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ABSTRACT This study presents a TinyML-based machine learning system for multi-class ear condition classification on an edge
device, designed to process images captured from a digital otoscope camera. Utilizing a dataset comprising five categories, Normal,
Acute Otitis Media (AOM), Cerumen Impaction (Cl), Chronic Otitis Media (COM), and Myringosclerosis (MYS), the proposed system
performs near real-time classification directly on a resource-constrained microcontroller. The model was developed and optimized using
the Edge Impulse platform and deployed as a quantized TinyML library. The system architecture incorporates lightweight convolutional
neural networks (CNNs) and the EON™ Compiler to ensure efficient memory usage while maintaining high diagnostic performance.
Experimental results demonstrate a validation accuracy of 97.5% and a testing accuracy of 96.31%, with a peak RAM footprint of
only 240.3K and an inferencing latency of 1482 ms. These findings highlight the potential of TinyML for portable, low-power medical
applications, providing a foundation for privacy-preserving, GDPR-compliant, on-device diagnostics in auditory healthcare without reliance

on cloud infrastructure.
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INTRODUCTION

Ear diseases represent a significant clinical challenge due to their
high prevalence worldwide and the complexity of achieving ac-
curate diagnosis through visual examination. Common otoscopic
findings such as Acute Otitis Media (AOM), Chronic Otitis Media
(COM), Cerumen Impaction (CI), and Myringosclerosis (MYS) af-
fect diverse populations and may lead to pain, hearing loss, and
long-term complications if not diagnosed and treated promptly.
Traditional clinical diagnosis of these ear conditions primarily
relies on otoscopic examination performed by specialists, which in-
volves visual inspection of the tympanic membrane and ear canal.
Although this method is widely adopted in clinical practice, it
is inherently subjective and highly dependent on clinician exper-
tise, resulting in variability in diagnostic accuracy, particularly in
primary care settings where access to otolaryngology specialists
may be limited (Al-Rahim Habib et al. 2022; Livingstone and Chau
2020).

The limitations of traditional diagnostic procedures have mo-
tivated the exploration of advanced computational methods. In
particular, artificial intelligence (AI) and machine learning (ML)
approaches have shown promise in automating image based di-
agnosis of ear disorders. Systematic reviews indicate that Al al-
gorithms, especially convolutional neural networks (CNNSs), can
achieve high classification accuracy for otoscopic images, often sur-
passing non expert human performance. For example, Al-based
methods have reported classification accuracies of up to 97.6% in
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multiclass tasks distinguishing normal conditions, acute otitis me-
dia (AOM), and otitis media with effusion using otoscopic images
(Tatl1 2025; Song et al. 2022). Recent studies have begun exploring
transformer-inspired feature representations for otoscopic image
analysis, aiming to enhance global contextual understanding and
feature extraction beyond conventional convolutional architectures
(Demircan et al. 2025).

However, these Al-driven systems often rely on deep learn-
ing models executed on high-performance hardware or cloud ser-
vices, which introduces latency, dependency on network connec-
tivity, and privacy concerns, limiting their practicality in resource-
constrained or portable environments (Diez et al. 2024). Further-
more, while high-performance models like YOLOv10 are emerging
for real-time mobile endoscopy, they still demand substantial com-
putational overhead compared to ultra-low-power edge solutions
(Wang et al. 2024).

To overcome these limitations, Tiny Machine Learning (TinyML)
has emerged as a key technology for low-power, on-device Al
applications on embedded and edge devices. TinyML enables real-
time inference directly on microcontrollers and other embedded
hardware, reducing latency, preserving privacy, and operating
independently from external servers (Heydari and Mahmoud 2025;
Schizas et al. 2022). Platforms such as Edge Impulse facilitate the
design, training, optimization, and deployment of TinyML models
for embedded tasks, including image classification on resource-
constrained devices. Recent studies and platform evaluations
indicate that tools such as the EON Tuner allow these models to
maintain clinically relevant accuracy while fitting within the strict
memory limits of Cortex-M microcontrollers (Hymel et al. 2022).
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Despite these advances, the application of TinyML for multi-
class ear condition classification remains underexplored. While
prior studies demonstrate the potential of machine learning for
diagnosing ear disorders using deep learning, most focus on com-
putationally intensive models that require cloud or Graphics Pro-
cessing Unit (GPU) resources (Tatl1 2025; Song et al. 2022; Bingol
2022). Therefore, there is a clear need for research combining
lightweight ML models, edge computing, and embedded plat-
forms for real-time, on-device classification. In this study, we pro-
pose a TinyML-based machine learning system for multi-class ear
condition classification deployable on edge devices. Using a pub-
licly available dataset covering five categories, Normal, AOM, CI,
COM, and MYS this work demonstrates the design, training, opti-
mization, and deployment of TinyML models with Edge Impulse,
offering portable, low-power auditory diagnostics for clinical sup-
port.

