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ABSTRACT In recent years, there has been a growing interest in the artificial intelligence (Al)-based analysis of KEYWORDS
electroencephalography (EEG) signals. This surge has made the potential of EEG more evident, both in monitoring Artificial  intelli-
cognitive states and in the early diagnosis of neurological disorders. This review systematically evaluates the academic gence

literature from the past decade focusing on the processing of EEG signals through machine learning (ML), deep learning
(DL), and other alternative techniques. The study compares personalized ML models (e.g., SVM, Random Forest) with
wavelet decomposition—based optimized approaches and further analyzes the performance of Hilbert transform—based
Convolutional Neural Network (CNN) architectures, label-free autoencoder frameworks, and multi-architecture DL systems

Machine learning
Deep learning
Brain-computer

in contemporary brain—computer interface (BCI) applications. In addition, incremental learning models based on multimodal |nterface.
data fusion are reviewed in the context of diagnosing disorders such as Alzheimer's disease and epilepsy. The findings ~ Neuroscience
indicate that EEG—AI integration holds substantial potential for both research and clinical applications. EEG signals

INTRODUCTION

Electroencephalography (EEG) is a non-invasive neuroimaging
technique that measures electrical fluctuations on the scalp re-
sulting from action potentials generated during neuronal activity
(Edelman et al. 2025; Kimmatkar and Babu 2021). The signals ob-
tained through metal electrodes allow for high temporal resolution
recording of electrical patterns in the brain. Owing to this fea-
ture, EEG stands out as a particularly valuable tool for real-time
monitoring of mental and emotional processes.

The history of electroencephalography (EEG) dates back to 1875,
when Richard Caton made the first observations on animals; fol-
lowing Hans Berger’s successful recording of human EEG signals
in 1924, it gained widespread clinical and scientific application
(Wan et al. 2019). Today, EEG is effectively used in a wide range of
areas, from epilepsy diagnosis to the analysis of sleep disorders,
from detecting attention deficit, depression, and mood disorders
to rehabilitation-oriented systems (Liu et al. 2025). This broad spec-
trum of applications has also facilitated the development of EEG
devices with various electrode types, connectivity technologies,
and user-friendly designs (Soufineyestani et al. 2020). In partic-
ular, brain-computer interfaces (BCIs) have attracted significant
attention due to their potential to interpret EEG data and translate
individuals” mental states into external system commands (Wan
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et al. 2019; Sozer and Fidan 2017; S6zer and Fidan 2019). Over the
past five decades, research efforts have enabled brain—computer
interface (BCI) systems to evolve from experimental foundations
into applicable technologies across various domains, including
clinical practice, rehabilitation, and human-machine interaction.
This transformation has encompassed not only technical advance-
ments but also sparked multidimensional discussions surrounding
ethics, user experience, and societal acceptance (Kawala-Sterniuk
et al. 2021). For example, motor imagery-based prosthetic control
can be provided for paralyzed individuals, while alternative com-
munication mechanisms can be developed for those with limited
interaction abilities (Orban et al. 2022).

The integration of electroencephalography (EEG) into artifi-
cial intelligence (Al)-based systems, particularly for the diagnosis
and monitoring of neurodegenerative diseases, represents a new
paradigm in clinical decision-making (Mouazen et al. 2025). This
integration is supported by digital tools that enable the prepro-
cessing and enhancement of EEG signals for analytical purposes.
Notably, open-source MATLAB-based platforms such as EEGLAB
and Fieldtrip facilitate artifact removal, time—frequency analysis,
and feature extraction through standardized modules. Extensions
integrated into these platforms, such as MARA, AAR, ADJUST,
clean rawdata, and icablinkmetrics, allow for the automatic detec-
tion and removal of artifacts caused by eye blinks, muscle activity,
and environmental noise. This provides a robust preprocessing
infrastructure that enhances the reliability and accuracy of down-
stream analyzes (Gu et al. 2021).
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With the advancement of Al algorithms, EEG data analysis has
undergone a significant transformation. Machine learning (ML)
and deep learning (DL) approaches have demonstrated high accu-
racy in classifying emotional states, cognitive levels, and mental
tasks by learning spatiotemporal patterns from EEG signals (Khan
et al. 2024; Nandakumar et al. 2025). In this context, Al-based
analytical approaches involving multi-layered processes, such as
feature extraction, classification, and even compression of EEG sig-
nals, are becoming increasingly comprehensive (Khlief and Idrees
2023). These developments not only enhance clinical diagnostic
workflows but also expand the role of EEG in multidisciplinary
applications, including human-computer interaction (HCI), driver
fatigue detection, and emotion-aware user interfaces.
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Figure 1 The rule of the EEG signal as the main element in the
BCI-EEG rehabilitation system (Orban et al. 2022).

In this study, the scientific literature focusing on the analysis
of EEG signals through Al-based methods is examined in depth.
Within this scope, prominent machine learning and deep learning
approaches are systematically categorized and compared, both in
the context of individualized models and collective frameworks.

METHODOLOGY OF LITERATURE REVIEW

This review adopts a structured methodology to explore the re-
cent advances in artificial intelligence applications on EEG signals.
Academic articles published between 2018 and 2025 were systemat-
ically retrieved from reputable databases including PubMed, IEEE
Xplore, Scopus, and SpringerLink. The search strategy involved
Boolean keyword combinations such as "EEG + Deep Learning",
"Brain-Computer Interface + AI'", and "EEG + Classification"

Studies were included in the article based on the following
criteria:

¢ Use of real EEG data (clinical or experiment in in most studies,
traditional ML methods such as Support Vector Machines
(SVM), k-nearest neighbors (kNN), and decision trees have
been used for classification purposes due to their simplicity
and interpretabilityental)

¢ Implementation of Al techniques (ML or DL)

¢ Focus on emotion recognition, mental task classification, BCI
systems, or neurological diagnosis
Studies were not included in the article based on the following
criteria:

¢ Simulation-only data
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¢ Hardware-only reviews without algorithmic analysis
¢ Articles lacking peer-review

After deduplication and abstract screening, 63 articles were
included in this review.

RECENT ADVANCES IN AI-DRIVEN EEG APPLICATIONS

Electroencephalography (EEG) signals are currently evaluated in
integration with disciplines such as artificial intelligence, bioinfor-
matics, psychology (Elnaggar et al. 2025), and neuroscience, and
are utilized across a wide variety of application domains. In this
context, existing studies span a broad spectrum, ranging from the
characterization of meditation to the diagnosis of neurological dis-
orders, and from mental command recognition to human-robot
interaction.

Meditation, Mental State, and Mindfulness Classifications

In a study aiming to distinguish techniques such as Vipassana,
Isha Shoonya, and Himalayan Yoga, a one-dimensional convolu-
tional neural network (1D-CNN) combined with chi-square-based
feature selection achieved an accuracy rate of 60% (Jain et al. 2025).
The differentiation of meditation states through EEG signals con-
tributes to the objective assessment of individuals’ levels of mental
awareness.

Studies aimed at classifying cognitive states such as mental
relaxation and concentration constitute the fundamental build-
ing blocks of BCI systems (Aggarwal and Chugh 2022; You 2021).
In addition, in studies focusing on the classification of imagined
words, classification was performed using CNN after Hilbert trans-
formation; however, model complexity has been a limiting factor
in real-time applications (Agarwal and Kumar 2024). In the field of
mental task recognition, autoencoder architectures operating with
unlabeled data have been proposed, where “abnormal” states are
identified based on reconstruction errors (Dairi et al. 2022).

