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ABSTRACT As a strategic global crop, maize productivity is directly threatened by leaf diseases such as Southern Leaf Blight and
Gray Leaf Spot, making early and accurate detection crucial for food security. Artificial intelligence, particularly deep learning, provides a
powerful solution for the automated classification of plant diseases from images. This study developed an intelligent system to address this
challenge, utilizing the publicly available PlantVillage dataset to evaluate five leading Convolutional Neural Network (CNN) architectures:
DenseNet121, InceptionV3, MobileNetV2, ResNet-50, and VGG16. The models were optimized with established techniques, including
transfer learning, data augmentation, and hyper-parameter tuning, while a Soft Voting Ensemble strategy was used to enhance combined
performance. Evaluation across multiple metrics showed that InceptionV3 achieved the highest test accuracy at 94.47%. However,
MobileNetV2 demonstrated the strongest performance across all metrics with a 95% cumulative accuracy and proved highly efficient,
making it ideal for deployment on mobile devices. These findings confirm the significant potential of deep learning for building cost-effective
and efficient diagnostic systems in agriculture, ultimately contributing to the reduction of crop losses and the promotion of sustainable
farming practices.
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INTRODUCTION

Maize is a major crop important to the global economy, being
the most produced and consumed cereal in the word (Willer et al.
2024a). It has a multitude of essential functions: food production
for human consumption, livestock production for animal feed,
food industry, and industrial products like ethanol, oils, and starch
and thus has considerable relevance in the context of food security
and energy supply (Ranum et al. 2014; Willer et al. 2024b). Latest
2023 FAO data indicate global production of maize at over 1.2
billion tons a year, with production on about 200 million hectares
(Committee et al. 2023; Fang and Katchova 2023). The US is the
leading maize producing country, producing over 350 million tons
annually, making 30% of global production. Major maize pro-
duction states are Iowa and Nebraska, Illinois, Minnesota, and
Indiana. China is the second leading supplier of maize at roughly
270 million tons, followed by Brazil at about 125 million tons, while
Argentina, India ,and Ukraine are also major contributors (Philpott
2020; Demanyuk et al. 2023; Pignati 2018).

Despite this substantial production volume, maize remains vul-
nerable to several severe plant diseases affecting leaves, stalks,
and roots, which lead to significant yield and quality deteriora-
tion. The most notable diseases include: Gray Leaf Spot, Northern
Leaf Blight, Common Rust, Powdery Mildew, and Stalk and Root
Rot. These diseases cause enormous economic losses exceeding 10
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billion US dollars annually on a global scale (Bickel and Koehler
2021; Dinh and Joyce 2007). Studies indicate that losses can reach
up to 60% in severely infected regions, especially under humid
and warm climatic conditions that facilitate the spread of fungal
and bacterial infections (Teixeira et al. 2021a,b). Early detection
of maize leaf diseases is essential to limit the spread of infections
and preserve crop yield. However, traditional manual inspection
requires agricultural expertise, is costly, and often lacks precision.
For these reasons, recent scientific research has increasingly re-
lied on artificial intelligence (AI) and deep learning techniques
for plant disease diagnosis from images (Mahlein 2016; Kamilaris
and Prenafeta-Boldú 2018; Pacal 2025).Among these techniques,
convolutional neural networks (CNNs) have proven to be particu-
larly effective. CNNs are widely used in image classification and
have demonstrated high accuracy in recognizing complex visual
patterns (Sladojevic et al. 2016; Ferentinos 2018).