RELATED WORKS

Automated diagnosis of ear diseases using machine learning has
rapidly expanded. Deep learning approaches, especially CNN-
based models, have demonstrated high performance for multi-
class otoscopic and tympanic membrane image classification, often
surpassing non-expert human performance (Tatli 2025; Song et al.
2022; Bingol 2022). Advanced CNN pipelines with hyperparame-
ter optimization, data augmentation, and ensemble methods have
achieved accuracies above 98% across multiple ear disease cate-
gories (Bingol 2022; Mihigo et al. 2022). TinyML applications have
extended this capability to embedded edge devices. Visual TinyML
applications using Edge Impulse have successfully employed com-
pact cameras, such as otoscope modules, for real-time multi-class
classification tasks. For instance, hand posture recognition, finger
number detection, and tomato leaf disease identification illustrate
that highly constrained devices can perform accurate classification
(Heydari and Mahmoud 2025; Kwon 2023). These studies demon-
strate the feasibility of deploying TinyML models for real-time,
edge-based decision-making.

In healthcare, TinyML has been applied to both audio and visual
modalities. Cough detection systems and on-device speech recog-
nition employ lightweight feature extraction and optimized neural
networks trained on Edge Impulse, achieving real-time, low-power
inference without cloud dependency (Rana et al. 2022; Kwon 2023).
Specifically in otolaryngology, studies on otoscopic and tympanic
membrane images have explored anomaly detection and disease
classification using both deep learning and TinyML approaches
on otoscopic and endoscopic images (Tatl 2025; Song et al. 2022;
Bingol 2022). To address the limitations of static models, adaptive
quantization strategies are now being developed specifically for
medical wearables to maintain accuracy under extreme energy
constraints (Xie and Fang 2025). Beyond medical applications,
TinyML has been used for IoT and time series tasks, including pre-
dictive maintenance and environmental monitoring. Lightweight
network architectures such as TinyLSTM and TinyModel have
been deployed on embedded devices via Edge Impulse, demon-
strating real-time inference and energy efficiency for sequential
data (Mihigo et al. 2022; Cioflan et al. 2025). These studies high-
light TinyML'’s domain-agnostic capabilities, supporting visual,
auditory, and time series data on resource-constrained devices.

Despite these advances, several challenges remain in the deploy-
ment of TinyML systems. Existing literature identifies model opti-
mization, memory management, hardware compatibility, bench-
marking, and the lack of standardization as key areas requiring
further improvement (Heydari and Mahmoud 2025; Schizas et al.
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2022). In real-time medical applications, maintaining high ac-
curacy, reliability, and low inference latency under strict energy
constraints is particularly critical (Bingol 2022). Furthermore, the
integration of Explainable Artificial Intelligence (XAI), including
both visual explanation techniques and medical-oriented inter-
pretability frameworks, is increasingly recognized as essential for
enhancing clinical interpretability and trust in automated otoscopic
diagnostic systems (Rehman et al. 2025; Ozdilli et al. 2025; Tjoa and
Guan 2020).

In summary, existing literature confirms that TinyML is effective
for edge-based multi-class classification and anomaly detection,
particularly in healthcare. However, challenges related to data
diversity and model optimization remain in medical visual clas-
sification. Motivated by these gaps, the present study focuses on
multi-class classification of ear conditions using TinyML, leverag-
ing Edge Impulse optimized models deployed on microcontroller-
based edge devices, extending existing visual TinyML applications
to low-power medical classification on edge devices.

MATERIAL AND METHODS

The methodology of this study focuses on the design, training,
and deployment of a TinyML-based machine learning model for
multi-class classification of ear conditions, leveraging the Edge Im-
pulse platform. This approach integrates modern machine learning
techniques with embedded systems, enabling real-time, on-device
inference on an edge device.

