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ABSTRACT Machine Learning (ML) is gaining attraction in medical research due to its ability to identify unnoticeable
patterns by the human eye. However, concerns about fairness in ML models, particularly performance differences across
groups, are growing. This study, therefore, focuses on evaluating the performance disparity and the role of gender-aware
approaches in ML-based disease detection. It uses the gender-aware approach and introduces its two new variants by
testing them on nine different disease datasets. Intensive experimental evaluations reveal that the detection performance
can increase up to an F1-score of 1.0, depending on the nature of the dataset at hand. On the other hand, the gender-
aware approach is successful in mitigating the performance disparity only in three out of nine cases. The variants relying
on a crossing-over fashion can capture the relationships and different patterns in some cases, but often fall behind
the gender-aware approach. This research distinguishes itself through the use of a significant number of datasets and
implemented pipelines, of which two are employed for mitigating performance disparity in disease detection for the first
time in the literature. The findings of this study, therefore, make important contributions to the field of disease detection in
terms of the aforementioned aspects.
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INTRODUCTION

Diseases are continuing to be the top global causes of human
deaths. According to a report by WHO (World Health Organiza-
tion), seven of the ten leading causes of death were noncommu-
nicable diseases, accounting for 38% of all deaths, or 68% of the
top ten causes at a global level in 2021 (W.H.O. 2024). This reveals
that there is a vital need for effective diagnosis of various diseases
globally (Ahsan et al. 2022). However, the complexity of the differ-
ent disease mechanisms and underlying symptoms of the patient
population presents solid challenges in the early diagnosis phase
and in providing effective treatments. This is because many indi-
cations and symptoms are ambiguous and can only be diagnosed
by trained health experts who are often prone to error (Ahsan
et al. 2022). For instance, the symptoms become worse and almost
unmanageable as the Alzheimer’s disease progresses (Negi et al.
2025), and this makes it hard for health workers to diagnose it.

In this context, a report by the National Academies of Science,
Engineering, and Medicine revealed that the majority of people en-
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countered at least one diagnostic mistake during their lifespan (Ball
et al. 2015). The misdiagnosis may be influenced by various factors,
like a lack of proper symptoms, which are often unnoticeable for
rare diseases, and the disease is mistakenly omitted from the con-
sideration (Ahsan et al. 2022). Note that misdiagnosis (or biased
outputs) could have severe implications, such as unequal access
to diagnosis and treatment (Lozano 2025) in the healthcare con-
text. Contrarily, early diagnosis is highly beneficial in tackling the
challenges posed by diseases (Negi et al. 2025). Such a task may
be achieved more efficiently by predicting results from the data,
which is very helpful in making decisions for the medical supervi-
sors. The predicted results may also be useful in medical research
where practitioners can get benefits for their medical trials (Sharad
et al. 2025).

As such, Machine Learning (ML) has attracted the attention of
researchers whose recent studies have demonstrated its potential
in the medical field with the use of large datasets (Straw and Wu
2022). This is because ML can learn and recognize patterns that
may not be apparent to the human eye (Islam and Khanam 2024;
Raza et al. 2024; Petersen et al. 2023) due to the aforementioned
challenges in the medical domain. Accordingly, ML techniques
can identify trends in medical data and help to develop prediction
models which are useful in increasing efficiency of the healthcare
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Figure 1 Cases of binary classification for creation of different decision boundaries. Blue circles (majority) and red crosses (minority) represent
two patient groups of interest (Petersen et al. 2023; Raza et al. 2024).

system and managing electronic data in a better way (Sharad et al.
2025). Consequently, ML can help with better in-time and correct
diagnosis of diseases and offer solutions to difficult medical prob-
lems, including the detection of Parkinson’s disease (Islam and
Khanam 2024), Psychogene Dysphonie (Singhal and Sharma 2024),
liver disease (Straw and Wu 2022), Alzheimer’s disease (Negi et al.
2025), and coronary artery disease (CAD) (Hogo 2020). Despite
the promise of ML tools, however, the fairness of ML models has
come under increased scrutiny in recent years, with respect to
the performance disparities between different groups being one
potential source of unfairness (Petersen et al. 2023). The discussion
has also reached the medical ML community, where the effects of
group underrepresentation have received much attention in recent
years.

As depicted in Figure 1, ML models are often assumed to find
an optimal decision boundary for all subgroups (case A, not prob-
lematic). However, existing research efforts often report that there
is a performance disparity between subgroups created considering
several demographic attributes, including gender (Straw and Wu
2022). In such a situation (case B), optimal decision boundaries dif-
fer between groups, and either the model or the input data are not
sufficiently expressive to capture the optimal decision boundaries
for all groups. Standard ML models or approaches often optimize
performance in the majority group (i.e., the blue circles in this case).
It is worth noting that the relationship between a group’s represen-
tation in the training dataset and the model performance for that
group is complex. Using similar amounts of data from different
groups does not ensure equal model performance across groups,
and unfairness exists even with balanced data (Meissen et al. 2024;
Klingenberg et al. 2023). Group underrepresentation, on the other
hand, does not necessarily result in poor model performance (Pe-
tersen et al. 2023). Finally, an expressive model armed with an
efficient mitigation technique can learn a decision boundary (red
dashed line in Case C) that is optimal for both groups (Petersen
et al. 2023; Raza et al. 2024).

