1 has been extensively studied as a tactic to lower 8 for-
mation and impede downstream aggregation-related processes,
making BACE-1 a significant therapeutic target and an ongoing
focus of drug development research (Coimbra et al. 2024; Ghosh
2024).

Simultaneously, the availability of vast biochemical datasets
and the expansion of computational resources have made machine
learning, especially deep learning, increasingly crucial in early-
stage drug discovery (Zhang and Saravanan 2024; Pala 2025a).
By learning quantitative structure-activity relationships (QSAR)
from molecular representations, machine-learning-based screening
can save time and money compared to conventional trial-and-
error methods (Pala 2025b). Previous studies have reported the
effectiveness of deep neural network-based approaches for drug
interaction and bioactivity-related prediction tasks (Pala 2025c).
DNN:s are particularly well-suited to capturing nonlinear patterns
in chemical data (Pala 2025a; Qian et al. 2023). Deep learning-based
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methods have also been shown to outperform traditional machine
learning baselines for BACE-1 inhibitor prediction.

Inspired by these advancements, this study proposes a
structure-based computational framework that utilises molecu-
lar information derived from SMILES strings to classify BACE-1
inhibitors. We extract a feature set comprising physicochemical
descriptors generated with RDKit tools and fingerprint-based rep-
resentations that encode substructural patterns. To facilitate a fair
and direct comparison, we integrate these molecular representa-
tions into both deep learning architectures and traditional machine
learning models, such as SVM and KNN, within a single experi-
mental setup. All models are trained and evaluated on the same
dataset and shared feature space, providing a controlled, system-
atic comparison of DNN-based and traditional ML approaches
for differentiating BACE-1 inhibitors from non-inhibitors, in con-
trast to prior studies that primarily focus on a single modelling
paradigm.

MATERIALS AND METHODS

Dataset

The dataset used in this study was obtained from an open-access
BACE-1 inhibitor classification dataset widely used in the literature
and contains a total of 1513 compounds with experimentally re-
ported BACE-1 inhibitory activity (Wu et al. 2018). Each compound
is represented in SMILES format and annotated with binary class
labels (active/inactive), framing the prediction task as a binary
classification problem (Weininger 1988; Lenselink et al. 2017).

The raw data were preprocessed to remove any erroneous or
illegible molecular structures. The RDKit chemical computing li-
brary was then used to calculate molecular descriptors that quanti-
tatively represent the compounds’ structural and physicochemical
properties. The calculated descriptors include molecular weight
(MolWt), octanol/water partition coefficient (LogP), numbers of
hydrogen bond donors and acceptors (HBD, HBA), topological
polar surface area (TPSA), numbers of rotatable bonds, rings, and
heavy atoms, and the carbon sp3 ratio (FractionCSP3) (Todes-
chini and Consonni 2009). These descriptors are widely used in
structure—activity relationship (SAR) modelling and exhibit strong
discriminatory power for predicting inhibitory activity.

In addition to global physicochemical descriptors, molecular
structures were also encoded using fingerprint-based representa-
tions to capture local substructural information. Circular and key-
based molecular fingerprints were generated for each compound
using the RDKit library. Circular (Morgan/ECFP4) fingerprints,
RDKit fingerprints, and MACCS keys were used to encode molec-
ular substructures (Rogers and Hahn 2010; Durant et al. 2002; Yang
et al. 2019). Fingerprints encode molecular substructure patterns
as binary vectors, enabling machine learning and deep learning
models to learn structural similarities and recurring motifs among
compounds effectively. This representation facilitates the incor-
poration of local chemical features that are not fully captured by
traditional descriptor-based approaches. After feature generation,
the dataset was split into training and test sets using a stratified
random split with an 80/20 ratio, ensuring that the class distri-
butions of active and inactive compounds were preserved across
both subsets.

Table 1 summarises the various fingerprint types, computa-
tional factors, and basic characteristics used in this study. In this
study, predicting BACE-1 inhibitor activity is treated as a binary
classification problem. Both standard machine learning techniques
and deep learning models were trained on a high-dimensional
feature space comprising chemical IDs and fingerprint images.
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All models attempt to distinguish between inhibitory and non-
inhibitory substances.

Machine Learning Models

Support Vector Machine (SVM) Support vector machines are su-
pervised learning algorithms that try to maximise class separation
by defining an ideal decision boundary (Cortes and Vapnik 1995).
They produce effective results, particularly on high-dimensional
and nonlinear datasets. In this study, kernel functions were used to
create the SVM model and capture intricate interactions between
chemical characteristics. SVM’s fundamental purpose is to identify
a hyperplane that maximises the margin between classes. The
optimisation problem presetnted in Equation 1./2. is solved by
minimising a regularised loss function, where x; represents the
molecular feature vector, y; the class label, w the weight vector, b
the bias term, and ¢; the slack variables. The regularisation param-
eter C controls the trade-off between maximising the margin and
allowing classification errors.