Dataset

In this study, a publicly available otoscopic image dataset obtained
from the Kaggle (Uci Machine Learning Repository 2025) platform
was used for training and evaluating the proposed TinyML-based
inner ear condition classification system. The dataset consists of la-
beled otoscopic images representing five clinically relevant classes:
Normal, AOM, CI, COM, and MYS. These categories were selected
to cover a spectrum of otoscopic findings commonly encountered
in clinical practice. The dataset includes color images acquired
under varying illumination conditions and viewpoints, reflecting
real-world variability in otoscopic examinations. As the dataset is
publicly accessible and anonymized, no ethical approval or patient
consent was required. Prior to model training, the dataset was up-
loaded to the Edge Impulse platform, where it was automatically
partitioned into training and test subsets using an 80/20 split. This
partitioning strategy was specifically chosen because the dataset
maintains a balanced distribution across all five categories, ensur-
ing that the test results provide a statistically significant represen-
tation of the model’s generalizability. This randomized selection
process ensures an unbiased evaluation of model performance
and minimizes the risk of overfitting by validating the system on
previously unseen data that reflects the overall composition of the
dataset.

The dataset is balanced across the five categories, with approxi-
mately 600 images per class. In total, the dataset consists of 2978
images, of which 2391 were used for training and 597 for testing.
The balanced distribution reduces the risk of biased learning and
enhances classification performance. The detailed distribution of
images across classes and data splits is summarized in Table 1.
Representative sample images from each ear condition class are
illustrated in Figure 1, demonstrating the visual characteristics and
intra-class variability present in the dataset.
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Table 1 Distribution of otoscopic images in the Kaggle dataset for inner ear condition classification (Uci Machine Learning Repository 2025)

Class Label Inner Ear Condition Training Test Total
C1/Normal Normal 480 120 600
C2/AOM Acute Otitis Media (AOM) 463 115 578
C3/Cl Cerumen Impaction (Cl) 480 120 600
C4/COM Chronic Otitis Media (COM) 479 121 600
C5/MYS Myringosclerosis (MYS) 479 121 600
Grand Total 2391 597 2978
Dataset
Acquire Training Day Wan Machine Algorithms
G
Edge Device Impulse
G e
Embed On Edge @ jiest Data Flow
Tests

Figure 1 Representative otoscopic images from the dataset illustrat-
ing the five ear condition classes: (a) Normal, (b) AOM, (c) Cl, (d)
COM, and (e) MYS (Uci Machine Learning Repository 2025).

TinyML model design using Edge Impulse Platform

Edge Impulse is a comprehensive development platform specifi-
cally engineered for TinyML, providing a unified end-to-end work-
flow to design, optimize, and deploy machine learning models on
resource-constrained hardware (Edge Impulse 2025; Warden and
Situnayake 2019), with the complete cycle of model training and
edge device deployment depicted in Figure 2 (Rust 2020). This sys-
tematic approach allows developers to move seamlessly from raw
data acquisition to real-time inference on embedded devices. The
platform integrates advanced digital signal processing (DSP) for
automated feature extraction with support for optimized neural
network architectures, such as Convolutional Neural Networks
(CNNs) (Han et al. 2015). By utilizing sophisticated optimization
tools like quantization and the EON Compiler, Edge Impulse mini-
mizes the memory footprint and latency of models, enabling effi-
cient on-device inference (Moreau 2024). This framework ensures
high performance and data privacy, making it ideal for real-time
medical diagnostic systems on edge devices (Hizem et al. 2025).
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Figure 2 The end-to-end TinyML development workflow in Edge
Impulse.

DESIGNED SYSTEM

Proposed Model

The systematic development of the classification system, as illus-
trated in the flowchart in Figure 3, follows a structured pipeline
within the platform. The process begins with the data acquisition
stage, which utilizes a publicly available Kaggle dataset compris-
ing 2,978 otoscopic images categorized into five clinically relevant
classes: Normal, AOM, CI, COM, and MYS. In the data prepro-
cessing stage, all images are resized to a standardized resolution of
96 x 96 pixels and normalized using Edge Impulse’s built-in DSP
blocks. This step ensures computational efficiency while preserv-
ing discriminative visual patterns. Additionally, to improve model
robustness and generalization, data augmentation techniques such
as rotation, flipping, and brightness adjustment are applied during
this phase.

Following the dataset upload and train-test splitting, the feature
extraction and neural network design stage employs a CNN-based
architecture optimized for microcontroller constraints. During
model training and optimization, hyperparameters are tuned on
Edge Impulse servers, and critical quantization techniques are ap-
plied to minimize the memory footprint. After rigorous validation
and testing via confusion matrices, precision, and recall, the opti-
mized model is exported as a standalone C++ library compatible
with the 32-bit microcontroller. The final stages involve the devel-
opment of edge device firmware and its deployment, enabling the
system to execute real-time inference and classification directly on
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the microcontroller.