The advent of artificial intelligence (AI), and more specifically
its sophisticated subfields of machine learning (ML) (Cakmak and
Pacal 2025; Cakmak et al. 2024) and deep learning (DL) (Pacal
2025), has ignited a foundational transformation, redefining the
operational landscape across a multitude of global sectors. This
technological revolution is profoundly demonstrated in healthcare,
where AI has revolutionized diagnostic medicine by enhancing the
interpretation of medical imagery. Its applications are extensive,
powering breakthroughs in oncology through the early identifi-
cation of brain tumors (Pacal et al. 2025; İnce et al. 2025; Bayram
et al. 2025), pulmonary nodules (Ozdemir et al. 2025), and breast
cancer (Pacal and Attallah 2025), while also advancing specialized
fields like dental diagnostics (Lubbad et al. 2024b; Kurtulus et al.
2024) and urological pathology (Lubbad et al. 2024a). In a paral-
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lel trend, this same technological momentum is spearheading a
movement towards a more sustainable, efficient, and data-driven
agricultural industry. AI is becoming pivotal to modern farm-
ing by enabling critical functions such as the early diagnosis of
plant ailments via leaf image analysis (Zeynalov et al. 2025) and
the accurate forecasting of crop yields using data from satellites
and drones (Chouhan et al. 2024). Furthermore, it powers the de-
ployment of intelligent robotic systems for highly targeted weed
elimination (Goyal et al. 2025; Sathya Priya et al. 2025) and un-
derpins precision agriculture, where automated systems adjust
irrigation and fertilization in real-time according to immediate
soil and crop conditions, thereby optimizing resource manage-
ment and promoting sustainability (Maurya et al. 2025; Singh and
Sharma 2025; Surendran et al. 2024; Jaya Krishna et al. 2025). In this
project, the "Corn Leaf Disease" dataset was utilized to train and
test five of the most prominent CNN models for maize leaf disease
classification, namely: DenseNet121, InceptionV3, MobileNetV2,
ResNet50, and VGG16. The performance of these models was
evaluated using four primary metrics: accuracy, recall, precision,
and F1-score (Dong et al. 2023; Brahimi et al. 2024).

Despite the considerable potential of deep learning for plant dis-
ease classification, research specifically targeting the identification
of corn leaf diseases using convolutional neural network (CNN)
methodologies remains limited (Rui et al. 2022). Among the early
notable contributions, Priyadharshini et al. applied a modified
LeNet architecture to the PlantVillage dataset, successfully classify-
ing four corn disease categories with a high accuracy rate of 97.89%
(Zhang et al. 2018). Complementing this, Zhang et al. explored the
classification of eight distinct corn diseases by fine-tuning hyper-
parameters within the GoogleNet and Cifar10 frameworks, laying
foundational work in this domain (Ahila Priyadharshini et al. 2019).

Further advancing this field, Wang et al. employed customized
hyperparameter optimization on the ResNet-50 model, attaining
an impressive classification accuracy of 98.52% across five corn
disease classes (Waheed et al. 2020). In a related study, Waheed et al.
focused on DenseNet models optimized through hyperparameter
tuning to distinguish four corn diseases. While their DenseNet-
based approach achieved slightly lower accuracy (98.06%) com-
pared to the EfficientNet-B0 model, it notably reduced the model
size and parameter count, highlighting an effective trade-off be-
tween performance and computational efficiency (Chen et al. 2020).

Addressing transfer learning strategies, Chen et al. proposed
a hybrid model combining pre-trained ImageNet weights within
VGGNet and Inception modules. Their model, termed INC-VGGN,
achieved a minimum validation accuracy of 91.83% when tested on
corn images from the PlantVillage dataset, illustrating the promise
of integrated architectures (Meng et al. 2020). Recognizing the
challenges inherent in real-world deployment, Zeng et al. intro-
duced LDSNet, a highly lightweight CNN designed specifically for
corn disease diagnosis under complex backgrounds and dilation
issues. This model attained a test accuracy of 95.4%, demonstrating
practical applicability in field conditions (Pacal et al. 2024).

MATERIALS AND METHODS

Dataset
In this research, five of the leading Convolutional Neural Network
(CNN) architectures were used. The PlantVillage is one of the most
significant and well-known open-source datasets in the context of
plant disease diagnosis based on digital images. The PlantVillage
dataset was created as part of a research effort designed to support
farmers and researchers, with a large collection of high-quality
images, all annotated with the assistance of scholars in botany

and plant pathology. The PlantVillage dataset contains images of
leaves spanning several different crops, such as tomato, potato,
maize, grapevine and many more, as well as a wide range of plant
diseases (Hughes et al. 2015). For this study, only images of maize
leaves were used from the PlantVillage database because the focus
was on diagnosing and ultimately classifying diseases associated
with this important crop. The images were further divided into
four main categories leading to healthy maize leaves, and leaves
afflicted by Gray Leaf Spot, Common Rust and Northern Leaf
Blight. The dataset was chosen based on the quality of the images
and number of distinct disease cases that facilitate effective training
on deep learning model and advance classification accuracy. Table
1 details the composition of the dataset used in this study, which
was divided into training, validation, and testing sets to ensure
comprehensive model evaluation and to prevent data leakage
during the learning process. The figure 1 illustrates a number of
selected samples for each category from the utilized dataset.