In light of the aforementioned cases, it is clear that ML models
should address disparities by properly training the algorithms
before implementation in the healthcare sector. This is because
any bias in an arbitrary ML model affects its diagnostic accuracy
as well as the treatment recommendation given by a medical su-
pervisor (Sharad et al. 2025). Nevertheless, bias detection is fre-
quently overlooked, and this is causing to have less-than-ideal
results (Kumar and Prabha 2025). The performance disparity of-
ten exists due to the estimator (or learner) bias, and using several
data-oriented mitigation techniques does not come with guaran-
tees. As a result, improved diagnostics and mitigation remain an

open research problem in the medical field (Petersen et al. 2023).
The data-oriented solutions include using other target variables,
bias-robust learners, stratification, more samples, and additional
features. On the one hand, narrow algorithmic fairness solutions
cannot address all of these issues (Petersen et al. 2023).

All of these cases make it clear that fairness and interpretabil-
ity are as crucial as predictive accuracy when applying ML in
healthcare (Lozano 2025), and gender bias is one of the frequently
observed complications of ML models in the medical domain.
Recent research has demonstrated that ML-based methods are re-
vealing several differences in sex-based health research (Kumar
and Prabha 2025). For instance, gender plays a vital role in de-
ciding probable targets of Alzheimer’s disease (Negi et al. 2025).
The performance disparity observed in favour of males (Islam
and Khanam 2024; Singhal and Sharma 2024; Kondaka 2024) or
females (Hogo 2020; Mushta et al. 2024; Klingenberg et al. 2023)
depending on the nature of the dataset at hand. Not that many
studies operate under the assumption that balancing datasets is
sufficient to address bias, but biases can still arise at the model
level (Lozano 2025).

Building upon these findings, this study aims to inspect the
effect of the gender-aware approach in mitigating performance
disparity across male and female instances in ML-based disease de-
tection. To the best of our knowledge, it also uniquely presents and
utilizes its two variations, never before seen in existing mitigation
research. The salient contributions of this study are as follows:

• We implement four different ML pipelines to uncover the real
power of the gender-aware approach in automatic disease
detection.

• We introduce two variants of the gender-aware approach and
comparatively employ them for the first time for mitigating
performance disparity in automatic disease detection.

• We use nine different datasets to evaluate the behaviours of
pipelines under different circumstances.

• We report our findings by relying on extensive experimental
evaluations.

We believe that the contributions given above make this study dif-
ferent from the existing research effort. Please note that this study
employs crossing-over pipelines for mitigating the performance
disparity in disease detection for the first time in the literature.
As such, the findings of this study provide useful insight for re-
searchers studying automatic disease detection.
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LITERATURE REVIEW

This section presents our literature review that covers existing
studies focusing merely on fairness and bias in ML-based disease
detection. The studies that we are aware of are as follows: different
ML classifiers are used to detect Parkinson’s disease based on MRI
(Magnetic Resonance Imaging) data in (Islam and Khanam 2024).
The authors analyzed male and female brain scans separately and
reported both complete and gender-specific results, which showed
that there is a performance disparity in favor of male instances
for all brain structures, even when they balanced the instances
using a sampling method. Hence, the authors emphasized the
need for using possible mitigation techniques to remove the perfor-
mance disparity. ML is employed to detect Psychogene Dysphonie
using voice signals in (Singhal and Sharma 2024). This study
performed gender-wise analysis in disease detection by using a
hybrid algorithm (Recurrent Neural Network Bidirectional Long
Short-Term Memory - RNN_BiLSTM) and revealed that there is a
performance disparity between male and female instances. This
disparity is observed in favour of males. ML models are used to
detect liver disease with the aim of stratified sex analysis in (Straw
and Wu 2022). The authors employed their algorithms on both
sex-balanced and sex-imbalanced datasets and built their pipelines
with and without feature selection. They observed the superior-
ity of Support Vector Machine (SVM) to other ML models and
observed that females suffer from a higher false negative rate.

Various ML classifiers are used to diagnose Alzheimer’s disease
on a single dataset in (Negi et al. 2025). The authors experimented
with both non-gender-aware and gender-aware approaches and
observed that there is a performance disparity across male and
female instances. The overall best performance is provided by a
modified k-Nearest Neighbor (k-NN) classifier, which provided
higher results on male instances. Another study Hogo (2020) used
ML for the diagnosis of CAD. The authors employed a gender-
aware approach and observed that the patient’s gender affects the
structure and performance of the CAD diagnosis system. Unlike
the studies (Islam and Khanam 2024; Singhal and Sharma 2024) in
which the performance disparity is observed in favour of males, the
disparity is observed in favour of females. The use of transcribed
speech is explored for automated Alzheimer’s disease detection
in (Lozano 2025). Unlike the aforementioned studies, this study
relies on text data and uses Random Forest (RF), which is fed with
linguistic features as well as an LLM (Large Language Model).
The author inspected the bias concerning both gender and age
attributes of patients and revealed that demographic disparities
exist in both models, particularly related to age. Another difference
of this study is that it uses Reject Option Classification (ROC) as
a mitigation method that significantly improves fairness without
substantial reductions in performance. Unstructured text datasets
are similarly used in (Kumar and Prabha 2025) for examining
gender and sex disparities and suggestions offered for maximizing
technology use to improve global health outcomes and reduce
inequality.

