Chaos Annihilation-Based on Genetic Algorithms in a Non-smooth Air-gap Permanent Magnet Synchronous Motor Embedded in the Microcontroller
PDF File

Keywords

Non-smooth-air-gap
Permanent magnet synchronous motor
Microcontroller execution
Annihilation of chaos
Genetic algorithms

How to Cite

Chaos Annihilation-Based on Genetic Algorithms in a Non-smooth Air-gap Permanent Magnet Synchronous Motor Embedded in the Microcontroller. (2025). ADBA Computer Science, 2(2), 30-35. https://doi.org/10.69882/adba.cs.2025071

Abstract

This paper is devoted to the dynamical probing, microcontroller execution, and chaos annihilation based on genetic algorithms (GAs) in a non-smooth air-gap permanent magnet synchronous motor (NSAGPMSM) without external disturbances. The numerical simulations of NSAGPMSM in the absence of external disturbances reveal the existence of two different shapes of chaotic characteristics, reverse period doubling and periodic characteristics. The dynamical characteristics are certified by the microcontroller execution of NSAGPMSM in the absence of external disturbances. By optimizing the parameters of NSAGPMSM in the absence of external disturbances, thanks to the convergence of the objective function and its convergence rate, it is proven that GAs is effective in optimizing system parameters, leading to annihilation of chaos in the system to one of its three steady states.

PDF File

References

Ananthamoorthy, N. P. and K. Baskaran, 2015. High performance hybrid fuzzy PID controller for permanent magnet synchronous motor drive with minimum rule base. Journal of Vibration and Control, 21: 181.

Caron, J. P. and J. P. Hautier, 1995. Modélisation et commande de la machine asynchrone, volume 10. Technip, Paris.

Chan, C. C. and K. T. Chau, 1997. An overview of power electronics in electric vehicles. IEEE Transactions on Industrial Electronics, 44: 3.

Cvetkovski, G. and L. Petkovska, 2016. Multi-objective optimal design of permanent magnet synchronous motor. In IEEE International Power Electronics and Motion Control Conference, p. 605.

Do, T. D., E. K. Kim, J. W. Jung, V. Q. Leu, and H. H. Choi, 2014a. Adaptive PID speed control design for permanent magnet synchronous motor drives. IEEE Transactions on Power Electronics, 30: 900.

Do, T. D., E. K. Kim, J. W. Jung, V. Q. Leu, and H. H. Choi, 2014b. Adaptive PID speed control design for permanent magnet synchronous motor drives. IEEE Transactions on Power Electronics, 30: 900.

Du-Qu, W. and L. Xiao-Shu, 2008. Passive adaptive control of chaos in synchronous reluctance motor. Chinese Physics, 17: 92.

Grellet, G. and G. Clerc, 1997. Electric actuators. Eyrolles Editions.

Iqbal, A. and G. K. Singh, 2019. Chaos control of permanent magnet synchronous motor using simple controllers. Transactions of the Institute of Measurement and Control, 41: 2353.

Kemnang Tsafack, A. S., R. Kengne, J. R. M. Pone, S. Takougang Kingni, A. Cheukem, et al., 2020. Spiking oscillations and multistability in nonsmooth-air-gap brushless direct current motor: Analysis, circuit validation and chaos control. International Transactions on Electrical Energy Systems, 12.

Kiener, A., P. Brissonneau, L. Brugel, and J. P. Yonnet, 1984. Conception des moteurs à aimants. Revue Générale de l’Électricité, pp. 313–318.

Liao, X., F. Zhang, and C. Mu, 2017. Dynamical analysis of the permanent synchronous motor chaotic system. Advances in Difference Equations, 2017: 2.

Luo, S., 2014. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain. Chaos, 24: 2.

Machkour, N., C. Volos, K. Kemih, H. Takhi, L. Moysis, et al., 2022. Predictive control and synchronization of uncertain perturbed chaotic permanent-magnet synchronous generator and its microcontroller implementation. The European Physical Journal Special Topics, 231.