Classification of Emotional States

The classification of emotional states using EEG signals holds a
significant place in the literature (Mendivil Sauceda et al. 2024).
The biologically informed Spiking Neural Network-based BISNN
model has improved emotional classification performance and
enhanced sensitivity through the biological meaningfulness of
synaptic parameters (Sun ef al. 2025).
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Figure 2 Overview of the training process of the proposed
BISNN method for EEG-based emotion recognition. Pre-
processed EEG signals are divided into T-slices to reduce tem-
poral feature complexity. Pre-trained weights from a knowledge-
based ANN model are transferred to a homogeneous BISNN
model composed of biologically inspired neurons (Sun et al.
2025).
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Similarly, models developed for the classification of emotions
in the context of human-robot interaction (HRI) have achieved
high accuracy through the use of global optimization algorithms,
demonstrating that emotional intelligence can be integrated into
HRI systems (Staffa et al. 2023)

Studies on the classification of anxiety levels have been con-
ducted using algorithms such as SVM, kNN, and Decision Tree;
the use of closed-loop neurofeedback systems for therapeutic pur-
poses has also been evaluated (Chen et al., 2021). Additionally,
a personalized machine learning approach was developed using
the DEAP dataset, taking into account individual emotional differ-
ences (Barrowclough ef al. 2025)

Additionally, a comprehensive study conducted by Reza et al.
proposed a machine learning framework to classify four emotional
states, positive, neutral, depressed, and anxiety, using EEG signals.
The study utilized a dataset of 300 patients and addressed class
imbalance through advanced data augmentation techniques in-
cluding GAN, SMOTE, and ADASYN. Discrete Wavelet Transform
and Shannon entropy were applied for feature extraction, and nine
different ML/DL algorithms (MLP, CNN, RF, SVM, etc.) were
compared. The highest accuracy of 98.8% was achieved with the
MLP model (Sobhani et al. 2025).

Recent review studies have also highlighted the progress and
limitations of deep learning techniques in EEG-based emotion
recognition. In particular, Abgeena and Garg systematically an-
alyzed more than one hundred studies published between 2018
and 2024, emphasizing that models such as BiILSTM, CNN, and
hybrid CNN-LSTM architectures achieved the highest accuracy
rates across datasets like SEED and DEAP (Abgeena and Garg
2025). Similarly, Li and Chen (2025) proposed a cross-modal align-
ment and fusion framework that combines EEG and visual features
through a hybrid attention mechanism, achieving up to 96.49%
accuracy on the SEED dataset.

The analysis of mental stress levels using EEG in virtual reality
(VR) environments has also emerged as a prominent topic in recent
years. In one study;, stress levels were classified using EEG signals
recorded in a VR environment, and the performances of algorithms
such as SVM and Random Forest were compared (Albayrak-Kutlay
and Bengisu 2025; Kaminska et al. 2021).

Diagnosis and Follow-up of Neurological Diseases

In the differentiation of neurodegenerative diseases such as
Alzheimer’s Disease (AD) and Frontotemporal Dementia (FTD),
the Coherence-CNN method achieved three-class classification
with over 94% accuracy by utilizing functional connectivity mea-
sures (Jiang et al. 2025). In another recent study, a wavelet-ML
framework incorporating OTFL-THFB decomposition was pro-
posed for Alzheimer’s detection using EEG signals. With features
derived from Hjorth Parameters and Higuchi’s Fractal Dimension,
the model achieved up to 98.91% accuracy, outperforming existing
state-of-the-art classifiers (Puri ef al. 2025).

Wang ef al. (2025b) extracted effective connectivity information
using the GRU-GC algorithm for pre-surgical focus localization
in patients with refractory epilepsy, enabling the classification
of epileptic foci through directional connectivity graphs. Pacia
(2023) demonstrated that sub-scalp implantable telemetric EEG
(SITE) systems enable the identification of diagnostic biomarkers
and objective monitoring of treatment responses in neurological
and behavioral disorders beyond epilepsy through long-term EEG
recording. Tautan et al. (2025) systematically reviewed the use of
unsupervised and self-supervised machine learning methods on
EEG data for epilepsy, highlighting methodological trends and
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clinical application gaps in the field.

Shafiezadeh et al. (2024) evaluated patient-independent Al mod-
els for EEG-based epileptic seizure prediction and emphasized the
lack of generalizability and methodological validation in most ex-
isting studies. Gurmessa and Jimma (2025) conducted a systematic
review evaluating interpretable artificial intelligence (XAI) meth-
ods for EEG-based epileptic seizure diagnosis, emphasizing the bal-
ance between model performance and clinical interpretability. The
study provided a comprehensive methodological framework for
developing reliable, ethical, and explainable Al systems in epilepsy
diagnosis. The study developed by Leela and Helenprabha (2025)
stands out with the proposed TMDFILE model, a two-level mul-
timodal data fusion and incremental learning approach aimed at
the early diagnosis of Alzheimer’s disease. By integrating differ-
ent data types such as EEG, MRI/PET, speech, and written text,
this approach dynamically optimizes inter-modality contribution
levels through the use of a gating mechanism.
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Figure 3 Overview of workflow process (Leela and Helenprabha
2025).

Thanks to its incremental learning structure, the model can
adapt to newly incoming data and achieved 94.5% accuracy when
tested on five different datasets (ADNI, OASIS, EEG, AUSD,
BRATS). Compared to traditional methods such as CNN, SVM,
and RE, TMDFILE demonstrated superior performance in terms of
both accuracy and generalizability (Leela and Helenprabha 2025;
Shang et al. 2024; Uyanik ef al. 2025).

Brain-Computer Interfaces (BCI)

BClI systems are effectively utilized, particularly in the rehabilita-
tion of individuals with limited motor abilities Fig. 4 A review
study on these systems evaluated the performance of potentials
such as P300 and SSVEP in terms of signal processing (Sozer and
Fidan 2018), pattern recognition and control techniques (Orban
et al. 2022).

In another study, EEG-based BCI applications for elderly and
disabled individuals were examined, and the application methods
of machine learning algorithms such as ANN, SVM, and LDA to
EEG data were elaborated (Wan et al. 2019). Endogenous EEG-
based BCI systems developed to enable online communication
for individuals with complete loss of motor functions rely on
paradigms that operate without external stimuli (Turi et al. 2021).
In the study conducted by Han et al., a classification approach
based on Riemannian geometry achieved an accuracy of 87.5%
(Han et al. 2019; Ma et al. 2025; Remsik et al. 2022).
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Figure 4 (a) Shows the prototype model BCI and its experimental conditions, (b) is the control scheme of the soft robot hand (Orban ef al.

2022).

Furthermore, a comprehensive review on EEG-based BCI sys-
tems systematically presented the strengths and weaknesses of
deep learning architectures such as CNN, RNN, LSTM, GAN, and
Transformer models (Alshehri et al. 2025; Hossain et al. 2023). An-
other noteworthy study on the classification of motor movements
from EEG signals was conducted by Al-Dabag and Ozkurt (2019).
In this study, classification was performed using statistical fea-
tures obtained from EEG signals through artifact removal, wavelet-
based frequency band decomposition, and cross-correlation with
effective channels (Al-dabag and Ozkurt 2019). In experiments
conducted on both the BCI Competition III Dataset IVa and data
recorded using the Emotiv device, classification accuracies exceed-
ing 98% were achieved with ANN and SVM algorithms (Al-dabag
and Ozkurt 2019). Similar signal processing approaches contribute
to the development of BCI systems used not only in clinical settings
but also in various application areas such as gaming, education,
and marketing (Maiseli ef al. 2023).