■ Table 1 Distribution of Images for Training, Testing, and
Validation

Subset Number of Images Percentage (%)

Train 2,696 70

Test 579 15

Validation 577 15

Total 3,852 100

Figure 1 Visual Examples of Different Corn Leaf Conditions

Deep Learning Architectures
Machine learning has revolutionized technological advancement
and human development, becoming a major driving force behind
many modern applications such as improving search engine capa-
bilities, monitoring user-generated content on social media, and
enabling personalized recommendation systems in e-commerce.
With rapid technological progress, machine learning has become
an integral part of our daily lives, manifesting in intelligent tech-
nologies and advanced systems featuring capabilities like visual
object detection, speech recognition, and dynamic content adapta-
tion in digital environments (Lecun et al. 2015).The rapid progress
in artificial intelligence is largely attributed to the development of
deep learning, a specialized branch of machine learning that relies
on multilayered, complex neural networks to extract nonlinear
and intricate representations from large datasets. These models en-
able the identification of fine-grained features through hierarchical
structures and are trained using the backpropagation algorithm.
Deep learning has demonstrated exceptional success across many
domains such as image and video analysis, audio processing, and
natural language understanding. Convolutional Neural Networks
(CNNs) excel in handling spatial data, while Recurrent Neural
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Networks (RNNs) are more suitable for temporal or sequential
data like speech and text (Karaman et al. 2023; Pacal et al. 2022).

Although Geoffrey Hinton laid the theoretical foundations of
deep learning in 2006, widespread adoption of this technology
surged after deep models significantly outperformed traditional
algorithms in the ImageNet Large Scale Visual Recognition Chal-
lenge. Since then, deep learning has consistently achieved state-
of-the-art results across a wide array of applications including pat-
tern recognition, classification, prediction, drug discovery, signal
analysis, finance, healthcare, and defense, making it the leading
paradigm in AI research and practical applications alike (Pacal
2024).

The Used Algorithms

In this study, five of the most prominent Convolutional Neural
Network (CNN) architectures were utilized, each renowned for its
high efficiency and foundational role in image classification tasks.
These models are particularly well-suited for this project due to
their proven success in domains requiring nuanced visual analysis,
such as medical imaging and precision agriculture. Their selection
was based not only on their widespread popularity in recent aca-
demic research but also on their validated ability to extract deep,
hierarchical features from complex images with remarkable accu-
racy and efficiency. By leveraging these powerful architectures,
which have set benchmarks on large-scale datasets, this work aims
to build upon their established feature extraction capabilities to
achieve robust classification of maize leaf diseases.

The VGG16 model, developed at the University of Oxford by
Simonyan and Zisserman (Pacal and Attallah 2025), is considered
a classical and highly influential architecture in the field of com-
puter vision. Its defining characteristic is a simple yet profound
design homogeneity: it is constructed by stacking multiple con-
volutional layers that exclusively use small (3×3) kernels. This
strategy demonstrated that a significant increase in network depth,
rather than the use of larger, more complex filters, was a key to
improving performance. These convolutional blocks are system-
atically followed by max-pooling layers, which reduce the spatial
dimensions of the feature maps, thereby decreasing computational
load and creating invariance to the position of features. Despite
its structural elegance, VGG16 is a very large model containing
approximately 138 million parameters, the majority of which are in
its final fully connected layers. This large capacity allows it to learn
rich representations but also makes it computationally intensive
and prone to overfitting, establishing it as a critical benchmark for
both performance and resource management in deep learning (Si-
monyan and Zisserman 2014). The structural layout of the VGG16
model is illustrated in Figure 2.

ResNet (Residual Network), developed by the Microsoft Re-
search team led by He et al., is a revolutionary architecture that
won the ILSVRC 2015 competition and fundamentally changed
the landscape of deep learning (He et al. 2016a,b). Its primary moti-
vation was to solve the "degradation" problem, a counter-intuitive
phenomenon where adding more layers to a deep network would
cause its accuracy to saturate and then rapidly decline. ResNet
masterfully addresses this challenge with the ingenious concept
of "residual connections," also known as "skip connections." This
structure allows the input of a layer block to be added directly
to its output, effectively creating a shortcut. By doing this, the
network is reframed to learn the residual mapping rather than the
entire underlying transformation. If a certain block is not useful,
the network can easily learn to make the residual zero, essentially
"skipping" the block by turning it into an identity mapping, thus