Data A cquisition
Kaggle Dataset
Normal | AOM CI COM MYS Grand Total
Training | 480 463 480 479 479 2.391
Test 120 115 120 121 121 597
Total 600 578 600 600 600 2.978
Data Preprocessing
Normal AOM CI

96 x 96 96 x 96 96 x 96

Edge Impulse Platform

w ﬁ | Dataset Upload & Edge Impulse Integration |
D& | Feature Extraction & Neural Network Design ! E %
I Model Training & Testing 1 .8 w5
S, =
T Export TnyML Model i
Edge Device

Figure 3 Flowchart of the proposed TinyML model development for
ear condition classification on the Edge Impulse platform.

The structured pipeline for the diagnostic system is depicted in
Figure 4, showing the transition from raw otoscopic image input to
the final classification of five distinct ear conditions. The architec-
ture begins with an image data block where raw otoscopic images
are processed with a predefined 96x96 pixel resolution, a resizing
step crucial for balancing the extraction of clinical features with
the memory constraints of the 32-bit microcontroller hardware.
This is followed by an image processing block that transforms the
data into a feature set optimized for the subsequent learning phase.
Finally, a neural network classifier is utilized to categorize these
processed features into five diagnostic classes: AOM, CI, COM,
MYS, and Normal. By utilizing this modular Impulse Design, the
system ensures a streamlined data flow specifically optimized for
accurate, real-time diagnostic performance on edge devices.

The core of this project is the deployment of a robust diagnostic
system on a resource-constrained microcontroller. As shown in
Table 2, the training settings were specifically tuned for the 32-bit
microcontroller. By employing a 0.0005 learning rate and INT8
quantization, the system provides real-time, on-device classifica-
tion of ear conditions such as AOM, COM, CI, and MYS. This
optimization ensures that the final model maintains a minimal
memory footprint suitable for edge deployment while delivering
high diagnostic accuracy for clinical decision support.
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Figure 4 The impulse design and processing pipeline for otoscopic
ear disease classification.

Table 2 Neural network training configuration and optimization
settings for the TinyML-based ear disease classification project

Training Setting Value/Status
Number of epochs 50

Learning Rate 0.0005
Training Processor CPU
Validation Set Size 20%

Batch Size 32

Profile int8 Model Active

The neural network architecture designed for the classification
task is illustrated in Figure 5, featuring a Convolutional Neural
Network (CNN) structure optimized for deployment on the 32-bit
microcontroller. The model begins with an input layer process-
ing 27648 features, derived from the 96 x 96 pixel input, which is
then organized by a reshape layer. Feature extraction is performed
through two successive stages of 2D convolutional and pooling
layers, utilizing 32 filters in the first stage and 64 filters in the sec-
ond, both with a 3 x 3 kernel size. To improve model generalization
and prevent overfitting, two dropout layers with a rate of 0.25 are
strategically integrated after the convolutional blocks. Finally, a
flatten layer converts the multidimensional feature maps into a 1D
vector to enable the final classification of ear conditions.

Designed Embedded System

The block diagram of the proposed TinyML-based ear condition
classification system is illustrated in Figure 6. The architecture
follows a sequential and modular pipeline, ensuring efficient real-
time diagnostics on resource-constrained hardware.

The process begins with the Input (Camera Module) block,
where an otoscope camera, supported by integrated LED illumi-
nation, captures images of the ear canal and tympanic membrane.
These captured otoscopic images are transmitted directly to the
Embedded Processing Unit (Edge Device / microcontroller), which
serves as the central hub for local data processing. Within this unit,
the Image Preprocessing stage executes resizing, noise reduction,
and normalization to optimize the visual data for neural network
analysis. Subsequently, the processed data is passed to the TinyML
Inference Engine, utilizing an optimized model trained via Edge
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Neural network architecture

Neural network  Transfer learning

Input layer (27,648 features)

Output layer (5 classes)

Figure 5 The neural network architecture of the TinyML model for
otoscopic image classification.

Impulse.

The engine performs on-device classification, and the resulting
Classified Output is forwarded to the final Output (Interface) block.
This interface displays the identified class such as Normal, AOM,
CI, COM, or MYS and provides diagnostic decision support along
with confidence scores. By executing the entire pipeline locally, the
system eliminates the need for cloud-based computation, thereby
ensuring low latency and maintaining strict data privacy for point-
of-care medical applications.