Mental Command and Human-Machine Interaction

Mental command recognition using EEG expands the possibilities
of thought-based control in human-machine interaction. Classifica-
tion of EEG signals preprocessed with EMD using deep neural net-
works has enabled the differentiation of various mental commands
(Agrawal et al. 2024). In another study, biometric identification
based on individuals” EEG signals was achieved, where a multi-
band deep embedding learning network provided high-accuracy
identification using features extracted from SSVEP signals (Gu
et al. 2025). In a study based on a hybrid BCI architecture, motor
imagery (MI) and steady-state visual evoked potential (SSVEP)
signals were combined to control a quadcopter in 3D space. The
system, which switches between two modes using an eye-blinking
signal, is capable of controlling flight directions through eight
different EEG commands, achieving a classification accuracy of
87.09%. Enhanced with real-time feedback and offline optimiza-
tion, this architecture offers a high level of control capacity based
on mental commands in human-machine interaction (Yan ef al.
2020).

Sleep, Fatigue, and Mental State Monitoring

In studies focusing on tracking time-dependent cognitive states,
fatigue levels were successfully detected using a spatial-temporal
CNN and a bidirectional LSTM-based model (Ahn et al. 2016; Jeong
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et al. 2019). Building on EEG-derived cognitive state models, a
vocal fatigue detection system was developed for air traffic con-
trollers using SVM and Random Forest classifiers. The system
performs cognitive state classification based on speech signal fea-
tures such as MFCCs, fundamental frequency, and energy (Kouba
et al. 2023).
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Figure 5 The experimental session representation (Kouba e al.
2023).

Additionally, wavelet transform-based multilayer models were
employed to classify mental states such as alertness and drowsi-
ness by enhancing time—frequency resolution (Joo et al. 2025; Khare
et al. 2023). In a study on the detection of driver fatigue using
EEG signals, the fatigue state was classified with high accuracy
through the fusion of four different entropy measures (spectral,
approximate, sample, and fuzzy). Using selected classifiers (SVM,
BP, RF, and kNN), an accuracy of up to 98.3% was achieved, and
effective results were obtained with only four channel regions.
These findings highlight the traceability of mental states in hu-
man-machine interaction systems and their potential contribution
to driving safety (Kouba et al. 2023).

In this context, Hassan et al. conducted a comprehensive survey
summarizing the current progress and key challenges in electroen-
cephalogram (EEG)-based driver fatigue detection. The review
systematically analyzed 87 studies published between 2015 and
2025, focusing on signal preprocessing, feature extraction, and
classification techniques. Commonly adopted classifiers such as
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Support Vector Machine (SVM), Convolutional Neural Network
(CNN), and Long Short-Term Memory (LSTM) networks were
found to achieve accuracies ranging from 85% to 99%. The study
emphasized that increased power in theta (4-8 Hz) and alpha
(8-13 Hz) frequency bands is strongly correlated with fatigue onset.
Moreover, the authors highlighted critical limitations, including
inter-subject variability, real-time implementation challenges, and
a lack of standardized EEG acquisition protocols, suggesting the
need for adaptive and wearable EEG systems for practical applica-
tions (Hassan et al. 2025).

Unique Sensory Experiences and Neurophysiological Represen-
tations

The study by Shen ef al. (2025) investigated the effects of acupunc-
ture sensation on brain functional connectivity using EEG data
and analyzed this sensory experience through graph theory met-
rics. Based on the obtained measures, acupuncture sensation was
predicted with a mean absolute error (MAE) of 0.65%. EEG-based
investigations conducted on individuals with high autistic traits
revealed the neurophysiological foundations of social interaction
difficulties and identified a negative correlation between low alpha
coherence in the occipital region and AQ scores (Wang et al. 2025a).

Music, as a form of expression capable of eliciting strong emo-
tional responses, enables the recognition of music-evoked emotions
through EEG signals, contributing to a deeper understanding of
the underlying neural mechanisms of such responses. Artificial
intelligence plays a crucial role in this process by facilitating the
extraction of characteristic frequencies (Su et al. 2024) and the iden-
tification of novel features, thereby enhancing the development of
emotion recognition models.

The studies presented demonstrate that the analysis of EEG
signals using Al-assisted approaches plays a significant role in
the objective assessment of cognitive, emotional, and neurolog-
ical states. Deep learning and graph theory-based methods re-
veal the versatile potential of EEG in clinical, rehabilitation, and
human-computer interaction domains. In this context, the de-
velopment of personalized EEG analyses and real-time systems
represents a significant advancement in literature.

ARTIFICIAL INTELLIGENCE APPLICATIONS ON EEG SIG-
NALS

Several studies identified in the literature that utilize artificial
intelligence methods are comparatively examined in the following
section.

Machine Learning Method (ML)

Comprehensive reviews are also available in the literature regard-
ing the role of machine learning (ML) algorithms in enhancing
the processing, interpretation, accuracy, and effectiveness of EEG
signals (Hosseini et al. 2021). The methods used in the study con-
ducted by Joseph et al. (2025) are as follows:

Preprocessing: In this section, the researchers explain that the
four-channel signals obtained from the MUSE EEG device were
converted into microvolts using the BlueMuse and Muse-Isl soft-
ware and then standardized by resampling them to 200 Hz through
a Fourier transform. Each EEG recording, approximately one
minute in duration, was segmented using a one-second “sliding
window” with a 0.5-second overlap to capture temporal variations.
Statistical features (such as skewness and variance) were extracted
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from these windows and subsequently used for signal analysis
and emotional state classification.

The graph in Figure 6 illustrates the segmentation of the EEG
signal over time for analysis. In other words, the continuous
signal is divided into overlapping small segments (windows). Each
segment (for instance, one second in length) serves as an analytical
unit from which statistical features are extracted.
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Figure 6 Sliding window approach (Barrowclough et al. 2025).
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Overall, the data processing procedure involves standardizing
the raw EEG signals, segmenting them into time windows, and
extracting statistical features (such as skewness and variance) from
each window. These features were then utilized in the affective
classification model.

Feature Extraction: To capture different dimensions of emotions
(e.g., valence and arousal), features were extracted from the signals
in the time-frequency domain. Among the prominent techniques
are methods such as Empirical Mode Decomposition (EMD) and
Wavelet Transform.

Classification: For personalized models, the best results were ob-
tained using Support Vector Machines (§VM) and Random Forest
algorithms. The researchers also experimented with ensemble
learning strategies to improve classification performance. Accord-
ing to the results, personalized models performed significantly
better than general models.

Performance Criteria: Classical evaluation metrics such as accu-
racy, sensitivity, and specificity were used as performance mea-
sures. The SVM-based personalized model achieved an accuracy
of up to 85%, which outperforms many general models reported
in the literature.