Figure 2 VGG16 Architecture Used for Corn Leaf Disease
Classification

preventing performance loss.
The ResNet-50 model, used in this research, is a 50-layer ver-

sion of the ResNet architecture. It uses an even more efficient
"bottleneck" structure in its residual block, applying 1x1, 3x3, and
another 1x1 convolutional filters in the residual block to compress
then provide dimension back. There is sufficient depth for good
feature extraction while reducing the parameter count to approxi-
mately 25 million, which is considerably lower than earlier models
like VGG16. Because the ResNet architecture is very successful
at solving the degradation problem, ResNet-50 enables training
of much deeper networks. It also serves as a baseline model that
provides state-of-the-art accuracy and significant computational
cost savings during training and inference for applicable computer
vision tasks. The ResNet-50 architecture is shown as Figure 3.

Figure 3 Block Diagram of the ResNet-50 Processing Pipeline

DenseNet121, introduced by Huang et al. (Huang et al. 2017a,b;
Kaur et al. 2024), represents a significant evolution in network ar-
chitecture designed to maximize information flow between layers.
The model is built upon the core concept of "dense connectivity," a
powerful alternative to the residual connections found in ResNet.
Instead of summing features, DenseNet concatenates them. In this
paradigm, each layer receives the feature maps from all preceding
layers as its input, creating a direct and deep channel for infor-
mation transfer. This architecture ensures that all features, from
the earliest low-level ones to more complex high-level ones, are
accessible throughout the network.

This dense connectivity yields several critical advantages.
Firstly, it strongly encourages feature reuse, which makes the
model highly parameter-efficient; since each layer has access to a
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"collective knowledge" of all prior features, it only needs to learn
a small number of new feature maps. Secondly, this enhanced
information flow significantly alleviates the vanishing gradient
problem, as gradients can propagate more directly to earlier layers
during training. Consequently, DenseNets are not only easier to
train but also achieve state-of-the-art performance with consider-
ably fewer parameters compared to models of similar depth. The
fundamental building block of this efficient architecture, the dense
block, is illustrated in Figure 4.

Figure 4 Schematic Diagram of a Dense Block and its Transition
Layer

The InceptionV3 model, developed by Szegedy et al. at Google,
is a highly influential architecture and a significant iteration within
the GoogLeNet family (Szegedy et al. 2016a,b). It was designed
to tackle the dual challenges of improving classification accuracy
while drastically reducing the computational burden of very deep
networks. The model’s ingenuity lies in its core component, the "In-
ception Module," which employs a "split, transform, merge" strat-
egy. Instead of choosing a single convolution kernel size for a layer,
an Inception module performs multiple convolution operations
with different kernel sizes (e.g., 1x1, 3x3, 5x5) and a max-pooling
operation in parallel within the same block. This allows the net-
work to capture visual features at multiple scales simultaneously,
from fine-grained details to more abstract, larger patterns.

A key to its computational efficiency is the extensive use of
1x1 convolutions as bottleneck layers to reduce the feature map
dimensions before the more expensive 3x3 and 5x5 convolutions
are applied. InceptionV3 further refines this concept by factorizing
larger convolutions into smaller, stacked ones (e.g., replacing a
5x5 filter with two consecutive 3x3 filters), which reduces parame-
ters and increases non-linearity. The outputs from these parallel
paths are then concatenated into a single, rich feature map. This
sophisticated design enables InceptionV3 to build a deep and wide
network with high efficiency. The intricate parallel structure of the
Inception module, which is fundamental to the model’s success, is
detailed in Figure 5.

MobileNetV2, developed by Google, was purposefully engi-
neered to deliver high efficiency for platforms with limited com-
putational and power resources, such as smartphones, drones, and
IoT devices (Sandler et al. 2018a,b). Its architecture is designed
to minimize model size and computational cost with minimal im-
pact on accuracy, relying on two innovative core concepts. The
first is the foundational technique of "Depthwise Separable Con-
volutions," which replaces standard convolutions by splitting the
process into two stages: a depthwise convolution that applies a
single filter to each input channel for spatial filtering, followed by a
pointwise convolution (a 1x1 filter) to combine the channel outputs.
This factorization dramatically reduces the number of parameters
and the computational load. The second and primary innova-

Figure 5 Structural Flowchart of the InceptionV3 Transfer
Learning Model

tion in MobileNetV2 is the "Inverted Residual" block. Contrary
to traditional residual blocks that have a wide-to-narrow-to-wide
structure, the inverted residual block starts with a narrow, low-
dimensional input, expands it to a high-dimensional space, applies
the efficient depthwise convolution, and then projects it back to
a narrow representation. The skip connection links the narrow
bottleneck layers, which improves gradient flow and allows for the
construction of deeper, more effective networks. This combination
of techniques makes MobileNetV2 an ideal solution for real-world
applications like smart agriculture, where it can perform tasks such
as on-the-spot disease detection on a mobile device or image pro-
cessing on an autonomous drone, perfectly balancing performance
with the constraints of on-device deployment.