Embedded Processing Unit
(Edge Device / MCU)

Image Preprocessing Classified
(Resizing, Noise Reduction, Normalization ) Output

Captured
Illpllt Otoscopic
(Camera Module) | Image

LED Illumination

2
TinyML Inference Engine
(Edge Impulse Model )

Figure 6 The block diagram of the proposed TinyML-based ear
condition classification system.

As illustrated in Figure 7, the proposed TinyML-based inner
ear condition classification system operates using a sequential and
loop-based software flow. The process begins with system initial-
ization, during which the embedded controller, camera module,
and the pre-trained TinyML model generated using the Edge Im-
pulse platform are loaded and configured. At this stage, camera
illumination parameters are also initialized to ensure consistent
lighting conditions during image acquisition.

Following initialization, the system captures an otoscopic im-
age using the camera module under controlled illumination. The
acquired image is then forwarded to the Edge Impulse image pro-
cessing pipeline, where essential pre-processing operations such
as resizing and normalization are applied. These steps prepare the
image for efficient inference on resource-constrained embedded
hardware.

Subsequently, the pre-processed image is passed to the TinyML
inference engine, which classifies the image into one of the prede-
fined ear condition classes: Normal, AOM, CI, COM, and MYS.
The classification result is then presented to the user via an output
interface such as LEDs, a display module, or serial communica-
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tion. After a predefined waiting period, the system either captures
the next image or returns to an idle state, enabling continuous or
on-demand operation of the diagnostic system.

Overall, the proposed software workflow enables a low-power,
real-time, and robust TinyML-based implementation on a micro-
controller, supporting portable and efficient classification of ear
conditions.

Initialization
(MCU, Camera, Illuminaton, TinyML Library)

Capture Image
(from Otoscope Camera)

v

Image Pre-processing
(Resizing, noise reduction, normalization)

v

TinyML-Based Classification
(Classes: Normal, AOM, CI, COM, MYS)

y

Result Reporting
( for classification)

A new
classification?

Figure 7 Software flowchart of the proposed TinyML-based ear
condition classification system incorporating controlled camera
illumination and Edge Impulse-based image processing.

RESULTS AND DISCUSSION

The performance of the proposed TinyML system for ear condition
classification was evaluated using a comprehensive set of metrics,
including accuracy, sensitivity, precision, and F1l-score. These met-
rics, calculated from the validation set’s confusion matrix, serve as
a vital framework for assessing the model’s diagnostic reliability
in medical imaging. Accuracy measures the overall proportion
of correct classifications, while sensitivity determines the model’s
ability to correctly identify true positive cases. Precision assesses
the reliability of positive predictions, and the Fl-score provides a
balanced evaluation by calculating the harmonic mean of precision
and sensitivity. The mathematical definitions for these metrics are
presented in Equations (1-4), forming the basis for the 97.5% accu-
racy achieved in this study. In these equations, TP (True Positives)
and TN (True Negatives) represent correctly classified instances,
while FP (False Positives) and FN (False Negatives) denote the
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Table 3 Performance metrics of the TinyML-based ear disease
classification system

Classes  Accuracy (%) Precision Sensitivity =~ F1-Score
AOM 97.5 1.00 1.00 1.00
CI 97.5 1.00 1.00 1.00
CcOM 97.5 0.97 0.98 0.98
MYS 97.5 0.96 0.93 0.94
Normal 97.5 0.95 0.97 0.96
Average 97.5 0.98 0.98 0.98

misclassified instances (Alaca and Akmese 2025; Fawcett 2006).

A B TP+ TN 1)
Ay = TP FP+ IN + FN
. TP
Sensitivity = TP+ EN 2)
.. TP
Precision = TP+ EP 3)
2% TP
Fscore = — -~ 2" 4

2xTP+FP+FN

The diagnostic performance of the proposed TinyML system is
quantitatively summarized in Table 3, which highlights the model’s
high classification efficacy across five distinct ear conditions. Ac-
cording to the data, the system achieved a robust overall accuracy
of 97.5% with a consistent total precision, sensitivity, and F1-score
of 0.98. Specifically, the AOM and CI categories demonstrated
perfect classification performance with F1-scores of 1.00. While the
MYS class exhibited the lowest relative sensitivity at 0.93 due to mi-
nor inter-class confusion with the Normal category, the overall high
metrics across all labels validate the reliability of the optimized
neural network for near real-time, on-device medical diagnostics
as defined by Equations (1-4).