Evaluation and Observation: Based on the assumption that each
individual’s EEG signal structure differs, the researchers investi-
gated whether personalized models outperform generic ones. To
this end, six machine learning algorithms were tested on the MUSE
and DEAP datasets: K-NN, Decision Tree, Random Forest, SVM,
Naive Bayes, and Stacking Ensemble Classifier. The experiments
aimed to enhance prediction performance by accounting for EEG
features specific to each individual.
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The experimental design of the study is visualized in Fig. 7. This
diagram illustrates, step by step, how both the generic and person-
alised model pipelines are implemented with the machine learning
algorithms. The fundamental mathematical foundations of the
algorithms (e.g., Minkowski distance, Gini impurity, Bayesian
distributions, SVM kernel functions) are also provided; during
evaluation, confusion matrices were used and accuracy rates were
compared.

Table 1 Summary of Methods and Techniques Used in the
Study by Joseph et al.

Feature Methods Used Advantages Disadvantages
Feature Extrac- EMD, Wavelet High time- High computa-
tion Transform frequency resolu-  tional cost
tion
Classifier SVM, Random High accuracy Slow due to the
Forest, Ensemble ~ with  personal- need for training
Methods ized modeling multiple models
Dataset DEAP Widely used, Limited number
suitable for com-  of subjects
parative analysis
Model Structure Personalized Able to capture  Not suitable for
models individual differ-  generalization

ences

The methodological contribution of this study lies in demon-
strating that a personalized modeling strategy can substantially
enhance the performance of EEG-based emotion classification.
Such approaches are particularly well-suited for applications such
as user-specific neurofeedback systems, mental health monitoring,
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and human—computer interaction.

The methods used in the study conducted by Khare et al.
(2023) are as follows:

Dataset and Preprocessing: In this part of the study, a publicly
available EEG dataset from the Kaggle platform was utilized. Five
participants performed experiments using a train simulator (Am-
trak-Philadelphia route). The participants’ mental states were
categorized into three classes: Focused, Unfocused, and Drowsy.
EEG recordings were collected using the Emotiv EPOC EEG sys-
tem with a sampling frequency of 128 Hz, a bandwidth of 0.2-43
Hz, and a resolution of 0.51 pV. Each 10-minute session was di-
vided into 30-second segments, resulting in 680 EEG segments per
class.

The raw EEG signals were processed using an ensemble wavelet
decomposition approach to remove noise and artifacts. In this
process, three different wavelet-based methods were employed in
combination:

* MDWT (Multilevel Discrete Wavelet Transform): It separates
low- and high-frequency components.

e TQWT (Tunable Q Wavelet Transform): It performs
parameter-based (q, R, B) decomposition without requiring the
selection of a main wavelet.

e FAWT (Flexible Analytic Wavelet Transform): It analyzes
complex signals such as EEG through two high-pass and one low-
pass channels.

¢ The combination of these methods allows for precise analysis
of the signals in both time and frequency domains.
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(Khare et al. 2023)
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Figure 9 A typical example of SBs generated by the TQWT
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Feature Extraction and Wavelet-Based Decomposition: A total of
27 statistical, fractal, and nonlinear features were extracted from
the decomposed EEG signals. These features include indicators
such as mean energy, variance, skewness, Hurst exponent, Hjorth
mobility, Higuchi fractal dimension, Lyapunov exponent, and zero-
crossing rate. The extracted features represent the dynamics of
brain activity and were utilized to differentiate between various
mental states.

Classification: Optimized ensemble classifiers were employed in
the study. The classifiers used included models such as boosted
trees, bagged trees, ensemble discriminant, and subspace KNN.
Feature fusion was applied to achieve dimensionality reduction
and enhance performance.

During the training and testing phases, holdout, 5-fold, and
10-fold cross-validation techniques were implemented.
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Figure 10 Typical working of ensemble classifier techniques
(Khare et al. 2023)

Success Performance and Results:

¢ The best performance was achieved using FAWT, yielding
97.8% accuracy with the Iterative Majority Voting technique.

¢ In the three-class analysis (F, UF, D), FAWT-based features
provided higher separability compared to other methods.

¢ Feature fusion achieved the highest F1 score (98.18%) particu-
larly for the drowsy class.

¢ The best-performing subband (SB) levels were as follows:

— B-1 for MDWT and TQWT
— SB-7 for FAWT

Evaluation and Observation: This study demonstrates how the
combination of wavelet transform techniques and optimized en-
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Table 2 Summary of Methods, Features, and Classification
Performance in the Study by Khare et al. (2023)

Feature Methods Used Advantages Disadvantages

Feature Extrac- MDWT, TQWT, Versatile Parameter tuning

tion FAWT time—frequency is complex

decomposition

Feature Type 27 statisti- ~ Rich info, high  Large features —
cal/chaotic discriminative reduction may be
features power required

Classifier Ensemble (opti- High accuracy High computa-

mized) and generaliza-  tional cost

tion

Limited number
of subjects

Accuracy (with ~ 97.8% Superior perfor-
IMV) mance in the lit-
erature

semble classification can yield robust results in EEG-based mental
state classification. In particular, the high time—frequency resolu-
tion of FAWT has proven to be ideal for complex and oscillatory
signals such as EEG.

Compared to previous studies, this work adopts an ensemble
wavelet decomposition with feature fusion strategy rather than
personalization. While personalized models focus on capturing
individual variations, the advantage of the present study lies in
providing a more generalizable classification model.

The two studies considered (Barrowclough et al. 2025; Khare
et al. 2023) focus on the machine learning-based classification of
mental states from EEG signals and present distinct methodologi-
cal approaches. Although the objectives of both studies are similar,
they demonstrate significant differences in the signal processing
and classification strategies employed.

Modeling Approach:

¢ The first study, “Personalised Affective Classification Through
Enhanced EEG Signal Analysis,” focused on individual-
specific emotion classification and developed personalized
machine learning models (Khare et al. 2023). Training a sepa-
rate model for each participant aimed to enhance classification
accuracy by accounting for personal variations in EEG signals.

® The second study, “Ensemble Wavelet Decomposition-Based
Detection of Mental States,” aimed to establish a generalizable
model and adopted an ensemble wavelet decomposition com-
bined with an optimizable ensemble classifier approach rather
than personalization (Ma ef al. 2025). In this study, mental
states such as focused, unfocused, and drowsy were classified
into three distinct classes.

The first study emphasizes personalized models, whereas the
second focuses on generalized models. While the former highlights
individual adaptation, the latter underscores the power of signal
processing and algorithm optimization.

Feature Extraction and Signal Processing Techniques:

¢ In the first study, features were extracted from EEG signals
using conventional time—frequency decomposition methods,
such as Empirical Mode Decomposition (EMD) and Wavelet
Transform. These extracted features were used to model affec-
tive dimensions, such as valence and arousal.

* In the second study, a more sophisticated approach was
adopted. Multilevel Discrete Wavelet Transform (MDWT),
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Tunable Q Wavelet Transform (TQWT), and Flexible Ana-
lytic Wavelet Transform (FAWT) were used in combination to
perform ensemble decomposition. Each of these techniques
excels at decomposing different frequency bands and signal
characteristics. A total of 27 statistical and chaotic features
were extracted, and dimensionality reduction was achieved
using a feature fusion method.

In the second study, the feature space is considerably richer and

more diverse. In particular, the use of FAWT provides a significant
advantage in analyzing the temporal complexity of EEG signals.
The methods employed in the first study are comparatively more
basic in nature.