1 9 N
min — ||w +C é 1

yi(w-x;+b) >1-¢; )

Equation 1./2. The Support Vector Machine (SVM) optimisation
issue is formulated mathematically, with the goal of maximising
the margin between classes while permitting controlled misclassi-
fication using slack variables and the regularisation parameter C.

k-Nearest Neighbors (KNN) The k-nearest neighbour (kNN) algo-
rithm is a sample-based classification method that accounts for
similarities among samples (Cover and Hart 1967). A test sample’s
class is determined by the class labels of its k nearest neighbours
in the feature space. When predicting activity based on molecular
similarities, the kNN algorithm produces intuitive and effective
results.

Equation 3 illustrates the class prediction rule of the kNN clas-
sifier, where Ni(x) represents the set of k nearest neighbours of
the test sample x, and I(-) denotes the indicator function. Distance
between samples is measured using the Euclidean distance.

g=argmax ) I(yi=c) 3)
iENk(X)
Equation 3 decision rule of the k-Nearest Neighbors (kNN)
classifier, where the predicted class is determined by majority
voting among the k nearest neighbors in the feature space.

Deep Learning Models

Deep Neural Network (DNN)For binary classification, a feed-
forward deep neural network architecture was used. In addition
to batch normalisation, dropout regularisation, and early stopping
to enhance generalisation and avoid overfitting, the model was
trained with class weighting to mitigate potential class imbalance.
Based on validation performance, hyperparameters were selected
empirically. Multilayer artificial neural networks have been suc-
cessfully applied to model complex nonlinear structure-activity
relationships in various molecular property and drug interaction
prediction tasks (Pala 2025a,b). These networks provide a hierarchi-
cal learning process that begins at the input layer and propagates
through one or more hidden layers to the output layer (LeCun et
al. 2015).

The following equation defines the output of a neuron in a fully
connected neural network layer:
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Table 1 Summarises the descriptive features, parameter settings, vector types, and dimensionalities of the chemical fingerprint

representations used in this investigation.

Fingerprint Type Description Parameters Vector Type Bit Length
Morgan (ECFP4) Circular fingerprints encoding Radius =2 Binary 1024
atomic neighbourhoods up to a
radius of two bonds
RDKit Topological (RDKFin- Path-based fingerprint encoding lin- Default Binary 2048
gerprint) ear atom paths and molecular bond-
ing patterns
MACCS Keys Predefined chemical substructure 166 keys Binary 166
keys representing common chemical
patterns
EXPERIMENTAL RESULTS
) = f (WU)h(lil) + b(l)) ) This section presents and analyses the experimental findings from

Equation 4. Forward propagation in a fully connected layer, where
h() denotes the activation vector of layer I, h!~1) the activations
from the previous layer, W(!) the weight matrix, b(!) the bias vector,
and f(-) the activation function.

Here, W() represents the weight matrix, b() the bias vector,
and f(+) the activation function. For the binary classification prob-
lem, the sigmoid activation function is used in the output layer:

- 1
C 14e 2

o(z)

Equation 5. Sigmoid activation function for binary classification,
where the function maps real-valued inputs to the interval (0,1).

A binary cross-entropy loss function was selected to reduce the
discrepancy between the expected outputs and the actual class
labels during model training:

)

N
L=-3 Y lnloglg) + (1-y)log(1-9)] @
i=1

Equation 6. Binary cross-entropy loss function used for training
the deep neural network, where y; denotes the true class label, §;
the predicted probability, and N the total number of samples.

Improved Deep Neural Network Architecture A binary cross-
entropy loss function was selected to reduce the discrepancy be-
tween expected outputs and actual class labels during model train-
ing. Several regularisation strategies were incorporated into the
baseline DNN architecture to improve model performance and
prevent overfitting. During training, a proportion of the network’s
neurons was randomly deactivated using dropout layers, which
helps reduce co-adaptation of neurons and enhances generalisation
(Srivastava et al. 2014). To address potential class imbalance in the
dataset, class weights were incorporated into the training process,
following strategies adopted in previous deep learning studies
(Pala 2025a). Furthermore, an early stopping mechanism was
employed to monitor the model’s validation loss and terminate
training once performance ceased to improve, thereby preventing
unnecessary overtraining (Prechelt 1998). The hyperparameter
configuration of the improved DNN model is summarized in Table
2.
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using deep learning and classical machine learning models on the
BACE-1 dataset. Standard classification metrics, including accu-
racy, precision, recall, F1-score, and confusion matrices, were used
to assess the model’s performance (Sokolova and Lapalme 2009).
These criteria provide a thorough evaluation of each model’s abil-
ity to differentiate between BACE-1 inhibitors and non-inhibitors
accurately. To guarantee the validity and applicability of the pre-
sented findings, all experiment was carried out on a separate test
set. The efficacy of the deep neural network model in capturing
intricate nonlinear correlations between chemical fingerprints and
BACE-1 inhibitory activity was evaluated.Table 3 summarises the
classification performance of the DNN model on the test dataset.
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Figure 1 The confusion matrix of the DNN model illustrating its
ability to correctly classify both inhibitory and non-inhibitory
compounds, while revealing a limited number of misclassifica-
tions.