As illustrated in Figure 8, high values along the diagonal of
the confusion matrix indicate strong classification accuracy. The
on-device performance metrics, shown in Figure 9, demonstrate
the model’s efficiency on 32-bit microcontrollers. Utilizing the
EON™ Compiler, the system achieves an inference time of 1482
ms, with a peak RAM usage of 240.3K and a flash usage of 243.1K.

97.5% 0.15

Confusion matrix (validation set)

Figure 8 Confusion matrix calculated by Edge Impulse for inner ear
disease classification.

The spatial distribution is visualized in the Feature Explorer
(Figure 10). The clear grouping of data points indicates that the

Computers and Electronics in Medicine

On-device performance @ Engine: @ | EON™ Compiler (RAM optimized) +

@ 1482 ms. o 240.3K 243.1K

Figure 9 On-device performance metrics for inner ear disease clas-
sification on 32-bit mcu, including inference time, peak RAM usage,
and flash memory usage.

AOM - correct
Cl- correct

COM - correct

MYS - correct

Normal - correct ©
MYS - incorrect

o000 00Q0O0

Normal - incorrect

Figure 10 Feature explorer visualization of the otoscopic image
dataset, illustrating the spatial separation of disease classes (AOM,
Cl, COM, MYS, and Normal).

Confusion matrix

Figure 11 Model testing results showing the confusion matrix and
performance metrics for five-class otoscopic disease classification.

feature extraction layers effectively identified unique patterns. Fur-
thermore, the model achieved a perfect AUC of 1.00 as shown
in Table 4, demonstrating high consistency across all categories.
Finally, the model’s testing phase on a separate dataset yielded an
accuracy of 96.31% (Figure 11), confirming a robust and reliable
classification system for otoscopic ear disease detection.

Table 4 Validation metrics of the TinyML-based ear disease
classification system

Metrics Value
Area under ROC Curve 1.00
Weighted average Precision 0.97
Weighted average Recall 0.97
Weighted average F1 score 0.97

The proposed system enhances patient privacy by perform-
ing all inferences locally on the microcontroller, ensuring com-
pliance with data protection regulations (e.g., GDPR) as no raw
data is transmitted to the cloud. Designed as a rapid point-of-
care screening tool, the device provides immediate feedback in
resource-limited settings. While this proof-of-concept is promising,
future transition to clinical use will require formal certifications
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(e.g., FDA or CE MDR) and real-world clinical trials to validate its
diagnostic efficacy and workflow integration.

CONCLUSION

This study successfully demonstrated the implementation and
deployment of a TinyML-based diagnostic system for the multi-
class classification of ear diseases on resource-constrained 32-bit
microcontrollers. By leveraging the Edge Impulse platform and
lightweight convolutional neural networks, the proposed system
achieved a robust validation accuracy of 97.5% with a minimal loss
of 0.15. Final testing on a separate dataset further confirmed the
model’s reliability, yielding a performance accuracy of 96.31%. The
model exhibited exceptional precision in identifying AOM and CI
categories with perfect F1-scores of 1.00, proving its effectiveness in
distinguishing high-priority pathological conditions from normal
otoscopic findings.

The technical evaluation highlights the system’s high efficiency
for edge computing. Utilizing the EON™ Compiler, the architec-
ture was optimized to operate within the physical memory limits
of embedded hardware, maintaining a peak RAM usage of 240.3K
and a flash footprint of 243.1K. With an inference time of 1482
ms, the system enables near-instantaneous, on-device diagnostics
without the latency, network dependency, or privacy risks associ-
ated with cloud-based Al solutions. While minor misclassification
patterns were noted specifically where 5.1% of MYS cases were
identified as Normal the overall aggregate F1-score of 0.98 vali-
dates the system as a robust tool for clinical support in real-world
scenarios.

In conclusion, this research establishes a scalable and low-
power framework for auditory healthcare diagnostics. By enabling
automated and objective ear examinations directly on portable
devices, this TinyML approach offers a viable solution for primary
care settings and regions with limited access to otolaryngology
specialists. Future work will focus on expanding the dataset to
include a wider variety of pathological stages and further opti-
mizing the model to reduce inference time on even lower-power
32-bit hardware. This study bridges the gap between complex
deep learning models and practical, on-device intelligence, mark-
ing a significant step forward in the democratization of advanced
medical diagnostic tools.
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