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ABSTRACT Breast cancer is one of the greatest global health burdens today and demands accurate diagnosis because of the vast
histological variety. CNN-based systems had been the dominant technology in Digital Pathology, but with their inability to create a global
representation has allowed other technologies such as Vision Transformers to compete. This paper evaluate the performance of three
different transformer-based backbone architectures (DeiT Base, Swin Base, and ViT Base) for classifying breast histopathological images
into eight granular classes using the BreaKHis database. To facilitate this comparison, we utilize transfer learning and distinct data
augmentation methods. Each architecture was fine-tuned to classify four benign and four malignant subtypes with a minimum reported
accuracy of 94%, with Swin Base performing more optimally than either of the other two approaches, obtaining highest reported accuracy
of 0.9511 and an F1 score of 0.9434. The unique design and shifted windowing processes of Swin Base have allowed this architecture
to capture detailed nuclear information as well as the larger context regarding breast cancers, to an extent greater than the other two
architectures. Additionally, we provide an in-depth study of confusion matrices in conjunction with high classification accuracy, even when
dealing with minor morphological overlap, to further support their claim regarding the ability of Swin Base and the remaining transformer
architectures to successfully differentiate between histologically similar classes.
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INTRODUCTION

Breast cancer remains one of the most formidable challenges in
global healthcare, consistently ranking as a leading cause of on-
cological mortality among women worldwide (Getu et al. 2025;
Chikkala et al. 2025). The complexity of the disease, characterized
by its high histological heterogeneity, demands diagnostic preci-
sion that is both rapid and highly accurate. In recent years, the
field of pathology has undergone a significant paradigm shift with
the advent of Digital Pathology (DP) and Whole Slide Imaging
(WSI) (Karthiga et al. 2025; Hayat et al. 2024). This transition from
traditional glass slides to high-resolution digital patches has paved
the way for Computer-Aided Diagnosis (CAD) systems to assist
pathologists in navigating the immense workload and reducing the
inherent subjectivity of manual assessments (Murphy and Singh
2024; Logu and Thangaraj 2024; Asha 2025).

Deep learning and convolutional neural networks (CNNs) are
transforming the way Computer-aided design (CAD) systems op-
erate (Singh and Kaswan 2024; Alshehri 2025). Early CAD systems
relied very heavily on the handcrafted features created by DLT
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and modified by the CAD software (Abdulaal et al. 2024b; Be-
hzadpour et al. 2024). CNV models are designed specifically to
recognize and represent locality patterns at a small scale (in a local-
neighborhood context) within an image, constraining their ability
to relate and connect long-range or distant regional features to each
other and to map across an image with respect to the overall con-
text (Ramamoorthy et al. 2024; Ukwuoma et al. 2025; Jackson et al.
2025). This limitation has led researchers to the Vision Transform
is (ViT) architecture, in which all patches of an image processed
sequentially to incorporate their information into a complete im-
age representation (Kansal et al. 2025; Chitta ef al. 2025; Jakkaladiki
and Maly 2024). However, before ViTs can be routinely used in
clinical practice, the full measure of robustness, computational
efficiency, and classification accuracy across the full spectrum of
breast cancer subtypes must be assessed and validated (Akshaya
et al. 2024; Abdulaal et al. 2024a; Simonyan et al. 2024).

The primary objective of this study is to evaluate the efficacy of
transformer-based backbones, specifically DeiT Base, Swin Base,
and ViT Base, in the multi-class classification of breast histopathol-
ogy images. Unlike binary classification tasks that merely distin-
guish between benign and malignant tissue, our work tackles an
8-class challenge involving specific subtypes: Adenosis, Ductal
Carcinoma, Fibroadenoma, Lobular Carcinoma, Mucinous Carci-
noma, Papillary Carcinoma, Phyllodes Tumor, and Tubular Ade-
noma. This granular approach is essential for providing clinicians
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with the detailed diagnostic insights necessary for personalized
treatment planning.

RELATED WORKS

The clinical management of breast cancer has been fundamentally
reshaped by the transition to DP and the subsequent integration of
CAD systems. Historically, pathologists relied on manual micro-
scopic examination, a process prone to inter-observer variability
and high cognitive load. Recent advancements in DL have mit-
igated these challenges by enabling the automated extraction of
high-level features that capture the complex morphological hetero-
geneity of breast tissue. Current research in this domain focuses on
enhancing diagnostic reliability through hybrid architectures, en-
semble strategies, and novel feature descriptors, particularly when
dealing with the granular multi-class classification of histological
subtypes.