Maeng, G. and H. Choi, 2013. Adaptive sliding mode control of a chaotic nonsmooth-air-gap permanent magnet synchronous motor with uncertainties. Nonlinear Dynamics, 74: 572.

Markku, N., J. Hilla, P. Salminen, and J. Pyrhönen, 2007. Guidelines for designing concentrated winding fractional slot permanent magnet machines. In International Conference on Power Engineering, Energy and Electrical Drives, p. 191.

Natiq, H., J. Metsebo, A. S. Kemnang Tsafack, B. Ramakrishnan, A. C. Chamgou, et al., 2022. Synchronous reluctance motor: Dynamical analysis, chaos suppression, and electronic implementation. Journal of Complexity, pp. 1–7.

Pinto, T., G. Cong, T. Nguyen Vu, and Q. Vuong, 2024. Optimization design of surface-mounted permanent magnet synchronous motors using genetic algorithms. EAI Endorsed Transactions on Energy, 11: e5.

Pouillange, J. P., 1987. Les machines synchrones à aimants permanents. Revue Générale de l’Électricité, pp. 17–21.

Randi, S., R. Benlamine, F. Dubas, and C. Espanet, 2013. Design by optimization of an axial flux permanent-magnet synchronous motor using genetic algorithms. In International Conference on Electrical Machines and Systems, vol. 13.

Song, J. H., Y. Cho, K. B. Lee, and Y. I. Lee, 2015. Torque-ripple minimization and fast dynamic scheme for torque predictive control of permanent magnet synchronous motors. IEEE Transactions on Industrial Electronics, 30: 2182.

Takougang Kingni, S., A. C. Chamgou, A. Cheukem, A. S. K. Tsafack, and J. R. M. Pone, 2020. Permanent magnet synchronous motor: Chaos control using single controller, synchronization and circuit implementation. SN Applied Sciences, 2.

Tian, C., C. Wu, X. Huang, and P. Zhang, 2019. Multi-physical field optimization analysis of high-speed permanent magnet synchronous motor based on NSGA-II algorithm. In 22nd International Conference on Electrical Machines and Systems, vol. 6, p. 5.

Tsapla Fotsa, R., P. K. Koubeu Papemsi, G. P. Ayemtsa Kuete, J. R. Mboupda Pone, S. R. Dzonde Naoussi, et al., 2025. Title of Forthcoming Article. Chaos and Fractals, 2: 14–19. (Bibliographic details are for a future publication.)

Tung, P. C. and S. C. Chen, 1993. Experimental and analytical studies of the sinusoidal dither signal in a DC motor system. Dynamics and Control, 3: 54.

Venkatesh, J., A. T. Kouanou, I. K. Ngongiah, D. C. Sekhar, and S. T. Kingni, 2025. Dynamical probing and suppressing chaos using genetic algorithms in a Josephson junction model with quadratic damping embedded in the microcontroller implementation. Journal of Vibration Engineering & Technologies, 13: 8–24.

Wang, J. J., D. L. Qi, and G. Z. Zhao, 2005. Multi-shelled hollow micro-/nanostructures. Journal of Zhejiang University Science, 6: 729.

Wei, Q. and X. Y. Wang, 2013. Chaos controlling of permanent magnet synchronous motor based on dither signal. Journal of Vibration and Control, 19: 2541.

Yamdjeu, G., B. Sriram, S. Takougang Kingni, D. Chandra Sekhar, and A. Mohamadou, 2025. Non-smooth-air-gap permanent magnet synchronous motor under the effect of temperature embedded in the microcontroller: Dynamical appraisal and chaos suppression employing genetic algorithms. Journal of Vibration Engineering & Technologies, 13: 170.

Yamdjeu, G., B. Sriram, S. Takougang Kingni, K. Rajagopal, and A. Mohamadou, 2024. Analysis, microcontroller implementation and chaos control of non-smooth air-gap permanent magnet synchronous motor. Pramana - Journal of Physics, 98: 126.

Yi, L. and A. Hsu, 2003. Efficiency optimization of brushless permanent magnet motors using penalty genetic algorithms. In IEEE International Electric Machines and Drives Conference, vol. 1, p. 365.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.