A framework based on a Multiple Domain Adversarial Neu-
ral Network (MDANN) is proposed for mitigating performance
disparity in (Li et al. 2025). The authors used pre-trained convolu-
tional autoencoders (CAEs) to extract deep representations of brain
image data. The findings of this study show that the proposed
framework achieves the best balance in terms of accuracy for both
sex and handedness in Autism disease diagnosis. Similarly, ML
models are used to evaluate bias across race and gender in (Raza
et al. 2024). The authors detected that there is a performance dis-
parity between male and female instances in favour of females.

Convolutional Neural Network (CNN) is used to evaluate poten-
tial performance bias for age and sex on MRI data for the diagnosis
of Alzheimer’s disease (Klingenberg et al. 2023). The authors made
their evaluation on both balanced and imbalanced data and found
that the CNN performed significantly better for women than for
men. They concluded that sex differences cannot be attributed
to an imbalanced training dataset and therefore point to the im-
portance of examining and reporting classifier performance across
population subgroups to increase transparency and algorithmic
fairness. Pretrained CNNs (i.e., specifically DenseNet-121 and
ResNet-50) are used to evaluate bias and fairness in skin lesion
diagnosis in (Kondaka 2024). The findings of this study reveal
statistically significant differences in diagnostic performance be-
tween genders in favour of males. Additionally, the study found
that data augmentation improved accuracy, especially for female
skin lesions. ML is used for the diagnosis of PD by exploring
the potential imaging biomarkers in (Mushta et al. 2024). The au-
thors used Dopamine transporter scan (DATSCAN) images to feed
their learners, from which the best model was found to be Ad-
aBoost (AB). The authors also evaluated their pipeline by using
the gender-aware approach that separates the dataset by gender to
independently evaluate classification performance for male and
female participants. The results of this study again show that there
is a performance disparity across male and female instances, and
the disparity is observed in favour of female instances. Fairness of
unsupervised ML models is evaluated on three large-scale publicly
available chest X-ray datasets in (Meissen et al. 2024). The results of
this study revealed that unfairness exists even with balanced data,
and it cannot be mitigated by balanced representation alone. On
the other hand, male subjects consistently received significantly
higher scores across all datasets, even under balanced conditions.

Our review of the literature, briefly provided above, empha-
sizes that fairness and interpretability are as crucial as predictive
accuracy when applying ML in healthcare. As such, a large major-
ity of the studies research bias, especially across gender and age in
ML models. On the other hand, studies (Islam and Khanam 2024;
Singhal and Sharma 2024; Straw and Wu 2022; Negi et al. 2025)
focusing on mitigating such a disparity mostly use the gender-
aware approach. Some other ones pursue a different purpose
and focus on providing fairness metrics (e.g., sAUROC (Meissen
et al. 2024), ROC (Lozano 2025), and PPGR (Raza et al. 2024)) to
quantify the fairness of ML models in disease detection. To sum-
marize, existing studies often report bias in ML models across
demographic attributes, including gender. They often rely on the
gender-aware approach for mitigating the performance disparity
and experimenting on a single disease type.

In this study, we therefore employ the gender-aware approach
not only for a single disease type but also for nine different disease
types to provide a more general view, unlike existing research
efforts. In addition, we employ its two variants by following a
crossing-over fashion for the first time in the literature for the pur-
pose of mitigating the performance disparity in disease detection.
Our extensive results obtained comparatively revealed that the
gender-aware approach improves subgroup performance in only
three cases. Its two variants rely on crossing-over ML models;
on the other hand able to capture the relationships and different
patterns in some cases. Building upon these findings, we believe
that this study makes an important contribution to the literature
by showing the limited efficiency of both the gender-aware ap-
proach and its variants, as well as the need for more sophisticated
approaches to remove performance disparity, which is not a trivial
task.
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■ Table 1 A summarized quantitative description of the underlying datasets

# of ... Distribution of ... instances across targets
Dataset

INS F Targets Males Females male female

B

ALZ 2149 38 2 [0: 1389, 1: 760] 1088 1061 0: 714, 1: 374 0: 675, 1: 386 ✗

AND 1421 5 2 [0: 801, 1: 620] 740 681 0: 328, 1: 412 0: 473, 1: 208 ✗

ADD 2392 32 2 [0: 2268, 1: 124] 1180 1212 0: 1118, 1: 62 0: 1150, 1: 62 ✗

CDD 2206 34 2 [Yes: 1843, No: 363] 1122 1084 Yes: 914, No: 208 Yes: 929, No: 155 ✗

CKD 1659 59 2 [0: 135, 1: 1524] 855 804 0: 60, 1: 795 0: 75, 1: 729 ✗

HFD 918 19 2 [0: 410, 1: 508] 725 193 0: 267, 1: 458 0: 143, 1: 50 ✗

HRD 4240 12 2 [0: 2923, 1: 1317] 1820 2420 0: 1249, 1: 571 0: 1674, 1: 746 ✗

LCD 309 28 2 [Yes: 270, No: 39 ] 162 147 Yes: 145, No: 17 Yes: 125, No: 22 ✗

ASD 1054 33 2 [Yes: 728, No: 326] 735 319 Yes: 534, No: 201 Yes: 194, No: 125 ✗

INS and F represent the number of instances and features, respectively. The last column B stands for if the corresponding dataset is imbalanced (shown with ✗).