The performance of the proposed deep neural network (DNN)
model was compared with that of traditional machine learning
techniques, including Support Vector Machines (SVM) and k-
Nearest Neighbours (kNN), to further evaluate the effectiveness of
the proposed deep learning methodology. To ensure a fair and un-
biased comparison, all models were trained and evaluated using
identical molecular feature representations and the same held-
out test dataset. Standard classification metrics were employed
for the comparative analysis, enabling an objective assessment
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Table 2 Hyperparameter configuration of the improved deep neural network (DNN) model used for BACE-1 inhibitor classification.

Hyperparameter Value Description

Neurons per layer 512-256-128 Decreasing layer sizes (funnel-shaped architecture)
Activation function ReLU Nonlinear activation for hidden layers

Output activation Sigmoid Binary classification output

Loss function Binary cross-entropy

Optimizer Adam
Learning rate 0.001
Batch size 32
Max epochs 100
Dropout rate 0.30
Validation split 0.20

Optimization objective for binary labels
Adaptive gradient-based optimizer
Initial learning rate for Adam

Number of samples per gradient update

Upper bound; training may stop earlier with early stop-
ping

Regularization to reduce overfitting

Fraction of training data reserved for validation

Table 3 Classification performance on the BACE-1 inhibitor
prediction problem.

Class Precision Recall F1-Score Support
0 0.98 0.97 0.98 165
1 0.96 0.98 0.97 138
Accuracy 0.97 303
Macro Avg 0.97 0.97 0.97 303
Weighted Avg 0.97 0.97 0.97 303

of each model’s capability to distinguish BACE-1 inhibitors from
non-inhibitors.

Table 4 Standard classification criteria used to compare the
performance of deep neural network designs and classical ma-
chine learning models on the BACE-1 inhibitor prediction prob-
lem.

Model Accuracy Precision Recall Fl-score
SVM 0.97 0.97 0.97 0.97
kNN 0.82 0.82 0.82 0.82
DNN 0.97 0.97 0.97 0.97
Improved DNN 0.99 0.99 0.99 0.99
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As shown in Table 4, the improved DNN model achieved the
highest overall performance across all evaluation metrics, outper-
forming both classical machine learning methods and the base-
line DNN architecture. While the SVM and standard DNN mod-
els demonstrated strong and comparable predictive performance,
with an accuracy of 0.97, the kNN model exhibited substantially
lower performance, indicating a limited ability to capture complex
structure—activity relationships. In contrast, the improved DNN ar-
chitecture achieved an accuracy of 0.99, along with precision, recall,
and F1-score values of 0.99, highlighting its superior capability to
model nonlinear relationships between molecular fingerprints and
BACE-1 inhibitory activity. These results demonstrate the effective-
ness of deep learning-based approaches, particularly optimised
DNN architectures, for reliable inhibitor classification.

In addition to threshold-dependent performance metrics, re-
ceiver operating characteristic (ROC) analysis was conducted to
evaluate the models” discriminative capability across varying deci-
sion thresholds. Unlike accuracy-based measures, ROC curves pro-
vide a threshold-independent assessment of classification perfor-
mance, making them particularly suitable for imbalanced datasets
such as BACE-1. The area under the ROC curve (AUC) reflects
the overall ability of the models to distinguish between inhibitors
and non-inhibitors. ROC curves are reported for classical machine
learning models (SVM and KNN) to highlight their threshold-
independent discrimination. In contrast, deep learning models
were primarily evaluated using confusion matrices and standard
classification metrics.
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Figure 2 The confusion matrices of SVM and kNN highlight the differences in their classification behavior, with SVM exhibiting fewer

misclassifications compared to kNN.
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Figure 3 Compared to the baseline DNN, the improved DNN
confusion matrix demonstrates a further reduction in classifica-
tion errors, indicating enhanced generalisation capability.

ROC Curves for BACE-1 Inhibitor Prediction
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Figure 4 ROC curve analysis indicating that classical machine

learning models, particularly SVM, exhibit strong discriminative
capability for BACE-1 inhibitor prediction.

CONCLUSION

This study integrated chemical descriptors and fingerprint-based
representations to develop a structure-based machine learning
framework for predicting BACE-1 inhibitory activity. To assess
how well deep learning techniques and classical machine learning
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models, such as Support Vector Machines and k-Nearest Neigh-
bours, model the structure—activity relationships in the BACE-
1 dataset. The experimental findings showed that deep neural
network models outperform traditional techniques for extract-
ing intricate nonlinear patterns from chemical fingerprint data.
With an overall accuracy of 0.99, the enhanced DNN architec-
ture outperformed SVM across prediction accuracy, precision, re-
call, and Fl-score. These results show that for BACE-1 inhibitor
classification tasks, deeper architectures in conjunction with opti-
mised feature representations offer a substantial advantage. All
things considered, the suggested method emphasises the promise
of deep learning-based models as dependable and effective in-
struments for early-stage drug discovery, especially in the identi-
fication of prospective BACE-1 inhibitors. To improve predictive
performance, future research might focus on extending this frame-
work to regression-based activity prediction, external validation on
separate datasets, and incorporating sophisticated representation
learning methods, such as graph neural networks.
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