Ogundokun et al. (2024) proposed a robust hybrid DL frame-
work that integrates CNN with Artificial Neural Networks (ANN)
specifically for 400x magnification images. By utilizing a dual-
pathway approach for feature processing, their model achieves
exceptional diagnostic precision, reaching a near-perfect accuracy
of 99.94%, which significantly reduces the margin for diagnostic
error in high-resolution histopathology. Gul (2025) introduced
an innovative textural analysis method termed Quad Star Local
Binary Pattern (QS-LBP) paired with a customized 20-layer CNN
architecture. This combination effectively encodes fine-grained
tissue textures, allowing the system to outperform existing method-
ologies in distinguishing subtle morphological differences between
benign and malignant growths, boasting a peak accuracy of 98.27

Rajaram et al. (2024) conducted a systematic evaluation of vari-
ous ResNet architectures to determine their effectiveness in clas-
sifying BreaKHis dataset samples. Their comparative study high-
lighted that deeper residual networks, when combined with trans-
fer learning, provide a highly scalable solution for multi-class
classification, successfully capturing the intrinsic hierarchical pat-
terns of cancerous cell structures. Balasubramanian et al. (2024)
developed an ensemble learning strategy that fuses the outputs
of VGG16, ResNet34, and ResNet50 models to tackle both cancer
subtyping and invasiveness. This multi-model approach increases
the overall stability of the CAD system and minimizes the risk
of misclassification by leveraging a diversified feature set from
multiple architectural families.

This work on the performance benchmarking of the BreaKHis
dataset through the application of SVM on the textural features as
proposed by Thakur et al. (2025) sets the standard for the BreaKHis
dataset. This work on the benchmarking of performance through
the experimental work on patients according to the patient-centric
benchmarking methodology of this work on the rigorous bench-
marking of patients helps to prevent data leakage. Aldakhil
et al. (2025) provided a comprehensive review and performance
assessment of transfer learning-based architectures, specifically
ResNet18, Inception-V3, and ShuffleNet. Their findings emphasize
that fine-tuned pre-trained models offer a computationally efficient
path toward autonomous breast cancer detection, achieving high
accuracy rates while significantly reducing the training time and
data requirements typically associated with training from scratch.

MATERIALS AND METHODS

Dataset and Data Preprocessing

The BreaKHis (Breast Cancer Histopathological Image Classifica-
tion) dataset (Dataset 2025), which is widely used as a benchmark
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in the field of digital pathology (DP), was used to conduct experi-
ments and evaluate the proposed transformer-based architectures.
This dataset contains a complete set of all types of Normal Breast
Tissue (eight types), and there are two distinct classes of breast tis-
sue; four (four types) benign, and four (four types) malignant. The
dataset consists of 1995 high resolution images. The training and
test sets were created by utilizing a structured data split, where
70% of the datasets is used to train the models (1393 samples), 15%
is used for validation (295 samples), and 15% is used for indepen-
dent testing (307 samples) in order to ensure that each model is
trained appropriately and evaluated fairly. The exact breakdown
of the samples across the eight types of breast tissue is provided
in Table 1 and depicts the inherent imbalances found in clinical
datasets.

The visual complexity and histological diversity of the samples
are demonstrated in Figure 1, where some sample images of the
eight histopathological classes are shown. These sample images
demonstrate the level of cellular architecture similarity between
the different classes, an issue that has often been known to make
the task of pathological evaluation challenging when performed
on a slide by slide basis. To eventually preprocess the visual data
in a form conducive to the transformers chosen in this work as
their base models, namely DeiT, Swin, and ViT, some image pro-
cessing operations such as resizing and normalization have been
performed on the sample images. Moreover, in order to help the
transformers attain the required level of generalizability and avoid
the problems of a small number of samples in classes such as
Adenosis, a data augmentation process has been followed.

Adencsis

Fibroadenoma  Ductal Carcinoma

Lobular
Carcinoma
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Figure 1 Sample images from the breast histopathology classes in
the dataset.

Vision Transformers (ViTs)

The advent of ViTs marks the beginning of an important shift
in the paradigm of medical image processing, diverging from
the local receptive field requirement imposed by conventional
CNNs. Although CNNs excel in local texture description, their ef-
ficacy in describing global dependencies in the image is inherently
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Table 1 Dataset Distribution by Class.