Table 3 Machine learning based Comparative Performance

and Methodological Analysis of Barrowclough et al. (2025) and
Khare et al. (2023)

Feature Study 1: Personalized Study 2: Ensemble
Model Wavelet Model

Modeling Approach Individual-specific Generalizable + opti-

mized

Feature Extraction EMD, Wavelet MDWT, TQWT, FAWT

Classifier SVM, RF Ensemble + IMV

Accuracy ~85% 97.8%

Signal Type DEAP dataset Kaggle EEG

Strengths Captures  individual =~ Advanced decomposi-
variations tion + fusion

Limitations Limited generalization Small number of partici-

pants

Classification Methods:

¢ In the first study, Support Vector Machines (SVM) and Ran-
dom Forest classifiers were primarily employed, and person-
alization increased the accuracy to approximately 85% (Khare
et al. 2023).

¢ In the second study, optimized ensemble classifiers were pre-
ferred. A combination of methods, including bagged trees,
boosted trees, and subspace KNN, was applied, and the final
decision mechanism was implemented using Iterative Ma-
jority Voting (IMV). This framework increased the accuracy
rate to 97.8%. The classification approach in the second study
demonstrated superior performance due to its more advanced
framework and inclusion of hyperparameter optimization.
Despite the use of personalized models in the first study, the
overall accuracy remained lower.

Deep Learning Method (DL)

In the literature review section, three key studies employing deep
learning (DL) approaches for EEG-based classification problems
were analyzed (Agarwal and Kumar 2024), and their method-
ological differences and performances were compared in detail.
Prabhakar et al. in 2024, the methods employed are as follows:

Preprocessing:

¢ The preprocessing stage aimed both to enhance signal quality
and to provide a suitable foundation for feature extraction.

| Akdeniz and Fidan

® The signals were divided into segments of equal length to
enable meaningful analysis.

¢ Each segment was time-normalized to ensure consistent learn-
ing by the model.

¢ The preprocessing stage aimed both to enhance signal quality
and to provide a suitable basis for feature extraction.

Feature Extraction:

¢ The Hilbert Transform was applied to the EEG signals to
obtain the envelopes of each signal.

e This transformation provided both instantaneous amplitude
and phase information, offering a richer representation com-
pared to classical time-frequency analysis methods.

¢ The resulting envelopes were converted into a suitable matrix
format to serve as input for the classification model.

¢ In this way, both the neural and semantic components of the
signals were successfully represented

(l;“l“fl)n:.:..‘::m‘ ‘ SMC ——> CAR,Notch —»/ delta, theta, alpha, beta, gamma, HG, whole band

Hilbert Transform
s!eps: (analytical . (,oncatena.tmn
signal (y), envelope for all subjects
Sample of y)
preprocessed
input (CS,
alpha) Hilbert spectrum
steps: (EMD, IMFs C N
(:r,,), analyllczfl "| for all subjects CNN
signal (y,;), Inst
energy, HS)

Figure 11 Detailed steps for feature extraction (Agarwal and
Kumar 2024)

‘ CS  ——> CAR,Notch — delta, theta, alpha, beta, gamma, HG, whole band

‘ B&W ——» CAR,Notch — delta, theta, alpha, beta, gamma, HG, whole band

F ——» CAR, Notch —— delta, theta, alpha, beta, gamma, HG, whole band

‘ MC —— CAR,Notch —— delta, theta, alpha, beta, gamma, HG, whole band

‘ P ~——» CAR,Notch ——» delta, theta, alpha, beta, gamma, HG, whole band

‘ o —— CAR,Notch ——» delta, theta, alpha, beta, gamma, HG, whole band
‘ T —— CAR,Notch —— delta, theta, alpha, beta, gamma, HG, whole band

Whole

region —— CAR,Notch — delta, theta, alpha, beta, gamma, HG, whole band

Preprocessed signals

Figure 12 Detailed steps for preprocessing (Agarwal and Kumar
2024).

Classification:

* A deep neural network (DNN) based on a multilayer percep-
tion (MLP) was employed for classification.

¢ The model was trained under a supervised learning paradigm
and optimized using the backpropagation algorithm.

* The network architecture enabled the deep processing of
features, allowing for successful discrimination of imagined
word tasks.

Performance Criteria:

* The model’s performance was primarily evaluated in terms
of accuracy. Additionally, its cross-subject generalizability
was tested to assess the ability for participant-independent
classification.

Computers and Electronics in Medicine
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Table 4 Summary of Preprocessing, Feature Extraction, and
Classification Methods Used by Remsik et al. (2022)

Feature Methods Used Advantages Disadvantages
Preprocessing Band-pass Signals cleaned  Filter = parame-
filtering, seg-  from noise and  ters may not be
mentation, time artifacts; suitable universal  due
normalization for analysis to  individual
variations
Feature Extrac- Envelope extrac- Rich representa- Computational
tion tion via Hilbert tion containing load of Hilbert
Transform both phase and  Transform can be
amplitude info high
Classification MLP-based Deep  Strong classifica- Deep learning
Neural Network, tion capability; models require
backpropagation ~ parametric flexi- large datasets;
bility risk of overfitting
Performance Accuracy, cross- Effective perfor-  Despite high
Evaluation subject generaliz-  mance across dif-  accuracy, not yet
ability tests ferent individu- tested in real-

als

time applications

¢ The study demonstrated high performance with similar ac-
curacy rates across different individuals. However, the ap-
plicability of the model in real-time systems has not yet been

experimentally tested.

¢ The F1 score is not directly reported as a metric in the article
content and tables; the study focuses more on accuracy and

Network Prediction Time (NPT).
® Accuracy Percentage:

— Maximum Accuracy: 94.29% was achieved.

- Average Accuracy: An average accuracy of 71.75% was

achieved throughout the study.

In the study conducted by (Dairi et al. 2022), the methods em-

ployed are as follows:
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Preprocessing:

¢ In this section of the study, the Multi-Channel Wiener Filter

(MWEF) algorithm was applied for artifact removal. MWF
has been shown to perform effectively on both real and hy-
brid EEG data, offering superior performance compared to
conventional techniques.

The fundamental principle of the algorithm involves modify-
ing the artifact covariance matrix using a low-rank approx-
imation and processing it through generalized eigenvalue
decomposition. This approach provides a generalizable and
robust solution for the removal of various types of EEG arti-
facts.

Feature Extraction:

¢ In this study, conventional manual feature extraction was not

performed. Instead, the task of feature extraction was directly
handled by the encoder layers of the model.

In particular, the convolutional layers (CNN) acted as a struc-
ture that automatically learned the spatial and temporal pat-
terns of the EEG signals to extract features. This approach
aligns with the deep learning capability to reduce the need
for manual feature engineering.

Consequently, the data was fed directly into the neural net-
work, allowing the model itself to generate meaningful repre-
sentations without relying on hand-crafted features.

Classification:

¢ The novelty of the study lies in employing an anomaly de-

tection approach instead of conventional classifiers. In this
context, the developed system is based on an autoencoder
architecture. The encoder-decoder model aims to summarize
and reconstruct the input signal.

During training, the model was allowed to learn only “nor-
mal” mental tasks. In the testing phase, reconstruction errors
were measured to identify “anomalous” patterns. This ap-
proach is particularly effective for high-variance data such
as EEG signals, providing both the ability to work with unla-
beled data and robustness to individual differences.

Performance Criteria:

* The success of the DBN-iF model proposed in this study has

proven its superiority compared to other results in the litera-
ture:

DBN-iF (This study): 98.5%

LS-SVM (Closest competitor): 97.56%
KINN: 92.8%

CNN-SAE: 90.0%

¢ The model’s performance was evaluated primarily based on

reconstruction error rather than conventional accuracy met-
rics. Anomalous events were identified when this error ex-
ceeded a predefined threshold, enabling functional output
even on unlabeled samples.