DATASETS

In this study, we use nine different datasets to inspect the effect of
the employed methods under different circumstances. The datasets
are briefly described as follows:

• Alzheimer’s Disease Dataset (ALZ): This dataset (El Kharoua
2024a) includes health information of 2,149 patients. It has
been made publicly available in a tabular form and includes
demographic details, lifestyle factors, medical history, clinical
measurements, cognitive and functional assessments, symp-
toms, and a diagnosis of Alzheimer’s disease.

• Anemia Dataset (AND): This dataset (Ranjan 2022) includes
five features, which are gender, hemoglobin, mean corpus-
cular hemoglobin concentration (MCHC), mean corpuscular
volume (MCV), and mean corpuscular hemoglobin (MCH). It
is created for the purpose of predicting whether a patient is
likely to suffer from anemia.

• Asthma Disease Dataset (ADD): This dataset (El Kharoua
2024b) contains health information for 2,392 patients diag-
nosed with asthma disease. It is composed of several features,
including demographic details, lifestyle factors, environmen-
tal and allergy factors, medical history, clinical measurements,
symptoms, and a diagnosis indicator.

• Celiac Disease Dataset (CDD): It is created by Wageningen
University & Research Biotechnology Department to diagnos-
tically predict whether or not a patient has Celiac disease. This
dataset (Win 2022) is comprised of several features derived
from certain diagnostic measurements.

• Chronic Kidney Disease Dataset (CKD): This
dataset (El Kharoua 2024c) contains health information
for 1,659 patients diagnosed with chronic kidney disease. It
includes features like demographic details, lifestyle factors,
medical history, clinical measurements, and medication usage,
as well as symptoms, quality of life scores, environmental
exposures, and health behaviors.

• Heart Failure Dataset (HFD): This dataset (Soriano 2021)

contains 11 features that can be used to predict a possible
heart failure, which is a common event caused by cardio-
vascular diseases. It includes several features like age, sex,
serum cholesterol, resting blood pressure, maximum heart
rate achieved, and so on.

• Hypertension Risk Dataset (HRD): The dataset (Khan 2023)
comprised of both demographic and health-related attributes
and was created for predicting the risk of hypertension. It has
a total of 13 features, which are gender, age, smoking habits
(current smoker and cigarettes per day), medication for high
blood pressure (BPMeds), presence of diabetes, total choles-
terol levels, systolic and diastolic blood pressure, body mass
index (BMI), heart rate, glucose levels, and the corresponding
hypertension risk label.

• Lung Cancer Dataset (LCD): This dataset (Bhat 2021) is created
to predict cancer risk status based on 16 different attributes. It
has a total of 284 instances (or records) and includes features
like age, sex, smoking status, existence of chest pain, and so
on.

• Autism Screening Data for Toddlers (ASD): This
dataset (Fayez 2018) is created with the help of a mo-
bile application called ASDTests to screen autism in toddlers.
It has 1,054 records, each of which has values of 17 features.

Note that a quantitative description of the datasets briefly de-
scribed above is given in Table 1. For more detailed information,
the reader is advised to refer to the respective cited references.

METHODS

In this study, we implement four different ML pipelines, which are
depicted in Figure 2, showing that all pipelines commonly involve
preprocessing, classification, and performance measurement steps.
The only difference is arising from the way of cross-validation
employment. As seen in Figure 2, the baseline pipeline simply
employs cross-validation on overall instances, while the gender-
aware pipeline divides the instances into two disjoint subsets that
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Figure 2 Flowchart of our evaluation that relies on four different pipelines.

include only female and male instances. It then employs cross-
validation on these subsets and finally reports both gender-wise
and overall performances. On the other hand, the two variants of
gender-aware pipeline simply rely on the idea of the crossing-over
technique, in which any ML model trained on male instances is
then used to predict the labels of female instances, and vice versa.
There is also a difference between the crossing-over pipelines,
considering the size of the instances used to train the model at
hand. The first variant (i.e., V1) simultaneously applies cross-
validation on both male and female instances and uses only single
training and test sets at each fold. Contrarily, the second variant
(i.e., V2) uses the complete sets of male and female instances to
make predictions on their subsets again, following the crossing-
over fashion. The following subheadings provide the details of
methods used to implement the aforementioned pipelines.

Preprocessing

This is the first step employed on our datasets. It involves the
following two data cleaning tasks (Freire et al. 2025):

• Imputing: Some datasets used in this study include missing
values. Hence, missing values are filled using a linear interpo-
lation method implemented in the Pandas (McKinney 2011)
library.