RESULTS AND DISCUSSION

Experimental Design
The experiments conducted in this study were executed on a sys-
tem running Windows 11, equipped with an Intel Core i7 processor,
32 GB of DDR5 RAM, and an NVIDIA GeForce RTX 4060 Laptop
GPU. All models were developed using the PyTorch framework,
leveraging NVIDIA’s CUDA technology for accelerated compu-
tation. Training and evaluation of the models were performed
within a unified experimental environment, utilizing identical sets
of hyperparameters to ensure consistency and enable a rigorous,
systematic comparison among the models.

Performance Metrics
The development of robust intelligent systems for modern agricul-
tural applications hinges on the rigorous assessment of machine
learning models. To this end, a comprehensive performance bench-
mark was conducted to determine the most effective architecture
for classifying diseases affecting corn leaves. This study lever-
aged the well-known PlantVillage dataset to train and validate
five of the most influential and powerful convolutional neural
network (CNN) architectures: VGG16, ResNet-50, DenseNet121,
InceptionV3, and MobileNetV2. The objective was to systemati-
cally evaluate these established models in a specific, high-impact
agricultural context, thereby providing clear insights into their
practical effectiveness.

To ensure a direct and unbiased comparison, a controlled ex-
perimental environment was established where all five models
were trained under identical conditions, using the same dataset
partitions and hyperparameters. The subsequent evaluation was
based on a suite of standard quantitative metrics to holistically
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measure performance. This included Accuracy, which provides a
top-level view of the overall percentage of correct classifications.
To gain deeper insight, Precision was used to measure the relia-
bility of positive predictions, while Recall assessed the model’s
ability to identify all true positive cases of a given disease. Finally,
the F1-Score was employed to provide a balanced assessment by
calculating the harmonic mean of precision and recall, a partic-
ularly crucial metric when dealing with potentially imbalanced
class distributions.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 = 2 × Precision × Recall
Precision + Recall

(4)

Results
The results demonstrated that the DenseNet121 model delivered
excellent performance compared to the other models, achieving a
test accuracy of 96.02%, precision of 95.67%, recall of 95.90%, and
an F1-score of 95.78%. This performance reflects DenseNet121’s
ability to leverage dense connectivity between layers, resulting in
effective and accurate discrimination among the disease classes.
In second place was the InceptionV3 model, which attained a test
accuracy of 94.47%, precision of 93.50%, recall of 93.18%, and an F1-
score of 93.33%, highlighting its high efficiency in analyzing multi-
scale features within the images. The ResNet-50 model achieved a
test accuracy of 90.85%, while the VGG16 model showed relatively
lower performance with an accuracy of 89.98%.MobileNetV2, de-
spite having fewer parameters, showed competitive results with
an accuracy of 92.10%, making it suitable for applications requir-
ing speed and resource efficiency, such as deployment on mobile
devices. The following table (Table 2) summarizes the comparative
performance of the models used in this study:

■ Table 2 Performance Comparison of Deep Learning Models

Model Accuracy Precision Recall F1-Score

DenseNet121 96.02% 95.67% 95.90% 95.78%

InceptionV3 94.47% 93.50% 93.18% 93.33%

MobileNetV2 92.10% 91.23% 91.45% 91.34%

ResNet-50 90.85% 89.88% 89.30% 89.59%

VGG16 89.98% 88.70% 88.95% 88.82%

Figure 6 displays the confusion matrix for the DenseNet121
model, which demonstrated the best performance among all tested
models with an accuracy of 96.02%. This visualization provides a
detailed breakdown of the model’s classification results, showing
the distribution of correct and incorrect predictions for each class.
Analyzing the confusion matrix in Figure 6 allows for a deeper
understanding of the specific strengths and weaknesses of the
DenseNet121 model’s predictive capabilities.