Class Original Dataset Train Set (70%) Validation Set (15%) Test Set (15%)
Adenosis (ADE) 114 79 17 18

Ductal Carcinoma (DC) 864 604 129 131
Fibroadenoma (FIB) 253 177 37 39

Lobular Carcinoma (LC) 156 109 23 24

Mucinous Carcinoma (MC) 205 143 30 32

Papillary Carcinoma (PC) 145 101 21 23

Phyllodes Tumor (PT) 109 76 16 17

Tubular Adenoma (TA) 149 104 22 23

Total 1995 1393 295 307

limited, making it difficult to capture the essence of complicated
histopathological patterns without considering the whole image
in the process. This is where ViTs accentuate the advantage with
their patch-based division of the image into a series of discrete seg-
ments and self-attention techniques, which help the model extract
correlations even in the far-off regions of cells right from the begin-
ning, opposed to CNNs, which tend to concentrate on local cell
morphologies without emphasis on global architecture in digital
pathology, where the difference in tissue might be quite subtle and
relied on entirely on the global pattern.

In this study, we evaluate three distinct transformer-based ar-
chitectures, ViT Base (Dosovitskiy et al. 2025), DeiT Base (Touvron
et al. 2025), and Swin Base (Liu et al. 2025), to determine their effec-
tiveness in classifying eight specific breast cancer subtypes. While
the standard ViT Base provides a robust foundation for learning
global representations, the Data-efficient Image Transformer (DeiT
Base) is specifically designed to perform effectively on smaller
datasets through a teacher-student distillation strategy, making it
highly relevant for specialized medical imaging tasks where data
can be scarce. Furthermore, we investigate the Swin Transformer
(Swin Base), which introduces a hierarchical structure and shifted
windowing scheme. This approach allows the model to process
images at multiple scales, effectively capturing both fine-grained
nuclear details and broader tissue patterns, which is vital for the
granular 8-class classification challenge involving diverse benign
and malignant subtypes.

Transfer Learning and Data Augmentation Strategy

The size and variability of the BreaKHis dataset and the depth
of the deep transformer models make deep learning converge
inefficiently. To counter these issues, we employed the concept of
transfer learning. As ViTs are huge and demand the availability
of vast amounts of data to train and converge properly, doing so
on the relatively small number of images in the histopathology
domain would be inefficient and would indulge the model into
the problem of overfitting. To overcome this problem, we made
use of the PyTorch Image Models library to load the pre-trained
models of DeiT Base, Swin Base, and ViT Base pre-trained models
on the ImageNet-1k dataset. The use of these models enables
them to focus and work on the high-level visual representations
right from the start, which would be further tuned to focus on the
complexities of the eight sub-types of breast cancer.
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As a way of compensating for the natural imbalance between
classes in the dataset and to ultimately strengthen our model’s per-
formance, we created a highly effective method of augmenting our
images through the use of a complete set of augmentation strate-
gies provided by the timm library. Examples of these strategies
include random resizing, random cropping, and random horizon-
tal mirroring. The application of these augmentation techniques in
the field of digital pathology represents a novel approach because
they replicate the variations that occur naturally in a tissue’s orien-
tation and staining intensity during slide processing. By exposing
our transformer models to the diverse range of visual challenges
that arise from these augmentation methods during training, our
models were trained to learn the underlying pattern of abnormal-
ity rather than simply learning specific signs of pathology through
visual memorization (Wang et al. 2024; Mumuni et al. 2024).

Performance Evaluation Metrics

In this paper, we have conducted a rigorous quantification of the
diagnostic efficacy of the transformer-based backbones that were
studied using a comprehensive set of performance evaluation met-
rics derived from the confusion matrix. Overall, classification
performance was primarily conducted with Accuracy, represent-
ing the ratio of correctly identified benign and malignant samples
out of all total predictions defined in Equation (1). Given the clin-
ical need to minimize both false positives and false negatives in
breast cancer screening, Precision and Recall (Sensitivity) were
calculated. Precision, defined in Equation (2), reflects the model’s
ability not to label a negative sample as positive. On the other
hand, Recall, defined in Equation (3), characterizes the ability to
detect all positive examples within the dataset. Since there are se-
vere class imbalances within our histological subtypes, we present
the F1-Score as the single, balanced metric that considers the possi-
ble trade-offs between those two measures, which is the harmonic
mean of Precision and Recall, and defined in Equation (4). The
virtues of such multi-faceted performance metrics ensure a robust
evaluation of the models’ reliability in high-stakes computer-aided
diagnosis.

Accuracy = TP+ TN (1)
Y= TPYTN+FP+FN
TP
Precision = —— 2
recision TP+ ED )
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Table 2 Comparison of Performance Metrics and Computational Complexity of the Models.