Experimental results demonstrate the system’s high capac-
ity both for discriminating between different tasks and for
adapting to inter-subject variations.However, the absence of
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Table 5 Summary of Preprocessing, Feature Extraction, and

Classification Methods Used by (Dairi et al. 2022)

Feature Methods Used Advantages Disadvantages

Preprocessing Multi-Channel Superior de- More complex
Wiener  Filter  noising on than  classical
(MWE); low-  real/hybrid filtering; requires

Feature Extrac-
tion

Classification /

rank covariance;
eigenvalue de-
composition

Automatic  ex-
traction via CNN
layers; no man-
ual features

Autoencoder-

EEG; robust to
multiple artifacts

Eliminates
manual engi-
neering; learns
spatial-temporal
patterns

Learning from

expertise

Requires large
data; less inter-
pretable  than
handcrafted
features

Lack of softmax

Detection based anomaly wunlabeled data; makes direct
detection; recon- robust to inter- comparison dif-
struction error subject variabil-  ficult; threshold

ity selection issues

Performance Reconstruction Enables detec- No classical met-

Evaluation error and tion without rics  (accuracy,
anomaly thresh- labels; shows etc.)  reported;
olding generalization limited compara-

bility

comparison using traditional metrics such as class-wise ac-
curacy limits the direct comparability of these results with
conventional systems.

¢ According to the findings of this article, combining QTFD
(Quadrificial Time-Frequency Distribution) feature extraction
with DBN-based Anomaly Detector (Isolation Forest) can
achieve higher accuracy in recognizing mental tasks compared
to traditional supervised learning models (such as CNN or
SVM).

In the study conducted by Khondoker Murad et al. (Hossain
et al. 2023), the techniques employed are as follows:

Preprocessing: The raw EEG signals inherently contain noise, arti-
facts, and low signal-to-noise ratios, which complicate their direct
use in BCI applications. Therefore, among the prominent prepro-
cessing methods highlighted in the studies reviewed, the following
are commonly employed:

¢ Frequency filtering (particularly band-pass filtering between
0.5-45 Hz).

¢ Artifact removal (especially signals arising from eye blinks
and muscle movements).

¢ Manual cleaning and methods such as Independent Compo-
nent Analysis (ICA) and Discrete Wavelet Transform (DWT).

Feature Extraction. One of the main advantages of deep learning
is its ability to eliminate the need for manually defined feature ex-
traction. In the studies reviewed, feature extraction was primarily
performed automatically by the initial layers of CNN, RNN, LSTM,
or even Transformer architectures.

However, some hybrid approaches employed time—frequency
representations to support model learning, applying transforma-
tions such as STFT, CWT, or Morlet wavelets as a pre-processing
step. Notably, in tasks such as motor imagery or emotion recog-
nition, these rich representations were observed to significantly
enhance classification performance.
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Classification: In the review, various deep learning architectures
employed for EEG-based BCI applications are presented in detail.
The most frequently used classifiers include:

¢ Convolutional Neural Networks (CNN) — effective for captur-
ing spatial features.

® Recurrent Neural Networks (RNN) and Long Short-Term
Memory (LSTM) — suitable for temporal signals such as EEG.

* Generative Adversarial Networks (GAN) — employed for data
augmentation and balancing.

¢ Transformer architectures — offer potential for modeling long-
range dependencies.

Performance Criteria: In this study, deep learning models demon-
strated different success levels depending on the application type:

¢ Driver Fatigue Detection: Studies in this area have resulted in
high accuracy rates between 83% and 98%.

* Epileptic Seizure Detection: Accuracy rates of over 99% have
been reported using CNN and RNN models.

* Emotion Recognition: Most researchers have achieved accu-
racy rates above 90% in datasets such as DEAP and SEED.

* Motor Imagery (MI): While classical machine learning meth-
ods struggle in this area (between 72% and 86%), deep learn-
ing (especially LSTM and CNN) has significantly improved
performance.

Table 6 Summary of Preprocessing, Feature Extraction, and
Classification Methods Used by (Hossain et al. 2023)

Feature Methods  Em-  Advantages Limitations
ployed
Preprocessing Frequency  fil- Noise reduction  Standardization

tering, artifact and
removal  (ICA,
DWT), manual
visual inspection

improved is
signal quality

challenging
due to method-
ological diversity

Feature Extrac- CNN, LSTM, Automaticlearn- Loss of inter-

tion Transformer ing instead  pretability and
architectures; of manual ex- high computa-
time—frequency traction; rich  tional cost in
transformations representations some models
(CWT, STFT)

Classification CNN, LSTM, High accuracy Model selection
GAN, Trans-  with task-specific ~ depends on task
former; hy-  selection; cap- type; no univer-
brid architec-  tures patterns sal architecture
tures (e.g.,

CNN+LSTM)
Performance Accuracy,  F1- Multi- Direct compar-
Evaluation score, sensitivity, — dimensional ison is difficult

specificity, cross-
validation

analysis; im- due to differ-
proved  gener- ences in datasets
alization via
transfer learning

Additionally, some approaches employed cross-validation
strategies to assess generalizability. It has also been highlighted
that increasing the amount of data, as well as applying domain
adaptation and transfer learning techniques, has a significant im-
pact on accuracy. However, the lack of methodological consistency
among the datasets used has led to inconsistencies in comparative
results.

Computers and Electronics in Medicine



Comparison of Deep Learning-Based Studies

These three studies collectively illustrate the multidimensional
utilization of deep learning techniques in EEG signal analysis.
The first study introduces a CNN-based framework focusing on
a specific task (imagined words), whereas the second emphasizes
an anomaly detection paradigm rather than direct classification.
The third article provides a higher-level synthesis encompassing
multiple studies, underscoring that the selection of an appropri-
ate methodological approach should be determined contextually,
depending on the experimental design and target application.

Explanations of Technical Terms:

e Hilbert Transform: An analytical signal approach used to
extract the temporal amplitude and phase components of
EEG signals. It enhances temporal resolution.

¢ Autoencoder: An unsupervised learning architecture that
identifies anomalies by learning low-dimensional representa-
tions of data and minimizing reconstruction error.

e STFT / CWT / Wavelet Transforms: Fundamental time-
frequency transformation techniques used in EEG signal anal-
ysis. They facilitate the generation of more meaningful inputs
for deep learning models.

* Domain Adaptation: A subfield of transfer learning employed
to maintain model consistency across EEG data collected from
different individuals.

Similarities and Differences Between Methods:

® CNN architecture plays a significant role in all three studies.
In the first study, it is employed directly for classification
purposes, whereas in the second study, it is incorporated
within an autoencoder structure for reconstruction. In the
third study, CNN is discussed within the context of a literature
review as a commonly used method in EEG applications.

* Noticeable differences emerge in terms of pre-processing tech-
niques. The first study enriches the data using advanced
signal processing methods such as the Hilbert transform,
whereas the second study employs simpler, more basic prepro-
cessing procedures. This distinction clearly demonstrates the
impact of data preparation methods on the resulting model
performance.

¢ In terms of learning paradigms, the first study is based on
supervised learning and utilizes labeled data. In contrast, the
second study employs an unsupervised learning approach
applied to unlabeled datasets. The third study compares these
two methods and discusses which approach may be more
appropriate depending on the type of application.