Figure 6 Confusion Matrix of the DenseNet121 Model

To further analyze the performance of the top-performing
DenseNet121 model, a detailed classification report is presented
in Table 3. The table shows the precision, recall, and F1-score for
each individual class: Cercospora/Gray Leaf Spot, Common Rust,
Northern Leaf Blight, and Healthy. The model demonstrates ex-
ceptional performance in identifying ’Healthy’ leaves, achieving
a perfect recall of 1.00 and an F1-score of 0.98, which indicates
that no healthy leaves were misclassified. Similarly, the ’Common
Rust’ class is identified with high confidence, posting an F1-score
of 0.96. The most challenging category for the model appears to
be ’Cercospora/Gray Leaf Spot,’ with an F1-score of 0.78. Overall,
the weighted average F1-score of 0.92 confirms the model’s robust
and effective classification capability across the different corn leaf
diseases.

■ Table 3 Detailed Classification Report for the DenseNet121
Model

Class Precision Recall F1-Score Support

Gray Leaf Spot 0.83 0.74 0.78 72

Common Rust 0.98 0.95 0.96 182

Northern Leaf Blight 0.84 0.88 0.86 150

Healthy 0.97 1.00 0.98 175

Weighted Avg 0.92 0.92 0.92 579

Accuracy 0.92 579

Discussion
The results of this study highlight the effectiveness of deep learn-
ing models in accurately classifying corn leaf diseases, confirming
the significant role of artificial intelligence in supporting smart agri-
culture and automating plant disease diagnosis. The DenseNet121
model outperformed the other models, achieving an accuracy of
96.02% and an F1-score of 95.78%, reflecting an excellent balance
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between detection rate and error reduction. This superior perfor-
mance is attributed to the DenseNet architecture, which relies on
dense connections that enhance feature reuse and facilitate learn-
ing of precise representations of disease patterns. The following
table summarizes the performance of the five models used in this
study:

The second-best performing model was InceptionV3, which
achieved an accuracy of 94.47% and an F1-Score of 93.33%. This
strong performance can be attributed to its multi-scale architec-
tural design, enabling it to extract visual features at various levels.
However, its relatively high computational resource consumption
may limit its suitability for deployment in resource-constrained
environments. MobileNetV2 demonstrated good performance
with an accuracy of 92.10% and an F1-Score of 91.34%. Due to
its lightweight architecture and efficient inference capabilities, it
is considered a suitable choice for mobile and embedded appli-
cations, although this comes at the cost of somewhat reduced
accuracy compared to larger models.

ResNet-50 achieved a moderate performance, with an accuracy
of 90.85% and an F1-Score of 89.59%, indicating a fair ability to
discriminate between classes. Meanwhile, VGG16 ranked low-
est in performance, with an accuracy of 89.98% and an F1-Score
of 88.82%, which aligns with its simpler architecture lacking ad-
vanced techniques such as residual connections or multi-scale
feature extraction. These results suggest that selecting an appro-
priate model should not rely solely on accuracy metrics but also
consider factors such as model size, inference speed, and deploy-
ment efficiency in real-world settings, such as agricultural fields
or mobile applications. For future work, it is recommended to
expand the study by incorporating data from real field environ-
ments and diverse imaging conditions (e.g., varying lighting and
backgrounds). Additionally, integrating Explainable AI techniques
would enhance model transparency and build user trust in model
decisions. Evaluating the model across multiple corn varieties and
geographic regions is also advised to improve generalizability in
broader agricultural contexts.

CONCLUSION

This study concluded that deep learning–based models, particu-
larly the proposed hybrid model, serve as effective and accurate
tools for classifying corn leaf diseases from images. The hybrid
model demonstrated superior performance compared to conven-
tional models, underscoring the importance of designing network
architectures that combine depth with dense internal connections
to extract fine-grained features. The results also highlighted that
balancing accuracy with computational efficiency is a critical factor
when selecting an optimal model for smart agriculture applica-
tions, especially in resource-constrained environments. The study
affirms that integrating artificial intelligence techniques into the
agricultural sector represents a pivotal step towards the digital
transformation of plant disease management, contributing to im-
proved crop quality and enhanced early response to disease chal-
lenges. Accordingly, it is recommended to continue developing
these models and expanding their testing to encompass real-world
scenarios and varying imaging conditions, with an emphasis on
adopting explainable AI tools to increase trustworthiness and fa-
cilitate adoption by agricultural practitioners.
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