Models Accuracy Precision Recall F1-score Params GFLOPs
DeiT Base 0.9446 0.9466 0.9192 0.9308 85.80M 336.955
Swin Base 0.9511 0.9548 0.9332 0.9434 86.75M 303.375
ViT Base 0.9414 0.9353 0.9319 0.9323 85.80M 33.6955

the Swin Base model had slightly more difficulty with Tubular

Recall = TP 3) Adenomas (TA) than with Fibroadenomas (Fib), and there were

TP+ FN occasions in which Tubular Adenomas (TA) were misclassified as

Precision - Recall
F1- =2 4
score Precision + Recall @)

RESULTS AND DISCUSSION

The experimental results obtained in this study underscore the
remarkable potential of ViTs in navigating the complex histolog-
ical landscape of breast cancer. Our comprehensive evaluation
across eight distinct tissue subtypes reveals that transformer-based
architectures can effectively learn the subtle, high-dimensional
features required for precise computer-aided diagnosis. As sum-
marized in Table 2, all three evaluated models, DeiT Base, Swin
Base, and ViT Base, exhibited robust performance, with accuracy
scores consistently exceeding 94%. This high baseline suggests that
the self-attention mechanism is inherently well-suited for captur-
ing the structural variations present in BreaKHis histopathology
images.

The Swin Base model outperformed all other backbones tested
in this experiment, reaching a peak accuracy of 0.9511 and an
Fl-score of 0.9434. The Swin architecture has a hierarchical de-
sign along with a shifted windowing method; this allows the Swin
model to handle tissue slides at multiple scales. The ability to work
at various scales is critical when detecting small nuclear atypia and
more general architectural distortions. The second and third most
successful backbones in accuracy were the DeiT Base model with
an accuracy of 0.9446 and the ViT Base model with an accuracy of
0.9414. Despite being the least computationally intensive backbone
(GFLOPs of 33.69), the ViT Base model still demonstrated a high
recall value of 0.9319, indicating that standard transformer-based
models can also have excellent detection sensitivity to malignant
cells. However, the Swin Base model’s high levels of precision
(0.9548) and recall (0.9332) make it the most suitable choice for clin-
ical use, where the prevention of false positives and false negatives
is critical.

The diagnostic reliability of our leading machine learning (ML)
model can be evaluated using the confusion matrix in Figure 2.
Based on the confusion matrix, the Swin Base model demonstrated
considerable accuracy for high-frequency immortalized (cancer-
ous) classes, such as Ductal Carcinoma (DC), which correctly clas-
sified 128 out of 131 cases of Ductal Carcinoma (DC). Addition-
ally, the Swin Base model exhibited strong predictive ability for
Fibroadenomas (FIB); there was only one case in which Fibroade-
nomas (FIB) were incorrectly classified. The Swin Base model
encountered minor confusion regarding histologically similar sub-
types: four out of four Lobular Carcinomas (LC) were misclassified
as Ductal Carcinomas (DC). As can be expected from a biologi-
cal standpoint, Ductal Carcinomas (DC) and Lobular Carcinomas
(LC) are both malignant carcinomas that may show overlap in
morphology, depending on their magnification level. Additionally,
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Fibroadenomas (Fib). Nevertheless, the relatively high diagonal
values for all classes in the Swin Base model (Figure 2) indicate
that it has successfully generalized to the considerable histologic
heterogeneity present in the dataset.

ADE

True Label

MC

PC
°
[

< o 0 2 0 o o 1 2

ADE [+ FiB Lc MC PC PT TA
Predicted Label

Figure 2 Confusion Matrix of the Swin Base Model.

The findings of this study indicate that transitioning away
from utilizing convolutional filters to employing hierarchical trans-
former systems can enhance the overall experience one has with
viewing digital slides. In particular, the excellent performance
of the Swin Transformer shows the value of being able to extract
features at multiple scales in digital pathology. Thus, capturing
long-range spatial relationships between various features in con-
junction with maintaining local texture analysis allows for the
development of a strong base for future CAD systems that are
designed to help pathologists throughout their highly complicated
workflows related to diagnosing patients.

CONCLUSION

This study has systematically assessed how effective ViTs are
as a new model for multi-class classification of breast cancer
histopathology. Results indicate that the ability of the self-attention
mechanism to manage multiple structural complexities of digital
slides allows for a broader understanding of tissue architecture
than the limited local receptive field of Classic CNNs. Of the
models tested, the Swin Base was determined to provide the most
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reliable performance, achieving an ideal balance of precision and
recall, while also successfully addressing the inherent imbalances
among the eight class categories present in the BreaKHis dataset.
Transfer learning combined with extensive data augmentation was
critical to mitigate the impact of infrequent impressions typically
seen in this type of medical imaging task and ensure the models
created general representations of pathology and did not rely on
representations of image artifacts. Mismatches did occur within
histologically similar subtypes (e.g., Lobular and Ductal Carci-
noma), but the very high diagonal values achieved within the
performance evaluation indicate the strong capacity of hierarchical
transformers to differentiate between the eight tissue categories.
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