Deep Learning in Agriculture: Detection and Analysis of Sugar Beets with YOLOv8
PDF File

Keywords

Sugar beet detection
Drone images
Deep learning
YOLOv8
Agricultural monitoring

How to Cite

Deep Learning in Agriculture: Detection and Analysis of Sugar Beets with YOLOv8. (2024). ADBA Computer Science, 1(1), 1-7. https://doi.org/10.69882/adba.cs.2024071

Abstract

In this study, the performance of the YOLOv8 model in detecting sugar beets was evaluated using images obtained from a drone over a sugar beet field. High-resolution drone images were divided into small segments, labeled, and the model was trained using data augmentation techniques. The results obtained during the training and testing phases demonstrated that the model successfully detected sugar beets with high accuracy, precision, recall, and F1 score values. The analysis of label correlograms and result graphs confirmed the model's labeling accuracy and detection capability. These findings indicate that the YOLOv8 model can be an effective tool in agricultural production monitoring and plant health assessment applications. In the future, the model's performance will be more comprehensively evaluated using datasets obtained from different geographical regions and various agricultural products.

PDF File

References

Aksoy, B., K. Korucu, Çalı¸skan, Osmanbey, and H. D. Halis, 2021 ˙Insansız hava aracı ile görüntü˙I ¸sleme ve yapay zekâ teknikleri kullanılarak yangın tespiti: Örnek bir uygulama. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9: 112–122.

Arslan, E., 2021 Evri¸simli Sinir A˘gı Özelliklerine Dayanan Korelasyon Filtreleme ve Veri ˙Ili¸skilendirme ile Çoklu Nesne Takibi. Master’s thesis, Bursa Uludag University (Turkey).

Atalay, M. and E. Çelik, 2017 Büyük veri analizinde yapay zekâ ve makine Ö˘grenmesi uygulamaları - artificial intelligence and machine learning applications in big data analysis. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi pp. 155–172.

Bendig, J., A. Bolten, and G. Bareth, 2013 Uav-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability. Photogrammetrie, Fernerkundung, Geoinformation 2013: 551–562.

Bochkovskiy, A., C.-Y. Wang, and H.-Y. M. Liao, 2020 Yolov4: Optimal speed and accuracy of object detection Available: http://arxiv.org/abs/2004.10934.

Bozkurt, F., 2021 Derin Ö˘grenme tekniklerini kullanarak akci˘ger x-ray görüntülerinden covid-19 tespiti. European Journal of Science and Technology pp. 149–156.

Chlingaryan, A., S. Sukkarieh, and B. Whelan, 2018 Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture 151: 61–69.

Eastwood, C., L. Klerkx, M. Ayre, and B. Dela Rue, 2019 Managing socio-ethical challenges in the development of smart farming: From a fragmented to a comprehensive approach for responsible research and innovation. Journal of Agricultural and Environmental Ethics 32: 741–768.

Hoffmann, C. M. and C. Kenter, 2018 Yield potential of sugar beet-have we hit the ceiling? Frontiers in Plant Science 9: 1–6.

Hussain, M., 2023 Yolo-v1 to yolo-v8, the rise of yolo and its complementary nature toward digital manufacturing and industrial defect detection. Machines 11: 677.

Kamilaris, A. and F. X. Prenafeta-Boldú, 2018 Deep learning in agriculture: A survey. Computers and Electronics in Agriculture 147: 70–90.

Kaya, S. and Z. Goraj, 2020 The use of drones in agricultural production. International Journal of Innovative Approaches in Agricultural Research 4: 166–176.

Kazanç, M., T. Ensari, and M. Da˘ gtekin, 2021 Videoların derin Ö˘grenme ile sınıflandırılarak filtrelenmesi. European Journal of Science and Technology pp. 338–342.

Kim, J. H., N. Kim, and C. S.Won, 2023 High-speed drone detection based on yolo-v8. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–2, IEEE.

Kumar, V., M. Baweja, P. K. Singh, and P. Shukla, 2016 Recent developments in systems biology and metabolic engineering of plant–microbe interactions. Frontiers in Plant Science 7: 1–12.

Munakata, T., 1998 Fundamentals of the New Artificial Intelligence, volume 2. Springer, New York.

Redmon, J., S. Divvala, R. Girshick, and A. Farhadi, 2016 You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788.

Rose, D. C. et al., 2016 Decision support tools for agriculture: Towards effective design and delivery. Agricultural Systems 149: 165–174.

Semerci, A., 2016 Tarımsal verimlilik göstergeleriyle avrupa birli ˘ gitürkiye tarımı. Journal of Agricultural Faculty of Gaziosmanpasa University 33: 203–203.

Seçkin, M. E., 2021 Derin Ö˘grenme Kullanılarak Trafik Ko¸sullarına Uygun Otonom Araç Uygulaması. Master’s thesis, Bursa Uludag University (Turkey).

Sokolova, M. and G. Lapalme, 2009 A systematic analysis of performance measures for classification tasks. Information Processing and Management 45: 427–437.

Talaat, F. M. and H. ZainEldin, 2023 An improved fire detection approach based on yolo-v8 for smart cities. Neural Computing and Applications 35: 20939–20954.

Tan, F. G., A. S. Yüksel, E. Aydemir, and M. Ersoy, 2021 Derin Ö˘grenme teknikleri ile nesne tespiti ve takibi Üzerine bir ˙Inceleme. European Journal of Science and Technology pp. 159– 171.

Terven, J., D. M. Córdova-Esparza, and J. A. Romero-González, 2023 A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas. Machine Learning and Knowledge Extraction 5: 1680–1716.

Tsouros, D. C., S. Bibi, and P. G. Sarigiannidis, 2019 A review on uav-based applications for precision agriculture. Information 10.

Tursun, N., 2016 Kahramanmara¸s ˙Ili ve ˙Ilçelerinde ¸Sekerpancarı ekim alanlarında sorun olan yabancı otların belirlenmesi June.

Weiss, M., F. Jacob, and G. Duveiller, 2020 Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment 236: 0–39.

Wolfert, S., L. Ge, C. Verdouw, and M. J. Bogaardt, 2017 Big data in smart farming – a review. Agricultural Systems 153: 69–80.

Yalçınkaya, N., M. H. Yalçınkaya, and C. Çılbant, 2006 Avrupa birli ˘ gi’ne yönelik düzenlemeler Çerçevesinde türk tarım politikaları ve sektörün gelece ˘ gi Üzerine etkisi. Yönetim ve Ekonomi 13: 98–118, Ticaret Borsası Genel Sekreteri, MANSA Dr. Co¸skun ÇILBANT.

Yılmaz, O., H. Aydın, and A. Çetinkaya, 2020 Faster r-cnn Üzerinde geli¸stirilen model ile object detection api Üzerinde do˘gruluk tahmini ve analizi. European Journal of Science and Technology pp. 783–795.

Zhang, C. and J. M. Kovacs, 2012 The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture 13: 693–712.

Özel, M. A. and Baysal, S. S. and ¸Sahin, M., 2021 Derin Ö˘grenme algoritması (yolo) ile dinamik test süresince süspansiyon parçalarında Çatlak tespiti. European Journal of Science and Technology pp. 1–5.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.