• Scaling: The feature values in each dataset are scaled and
translated into a range between 0 and 1. This task is achieved
by using MinMaxScaler implemented in sklearn (Pedregosa
et al. 2011) package.

Classification

Upon completion of the preprocessing, the datasets are used to feed
ML classifiers for binary classification. We used several classifiers,
which are briefly described as follows:

• SVM: This classifier tries to find a linear or non-linear hyper-
plane that separates classes from each other. Maximizing the
margin between the hyperplane and instances on either side
corresponds to a lower generalization error (Yang et al. 2025;
Kotsiantis et al. 2007).

• RF: This classifier is also a type of ensemble learning and
trains multiple number of decision trees on different subsets
of the data at hand. The final decision for any test instance is
then given by using majority voting among the trees (Breiman
2001).

• AB: Follows an ensemble fashion in which a meta classifier
(often selected to be a tree-based learner) is trained on the
data at first. The copies of this classifier are trained on the
same data set again, with a difference that they mainly focus
on the instances the meta classifier has difficulty in classify-
ing (Zhu et al. 2009). The final decision to classify an instance
is given by a weighted voting such that the more a classifier
provides good performance, the more it has influence on the
final decision.

• Gradient Boosting Classifier (GBC): This learner relies on mul-
tiple regression trees as an additive model that follows a stage-
wise fashion. It aims to minimize the loss (i.e., the difference
between the actual and predicted classes of the training data)
to make a better classification (Friedman 2001).

• Logistic Regression (LR): It is a statistical algorithm for trans-
forming a linear regression by a sigmoid function and decid-
ing classification by calculating the distance to the decision
boundaries it previously built between classes (Yang et al.
2025).

• Sthocasting Gradient Descent Classifier (SGD): This is actu-
ally a way of training any ML model, like SVM and LR, by
optimizing several loss functions. In other words, it tries to
minimize the loss by iteratively updating the parameters of
the model at hand (Zhang 2004).

Please note that we employ the learners briefly described above
by using their implementations in the scikit-learn Python pack-
age (Pedregosa et al. 2011). The kernel of SVM is selected to be
Radial Basis Function (RBF), while the solver and the number of
iterations (i.e., max_iteer) of LR are set to be liblinear and 1000,
respectively. The remaining ones and all settings of parameters
for other classifiers are left untouched. It is important to note that
we intentionally left almost all of the parameters at their default
values since this strategy is more appropriate than an aggressive
hyperparameter optimization when fairness is the key concern. Us-
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ing default parameter settings provides a strong and reproducible
baseline for comparison. Accordingly, any practitioner ensures
that all models and all groups are treated consistently. Otherwise,
it may become unclear if observed unfairness is due to data, model
design, or tuning choices.

Performance Measurement and Evaluation
The globally accepted way of evaluating the performance of any
ML classifier is to use precision (P), recall (R), accuracy, and /or
F1-score metrics, which are actually derived from the confusion
matrix. For a binary classification task, this matrix stores four
values, namely true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). In this study, we report our results
using True Positive Rate (TPR), True Negative Rate (TNR), and
F1-score that is calculated as follows (Chicco and Jurman 2020;
Freire et al. 2025):

F1 =
2 × P × R

P + R
(1)

where P = TP
TP+FP and R = TP

TP+FN . Note that R, also known as
sensitivity, is a synonym of TPR and stands for the proportion of
all actual positives that are classified correctly as positives. The
TNR = TN

TN+FP is, on the other hand, also known as specificity,
which measures the proportion of all actual negatives that are
classified correctly as negative (Monaghan et al. 2021). We would
also like to note that the performance measurement results are
reported by using a stratified cross-validation (Kohavi 1995; Coban
2022) strategy, which is configured to run with five folds in this
study. This means that the dataset at hand is divided into train and
test subsets five times, and the performance of the learner at hand
is measured on five disjoint subsets (i.e., training and test sets). An
average value of the five folds is reported so as to ensure that our
results are as reliable as possible.

We would like to strongly emphasize that we intentionally rely
on well-known performance metrics and report the results only
with weighted F1 score (robust across imbalanced datasets), TPR,
and TNR values to save space and reduce complexity. Even though
there exist several fairness metrics (e.g., sAUROC (Meissen et al.
2024), ROC (Lozano 2025), and PPGR (Raza et al. 2024)), they rely
on different aspects and are not accepted as benchmark methods.
Hence, we used classical performance metrics that do not harm the
reliability of our evaluation and ease the burden of using additional
metrics for possible comparative analysis in the future.