¢ Advanced techniques such as generalizability and transfer
learning are discussed in detail particularly in the third study.
Since EEG signals exhibit substantial inter-individual variabil-
ity, these strategies are crucial for ensuring that models remain
effective across different subjects. In contrast, the other two
studies address this topic in a more limited manner.

Results: Although these three studies serve different objectives,
they collectively demonstrate that deep learning-based analyses
of EEG signals encompass a broad methodological spectrum. The
common use of CNN-based architecture indicates that such models
can effectively capture and represent spatial patterns within EEG
data. However, the adaptation of these architectures to dataset-
specific characteristics, such as preprocessing strategies, labeling
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schemes, and levels of architectural complexity, constitutes a criti-
cal factor influencing application performance. As a consequence
of this methodological diversity, models such as autoencoders
tend to offer advantages in scenarios emphasizing unsupervised
learning, whereas CNN-based models enriched with information-
dense inputs yield more efficient outcomes in contexts requiring
linguistic imagery or complex classification.

Studies Utilizing Alternative Modeling Approaches

The methods and techniques used in the studies of Al-Dabag and
Ozkurt (Al-dabag and Ozkurt 2019),

Preprocessing:

* Artifact Removal (EEG Subtraction): Noise was suppressed
by subtracting the resting-state (motionless) EEG signal from
the EEG signal containing movement. This procedure was
applied to enhance signal clarity and make it suitable for
classification.

* Channel Selection: EEG channels located near the motor cor-
tex were pre-identified and selected. In particular, the F3 and
F4 channels were utilized as “effective channels.
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Figure 14 Selected EEG channels in both datasets. (A) Se-
lected channels of BCI datasets, (b) selected channels of Emotiv
datasets (Al-dabag and Ozkurt 2019).

Feature Extraction:

¢ Discrete Wavelet Transform (DWT): EEG signals were decom-
posed into beta and gamma bands using the DWT method.
This decomposition allowed the extraction of frequency com-
ponents related to movement.

e Cross-Correlation: The selected effective channels (F3, F4)
were subjected to cross-correlation with other channels in the
right and left hemispheres, thereby extracting information on
similarity /synchronization between two channels.

e Statistical Features: From the cross-correlation outputs, 10
normalized statistical features were calculated, including min-
imum, maximum, mean, median, mode, standard deviation,
variance, entropy, and the first and third quartiles.

Classification:

e Artificial Neural Network (ANN): A multilayer ANN was
implemented. The number of nodes in the hidden layer was
optimized through multiple trials (e.g., 14 nodes yielded the
best performance).
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Table 7 Comparative Deep Learning-Based EEG Applications

Criterion / Study

Imagined Words Classification (Hilbert
Transform + CNN)

Mental Task Recognition (Autoencoder-
Based Anomaly Detection)

Comprehensive Literature Review (Mul-
tiple Deep Learning Architectures)

Application Domain

Preprocessing Approach

Modeling Architecture

Methodological Contribution / Innova-
tion

Data Labeling Requirement

Generalizability / Subject Independence

Highest Accuracy

Average / Other Results

Recognition of mentally imagined words
(Imagined Speech BCI)

Extraction of instantaneous amplitude
and phase components using the Hilbert

Transform

Deep Convolutional Neural Network
(Deep CNN)

Enriched input representation via
Hilbert Transform for meaningful signal

encoding

Moderate (requires labeled data for su-
pervised learning)

Cross-participant generalizability tested

%94.29

Average: 71.75%

Identification of different cognitive tasks
(Mental Task Recognition)

Z-norm-based standardization and basic
spectral filtering
Encoder-decoder-based Autoencoder
structure (CNN embedded)

Mental state differentiation through un-
supervised detection of anomalous pat-

terns

Low (suitable for unsupervised or
anomaly detection tasks)

Proposed structure tolerant to partici-
pant variability

%98.50

LS-SVM: %97.56, KNN: %92.8, CNN-
SAE: %90.0

General methodological categorization
for EEG-based BCI systems

Time—frequency transformations (STFT,
CWT, Wavelet Decompositions)

Advanced DL architectures such as
CNN, LSTM, GAN, and Transformer

Architecture—application mapping and
architecture recommendations based on

task type

High (requires extensively labeled data
or transfer learning scenarios)

Discussion of domain adaptation and
transfer learning strategies

99.00%+ (Epilepsy)

Driver Fatigue: 83-98%, Emotion Recog-
nition: >90%, Motor Imagery: 72-86%

Performance Criteria:

D
I
G (@
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Figure 15 Three-level DWT decomposition (Al-dabag and
Ozkurt 2019)

* Accuracy: An accuracy of 99.33% was achieved with the ANN,
and 99.69% with the SVM (BCI dataset).

e Cross-Validation (10-Fold): A 10-fold cross-validation was
performed for both classifiers to assess their validity.

* User Independence: Both subject-specific (patient-based) and
pooled-subject (movement-based) classifications were tested.
In movement-based classification, accuracy did not drop be-
low 92%.

The methods and techniques used in the studies of Leela and
colleagues (Leela and Helenprabha 2025),

® Support Vector Machine (SVM): An SVM with a Radial Basis
Function (RBF) kernel was employed. The kernel scale was
determined automatically.

¢ Datasets: Classification was performed using both the BCI
Competition III Dataset IVa (imagined movements) and Emo-
tiv Epoc+ data (actual movements).

Preprocessing: Since different data modalities (temporal, spectral,
spatial, audio, and text data) were used for Alzheimer’s disease
prediction, specific preprocessing procedures were applied for
each data type:

¢ Temporal (gait) data: Erroneous and missing data were re-
moved using statistical methods, and outliers were eliminated
based on standard deviation thresholds.

* Spectral (EEG) data: Signals were filtered within the 145 Hz
band and subsequently prepared for time-frequency transfor-
mation.

¢ Spatial (MRI/PET/CT) data: Imaging data underwent size
standardization and resampling procedures.

* Audio data: Noise reduction and normalization were per-
formed.

o Text data: After converting audio data to text, tokenization,
stop-word removal, and vectorization were carried out.

class1

class2

classn

input layer

hidden layer output layer

Figure 16 ANN architecture (Al-dabag and Ozkurt 2019)

Feature Extraction: The study employed deep learning models
that extract distinctive representations from multimodal datasets:

e Temporal (gait) data: A BiLSTM (Bidirectional Long Short-
Term Memory) network was used for the time series data.

22 | Akdeniz and Fidan Computers and Electronics in Medicine



Table 8 Summary of Preprocessing, Feature Extraction, and
Classification Methods Used by (Al-dabag and Ozkurt 2019)

Feature

Methods Used

Advantages

Disadvantages

Preprocessing

Resting-state
EEG subtraction,

Noise was
suppressed, re-

Manual channel
selection  may

Feature Extrac-
tion

channel selection  sulting in cleaner ~ require  expert
signals. Focus  knowledge.
on motor cortex Performance

regions was  may depend

enhanced. on recording
conditions.