RESULTS AND DISCUSSION

In this section, we provide our experimental results and their
discussion. Using the methods introduced in Section Methods,
we performed classification experiments on our datasets (see Sec-
tion Datasets). Please note that we employed all classifiers on
all datasets by creating four pipelines, namely baseline, gender-
aware, cross-over-v1, and cross-over-v2. This yielded too many
results, making it challenging to report all in this study. Hence,
we only report the results for the best cases of pipelines for each
dataset. We report the results not only with F1-score but also with
TPR and TNR to provide a deeper insight into the performance
effect of pipelines on different instance groups for each dataset.
For example, we experimented with the aforementioned pipelines
with all classifiers on the ALZ dataset, but only reported the best
cases in which GBC is the best model to reduce complexity and
space. The results are provided in Table 2, where the best overall F1
scores for each scenario are in bold typeset. As seen in Table 2, the
best pipeline on the ALZ dataset is baseline with the best f1-score

of 0.947. On the other hand, the crossing-over approach (with
both v1 and v2) outperforms the gender-aware approach, and the
cross-over-v2 pipeline achieves the second-best f1-score of 0.942.
Inspecting the performance metric values across instance groups
also reveals that the performance of pipelines is higher for females
than for males in all cases.

On the AND dataset, baseline and gender-aware pipelines show
the same behavior with the same best f1-score of 1.0, and they
outperform the crossing-over pipelines. Interestingly, crossing-
over pipelines show different behaviours. Using v1, scores on
males are higher than the results obtained on females. The pipeline
v2, on the other hand, reverses this situation and provides a better
overall f1-score of 0.764. Baseline and gender-aware pipelines
provide perfect classification of both male and female instances. On
the ADD dataset, the behaviour of the pipelines is the same, and
they provide the same overall f1-score of 0.922. Their performances
are also the same for male and female instance groups. Unlike the
ALZ dataset, the performance values are higher than the that ones
for the females on this dataset, which shows that performance
disparity can also be observed in favor of males. On the CDD
dataset, the behaviours of the baseline and gender-aware pipelines
are the same, with an f1-score of 0.996. Similarly, two versions
of the crossing-over pipelines show the same behavior with an
f1-score of 0.994. Performance values obtained on female instances
are higher than the results obtained on males in all cases. However,
baseline and gender-aware pipelines outperform the other two
pipelines and provide perfect classification of female instances.
On the CKD dataset, the best f1-score of 0.911 is provided by
the baseline pipeline. On the other hand, the crossing-over-v2
pipeline provides the second-best f1-score of 0.908 and provides a
slightly different improvement on male instances. However, the
f1-scores are higher again on female instances compared to male
instances in all cases. On the HFD dataset, the best f1-score of
0.867 is provided by the gender-aware pipeline. The crossing-over
pipelines fall behind the baseline and gender-aware pipelines, but
v2 outperforms v1.

A closer look at the results of crossing-over pipelines shows that
these pipelines classify female instances incorrectly. Considering
the overall f1-score, it seems that the results are higher on male
instances compared to the results obtained on females. The gender-
aware pipeline mitigates performance disparity in favour of male
instances and also improves the overall f1-score from the baseline
pipeline’s f1-score of 0.864 to 0.867. On the HRD dataset, the
gender-aware pipeline again mitigates performance disparity in
favour of female instances, also by improving the overall best f1-
score of 0.900. The crossing-over pipelines fall behind the baseline
pipeline and do not help to mitigate the performance disparity.
Nevertheless, the behaviors of crossing-over pipelines are different
even though their overall f1-scores are the same (i.e., 0.892). On the
LCD dataset, the best f1-score of 0.915 is provided by the gender-
aware pipeline. On the other hand, crossing-over pipelines fall
behind the baseline pipeline. There is a performance disparity in
favour of male instances in all cases. Interestingly, the crossing-
over v2 pipeline provides a slight improvement on the TNR value
on male instances, even though it provides a lower overall f1-
score (i.e., 0.906) than the respective baseline. Finally, on the ASD
dataset, the behaviours of all pipelines are the same with a perfect
classification.

These results make it clear that the gender-aware approach im-
proves the overall f1-score effectively in only three instances. The
second version (v2) of the crossing-over approach performs as well
or better than the first version (v1). However, both crossing-over
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■ Table 2 Weighted average F1, TPR, and TNR values considering four pipelines on nine datasets across different instance groups

Baseline Gender-Aware Cross-Over (V1) Cross-Over (V2)
Data IG

BC F1 TPR TNR BC F1 TPR TNR BC F1 TPR TNR BC F1 TPR TNR

M 0.938 0.938 0.939 0.921 0.921 0.921 0.927 0.927 0.928 0.937 0.937 0.938

F 0.956 0.956 0.957 0.940 0.940 0.940 0.940 0.940 0.940 0.947 0.947 0.948ALZ

O

G
B

C

0.947 0.947 0.948

G
B

C

0.931 0.931 0.931

G
B

C

0.933 0.933 0.934

G
B

C

0.942 0.942 0.943

M 1.000 1.000 1.000 1.000 1.000 1.000 0.783 0.775 0.848 0.759 0.750 0.840

F 1.000 1.000 1.000 1.000 1.000 1.000 0.692 0.708 0.861 0.771 0.777 0.866AND

O

G
B

C

1.000 1.000 1.000
G

B
C

1.000 1.000 1.000

S
G

D

0.738 0.740 0.747

S
G

D

0.764 0.764 0.764

M 0.923 0.948 1.000 0.923 0.948 1.000 0.923 0.948 1.000 0.923 0.948 1.000

F 0.921 0.947 1.000 0.921 0.947 1.000 0.921 0.947 1.000 0.921 0.947 1.000ADD

O

LR

0.922 0.948 1.000

LR

0.922 0.948 1.000

LR

0.922 0.948 1.000

LR

0.922 0.948 1.000

M 0.992 0.992 0.993 0.992 0.992 0.993 0.992 0.992 0.993 0.992 0.992 0.993

F 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.995 0.995 0.995 0.995 0.995CDD

O

G
B

C

0.996 0.996 0.996

A
B

0.996 0.996 0.996
G

B
C

0.994 0.994 0.994

G
B

C

0.994 0.994 0.994

M 0.899 0.919 0.967 0.897 0.907 0.932 0.892 0.911 0.956 0.901 0.920 0.967

F 0.922 0.934 0.963 0.915 0.926 0.951 0.906 0.915 0.935 0.915 0.930 0.967CKD

O

G
B

C

0.911 0.927 0.965

A
B

0.906 0.917 0.942

A
B

0.899 0.913 0.945

G
B

C

0.908 0.925 0.967

M 0.851 0.849 0.846 0.868 0.870 0.876 0.808 0.797 0.808 0.827 0.818 0.828

F 0.867 0.868 0.872 0.866 0.867 0.870 0.779 0.775 0.804 0.783 0.779 0.806HFD

O

R
F

0.864 0.864 0.867

LR

0.867 0.868 0.869

LR

0.780 0.779 0.792

LR

0.787 0.787 0.799

M 0.910 0.909 0.908 0.910 0.909 0.909 0.908 0.906 0.906 0.910 0.908 0.909

F 0.881 0.881 0.880 0.886 0.886 0.885 0.870 0.871 0.877 0.866 0.868 0.873HRD

O

R
F

0.898 0.897 0.896

G
B

C

0.900 0.899 0.899

R
F

0.892 0.891 0.891

R
F

0.892 0.891 0.890

M 0.924 0.925 0.926 0.916 0.918 0.922 0.904 0.911 0.932 0.922 0.925 0.931

F 0.887 0.901 0.934 0.913 0.919 0.935 0.892 0.907 0.945 0.887 0.901 0.934LCD

O

LR

0.907 0.912 0.925

LR

0.915 0.919 0.927

LR

0.898 0.909 0.937

LR

0.906 0.912 0.928

M 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000ASD

O

G
B

C

1.000 1.000 1.000

G
B

C

1.000 1.000 1.000

G
B

C

1.000 1.000 1.000

G
B

C

1.000 1.000 1.000

IG and BC stand for instance group and the best classifiers, respectively. Values M, F, and O under column IG represent males, females, and overall (males and
females), respectively.

variants often underperform the gender-aware approach in terms
of overall f1-score. Despite this, the crossing-over approach shows
advantages in specific cases. For example, both crossing-over vari-
ants outperform the gender-aware approach on the ALZ dataset.
On the CDD dataset, they match the gender-aware approach’s
performance on male instances. On the LCD dataset, both variants
provide better TNR values across all instances compared to the
baseline and gender-aware pipelines. These findings emphasize
that pipeline performance is dataset-dependent. The gender-aware

approach can mitigate performance disparities, while the crossing-
over approach, particularly v2, can enhance TNR values. Perfor-
mance disparities favoring males are seen in three datasets (i.e.,
ADD, HRD, and LCD), while disparities favoring females are seen
in four datasets (i.e., ALZ, CDD, CKD, and HFD). No significant
performance disparity between genders is observed only in two
datasets (i.e., AND and ASD).

A closer look at the confusion matrices makes it clearer to easily
observe the changes in values of both correctly and incorrectly
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(a) Dataset: HFD | Pipeline: Baseline (b) Dataset: HFD | Pipeline: Gender-Aware

(c) Dataset: HRD | Pipeline: Baseline (d) Dataset: HRD | Pipeline: Gender-Aware

(e) Dataset: LCD | Pipeline: Baseline (f) Dataset: LCD | Pipeline: Gender-Aware

Figure 3 Confusion matrices of different instance groups (i.e., male, female, and overall) for three cases in which the gender-aware pipeline outperforms the baseline pipeline
on HFD, HRD, and LCD datasets (see Table 2).

classified instances. As seen from the confusion matrices depicted
in Figure 3, the gender-aware pipeline only improves results in
favour of both male and female instances on the HRD dataset.
It improves the overall f1-score on HFD and LCD datasets, but
causes a slightly different decrease in male and female instances,
respectively. Table 3 provides the summarized view of Figure 3
with respect to the total number of correctly classified instances
(CCIs) and incorrectly classified instances (ICIs). As seen in Table 3,
the total number of ICIs on female, male, and entire instances is
reduced by 4 (i.e., from 29 to 25), increased by 1 (i.e., from 95 to
96), and reduced by 3 (i.e., from 124 to 121), respectively, on the
HFD dataset by using the gender-aware pipeline. The number of
CCIs increased by 4 (i.e., from 164 to 168) on female instances and
3 (i.e., from 194 to 797) on overall instances, while it decreased by
1 (i.e., from 630 to 629) on male instances. On the HRD dataset,
the number of CCIs is increased by 1 (i.e., from 2201 to 2202), 9
(i.e., from 1604 to 1613), and 10 (i.e., from 3805 to 3815) for female,
male, and entire instances, respectively. This paved the way to
decrease the number of ICIs by 1 (i.e., from 219 to 218), 9 (i.e., from
216 to 207), and 10 (i.e., from 435 to 425) on the same instance
groups, respectively. Finally, on the LCD dataset, the number of
CCIs is increased on male instances by 3 (i.e., from 146 to 149)
while decreased by 1 (i.e., from 136 to 135) on female instances.
This situation resulted in a total of 2 (i.e., from 282 to 284) increase
in the number of CCIs on the entire dataset.