Frequency de- Provided mean- Features were

composition
using DWT,
cross-correlation,
statistical param-
eter extraction

ingful and
effective features
with low compu-
tational cost. A
comprehensive

feature set was

intuitively  ex-
tracted from the
signal; additional
optimization

may be required
for universal

created. generalization.
Classification ANN Tested with two ~ ANN results
(Levenberg- different classi- show run-to-run
Marquardt), fiers, achieving variability; pa-
SVM (RBF ker- high accuracy. rameter tuning
nel) Comparison may require care-
between ANN  ful adjustment.
and SVM was
conducted.
Performance 98-99+% accu- Method gener- Slight drop in
Evaluation racy, 10-fold  alizability was  accuracy ob-

cross-validation,
two datasets (BCI
and Emotiv),
subject-specific
and pooled clas-
sification

tested, achieving
success — across
different  indi-

viduals and
devices.  High
performance

achieved with a

served in pooled
classification sce-
narios  (~92%);
individual differ-
ences may have
a stronger effect.

¢ Ensemble structure: It combines different classifiers (e.g., de-
cision trees, SVM) to enable more robust decision-making.

¢ Incremental learning: The model can be updated with newly
incoming data; in other words, it is not static but has an adap-
tive learning process.

¢ Gating mechanism: It assigns weights by determining which
modality is more effective in the classification process.

Performance Metrics: ADNI, OASIS, EEG Emotion, Aberystwyth
Dementia, and BRATS. The obtained performance metrics:

* Accuracy: %94.5
e Precision: %93.5
e Recall: %95.1

F1 Score: %94.1

Table 9 Summary of Preprocessing, Feature Extraction, and
Classification Methods Used by (Leela and Helenprabha 2025)

simple approach.

® Spectral (EEG) data: Frequency-dynamic features were ex-
tracted from EEG images using the GoogLeNet convolutional
neural network.

¢ Spatial data: Imaging data were analyzed using the MobileNet
architecture, achieving high-accuracy representations with
low computational cost.

¢ Audio data: Audio files were analyzed using a CNN-MLP
(convolutional neural network combined with a multilayer
perceptron).

¢ Text data: Semantic information was captured using the BERT
(Bidirectional Encoder Representations from Transformers)
model.

A two-level data fusion approach was implemented:

Feature Methods Used Advantages Disadvantages

Data Types Temporal, spec- Integrated analy- Complex data
tral, spatial, au- sis of disease di- collection and
dio and text data ~ mensions synchronization

Preprocessing Band-pass  fil- Modality- Long processing
tering,  outlier specific cleaning time; high techni-
removal, resam- improves quality  cal expertise
pling

Feature Extrac- BiLSTM, Optimized DL  High hardware

tion GoogLeNet, architectures for  requirements;
MobileNet, each modality long training

Data Fusion Ap-
proach

Classification
Method

Performance
Metric

Clinical App.

CNN-MLP, BERT

Two-level: hier-
archical fusion
with gating

Incremental
Learner Ensem-

ble (TMDFILE)

Acc: 94.5%, Prec:
93.5%, Recall:
95.1%, F1: 94.1%

Multimodal neu-
rological imaging
system

Optimized
modality contri-
bution

Updatable, adap-
tive system; high
accuracy

success
across

High
rates
datasets

Evaluates cogni-
tive and motor
symptoms

time

Complex struc-
ture; limited
explainability

Needs additional
management for
real-time

High system
complexity  for
integration

Access to all data
sources may not
be feasible

¢ Level 1: Temporal, spatial, and spectral data were combined
through a gating mechanism to generate an intermediate rep-
resentation.

¢ Level 2: This intermediate representation was then integrated
with audio and text representations to obtain the final fusion

vector.

Classification: The final feature vector was given to the Incremen-
tal Learner Ensemble Classifier (TMDFILE) model, which was
specifically developed for Alzheimer’s prediction. The main char-

acteristics of this model are as follows:
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Comparative Analysis in Terms of Methods and Techniques Al-
Dabag and Ozkurt (2018) proposed a simple and low-cost method
that can be integrated into online BCI systems for motor move-
ment classification based on EEG data. By utilizing DWT, cross-
correlation, and statistical features, high accuracy was achieved
without the need for complex optimization processes, and classical
models such as ANN and SVM were employed for classification.
On the other hand, Leela et al. (2025) introduced an incremental
learning-based system called TMDFILE, which integrates EEG,
MR, speech, text, and gait data for Alzheimer’s diagnosis. This
approach is grounded in multidisciplinary data fusion. The two
studies differ significantly in terms of data diversity, scale, and
intended application.
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Table 10 Comparative Analysis of EEG-Based Studies by (Al-dabag and Ozkurt 2019) and (Leela and Helenprabha 2025)

Comparison Al-Dabag & Ozkurt (2018) Leela et al. (2025)

Application Area EEG-based motor movement recognition, BCI systems Alzheimer’s disease diagnosis, multi-modal biomedical data

Data Type EEG only (BCI Dataset & Emotive) EEG, MRI/PET, gait, audio, and text data

Preprocessing EEG subtraction, channel selection Modality-specific preprocessing: filtering, normalization, resampling,

Feature Extraction DWT, cross-correlation, 10 statistical features

Classification Algorithms

Al Level Traditional ML techniques

Fusion Usage None

Accuracy 99.33% (ANN), 99.69% (SVM)

Advantages Simple, low computational cost, suitable for online BCI applications
Disadvantages EEG-only usage — limited information representation, sensitivity to

individual data

Generalizability Limited (restricted to BCI systems)

Artificial Neural Network (ANN), Support Vector Machine (SVM)

etc.

BiLSTM, GoogLeNet, MobileNet, CNN-MLP, BERT, two-level data
fusion

TMDFILE (Ensemble & Incremental Learning Classifier)
Advanced deep learning and incremental learning
Two-level data fusion (EEG + MRI — + audio + text)
94.5% on average (across five datasets)

Comprehensive modality analysis, adaptive learning, clinical general-
izability

High computational and data requirements, system complexity

High (broad clinical application with data from multiple sources)

CONCLUSION

This review systematically classified the literature from the past
decade on Al-based EEG analysis and provided comprehensive
methodological comparisons. The findings highlight that person-
alized machine learning models, supported by advanced signal
representation techniques such as Hilbert-based analytic signal
extraction and time—frequency decompositions using STFT, CWT,
and wavelet transforms, significantly improve sensitivity to in-
dividual neural dynamics. In parallel, representation learning
approaches based on autoencoders contribute to robust feature
extraction and dimensionality reduction in high-dimensional EEG
data. Moreover, advanced multichannel signal enhancement tech-
niques, particularly the Multi-Channel Wiener Filter (MWF), play
a critical role in artifact suppression, signal-to-noise ratio improve-
ment, and preservation of physiologically meaningful neural in-
formation, thereby strengthening the robustness of downstream
machine learning and deep learning models. Deep learning archi-
tectures such as CNN, LSTM, and Transformer networks demon-
strate strong capability in capturing both spatial and temporal
dependencies inherent in multichannel EEG recordings.

Beyond conventional clinical diagnosis and monitoring, EEG-
based Al systems are increasingly applied in interdisciplinary do-
mains, including emotional state recognition, human—computer
interaction, and driving safety. In this context, incremental learning
frameworks combined with multimodal data fusion show promis-
ing potential for the early detection of complex neurological dis-
orders such as Alzheimer’s disease. Looking forward, the more
systematic integration of domain adaptation and transfer learning
strategies that explicitly address inter-subject and cross-session
variability is strongly recommended. Additionally, the develop-
ment of low-latency, optimized software-hardware co-design solu-
tions remains essential for real-time EEG applications. Finally, the
adoption of ethical data practices and explainable Al frameworks
is critical to ensure the safe, transparent, and clinically reliable
translation of EEG-AI technologies into real-world healthcare sys-
tems.
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