As such, the findings reveal that the dataset-specific perfor-
mance variations likely stem from differences in data characteris-
tics, feature distributions, and the presence of biases. The gender-
aware approach’s success in mitigating disparities suggests that
it effectively addresses gender-related biases present in the data
or model. The crossing-over approach’s occasional advantages
indicate that it might be capturing different patterns or relation-

ships within the data, potentially related to how gender interacts
with other features. In other words, the feature interactions are
very close across male and female instances, and this explains why
any model trained on males improves TNR values on females. On
the other hand, the varying performance of crossing-over vari-
ants could be due to differences in feature interactions in different
datasets. Complications arise from the potential for overfitting to
specific datasets and the difficulty in generalizing results to new
data.

All of the aforementioned implications show that the role of
gender-aware approaches is limited in mitigating the performance
disparity. Unfortunately, using similar amounts of data from dif-
ferent groups does not ensure equal model performance across
groups, and unfairness exists even with balanced data. This obser-
vation shows that equal representation of subgroups is a necessary
but not sufficient condition for fairness. The performance dis-
parity may still arise from physiological differences, feature-label
mismatches, model biases, and structural inequities in healthcare
data. As such, ML-based disease detection must address how data
is modeled and evaluated, not just how much data is collected.
Sample size (i.e., for both the overall dataset and subgroups) is
another case that may directly affect the performance since the gen-
eralization ability of ML models often increases on large datasets.
However, the results of both this study and existing research efforts
reveal that the performance disparity persists on large datasets
as well. This case is also showing that mitigating performance
disparity in disease detection cannot be solved solely by using
data-oriented approaches but also requires developing fairness-
aware modeling strategies.

This analysis does not delve into the specific features or biases
driving these results, which limits a deeper understanding. Hence,
further investigation is necessary to fully understand the implica-
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■ Table 3 Total number of CCIs and ICIs across different instance groups of three datasets on which the gender-aware pipeline outperforms
the baseline pipeline

Dataset | Instance Groups (Male →, Female → F, and Overall → O)

HFD (see Figures 3a, 3b) HRD (see Figures 3c, 3d) LCD (see Figures 3e and 3f)Pipeline # of ...

F M O F M O F M O

Baseline
CCIs 164 630 794 2201 1604 3805 136 146 282

ICIs 29 95 124 219 216 435 11 16 27

Gender-Aware
CCIs 168 629 797 2202 1613 3815 135 149 284

ICIs 25 96 121 218 207 425 12 13 25
CCI and ICI stand for the number of correctly and incorrectly classified instances, respectively. The values are extracted from the confusion matrices of Figure 3.

tions of these findings and develop more effective and equitable
ML systems. A more detailed feature analysis or an efficient fea-
ture selector may be used to mitigate the performance disparity
as much as possible. Note that this is not a trivial task, and a
large majority of existing research efforts rely on the gender-aware
approach whose success is shown to be limited in this study. This
study, therefore, strongly suggests understanding the underly-
ing causes of performance disparities, especially concerning the
feature correlations across instance groups, and using robust ML
models in mitigating performance disparities.

CONCLUSION

In this study, we studied the problem of automatic disease detec-
tion using classical ML techniques. We aim to inspect the effect of
gender-aware and crossing-over approaches in the mitigation of
performance disparity, mostly observed between male and female
instances in disease detection. For this purpose, we intentionally
used nine different disease datasets to provide a more general view.
One interesting outcome of this study is that the performance dis-
parity can also be observed in favour of male instances in disease
detection. On the other hand, the gender-aware approach helps to
efficiently mitigate the performance disparity only in three cases,
and therefore, its success is limited. Crossing-over approach, on
the other hand able to capture different patterns and relationships
within data, again with a limited capability. Hence, we conclude
that there is still an open room for mitigating the performance
disparity, which is not a trivial task in automatic disease detec-
tion. Further investigation is also necessary to fully understand
the implications of these findings and develop more effective and
equitable ML systems.

As future work, we are planning to conduct further research on
the mitigation of the performance disparity. For this purpose, we
will similarly employ several well-known deep learners to inspect
if the performance disparity still exists when traditional learners
are replaced with deep learners. Providing an intense effort to run
deep learners on 1D patient records will be another future direction
of this study. Another direction will be making an effort to find the
fairest ML models in general by evaluating several well-known
fairness metrics.
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