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ABSTRACT In this study, the Biogeography-Based Optimization (BBO) algorithm was effectively utilized to
predict carbon dioxide (CO2) emissions. In the context of combating global warming and climate change, mak-
ing accurate and reliable CO2 emission predictions is critically important for developing environmental policies
and strategies. Accordingly, the motivation for our study is to contribute to environmental decision-making
processes by improving the accuracy of CO2 emission predictions. BBO is a nature-inspired optimization
method used to analyze complex relationships and identify significant features within a dataset. The focus
of the study is to accurately predict the “share_global_coal_co2” parameter, and for this purpose, the BBO
algorithm was employed to identify the 20 most influential features. The analyses revealed that the Gradient
Boosting algorithm provided the lowest Mean Squared Error (MSE) value of 0.347408, indicating that the
model can make predictions closer to the actual data. Additionally, the use of interpretable artificial intelligence
models such as SHAP and LIME made the model’s predictions more understandable and clearly demon-
strated the impact of specific features on the predictions. The results obtained provide significant guidance
for environmental policymakers and energy experts. The effectiveness of the BBO algorithm in predicting
CO2 emissions can contribute to more informed and data-driven decisions in environmental analysis and
policy-making processes. This study emphasizes the importance of artificial intelligence and optimization
techniques in achieving sustainability goals and helps develop more effective strategies in environmental
management.
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INTRODUCTION

Addressing global environmental issues and climate change, the
reduction of carbon dioxide (CO2) emissions and CO2 capture
technologies play a crucial role. In this context, the Biogeography-
Based Optimization (BBO) algorithm has been employed to esti-
mate the “share_global_coal_co2” parameter. Inspired by natural
biogeographic processes, BBO is an optimization algorithm used
to analyze complex relationships and identify significant features
within a dataset. This study utilizes a dataset comprising various
parameters, including share global coal CO2, share global cumu-
lative gas CO2, share global cumulative LUC CO2, share global
cumulative flaring CO2, cumulative oil CO2, share global gas CO2,
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share global cumulative coal CO2, cumulative CO2 including LUC,
total GHG, cumulative LUC CO2, share global cumulative cement
CO2, CO2 growth percentage, cumulative cement CO2, CO2 in-
cluding LUC per GDP, oil CO2, coal CO2, temperature change
from GHG, consumption CO2 per GDP, share global LUC CO2,
cement CO2, cumulative coal CO2, primary energy consumption,
other industry CO2, share global cumulative oil CO2, CO2 per GDP,
cumulative gasCO2, temperature change from CO2, nitrous oxide,
share global cumulative CO2 including LUC, and share global
CO2.

By applying the BBO algorithm, the study aims to reduce these
parameters to the 20 most influential ones for accurately predict-
ing the “share_global_coal_co2” parameter. Artificial intelligence
techniques significantly contribute to reducing CO2 emissions and
developing sustainable energy solutions. For instance, Delanoë
et al. (2023) evaluated the positive and negative impacts of AI mod-
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els on CO2 emissions reduction. In this study, three different AI
models were utilized for energy demand management in Brazilian
households, photovoltaic power forecasting in Tunisia, and the
electric vehicle routing problem in Sweden and Luxembourg. The
results indicated that AI models can achieve significant CO2 reduc-
tions depending on the context. Yan et al. (2020) developed a hybrid
artificial intelligence model to predict the physical and chemical
changes in coal seams during CO2 geological sequestration. This
model, integrating back propagation neural network (BPNN), ge-
netic algorithm (GA), and adaptive boosting algorithm (AdaBoost),
was optimized to accurately predict coal strength alterations due
to CO2 adsorption. The study demonstrated that the hybrid model
could effectively and accurately predict these changes. Qerimi and
Sergi (2022) examined the legislative processes related to carbon
capture and storage (CCS) technology. This study emphasized
the importance of CCS and AI technologies in achieving climate
goals and argued for the necessity of new regulations to govern
the development, design, and deployment of such technologies.

Another study explored the use of artificial neural network
(ANN) tools to enhance the efficiency of CO2 storage projects by
predicting critical performance indicators like methane recovery
and CO2 injection. The findings showed that ANN models could
accurately predict performance in CO2 storage projects. Thanh
et al. (2022) used hybrid artificial intelligence models to predict the
deliverability of underground natural gas storage sites. This study
highlighted the importance of developing intelligent systems that
can accurately predict natural gas storage deliverability in various
geological formations. Stef et al. (2023) investigated the impact
of high-quality institutional measures on global CO2 emissions
reduction.

The study revealed that effective climate change policies must
be associated with improvements in property rights protection,
citizen participation in elections and freedom of expression, and
corruption control. Heo et al. (2022) developed an explainable arti-
ficial intelligence (XAI) model to create a net-zero carbon roadmap
for the petrochemical industry. This model produced various sce-
narios of offshore wind power and conducted techno-economic
and environmental assessments. The findings underscored the fea-
sibility and effectiveness of AI-driven net-zero carbon solutions.

This literature review highlights the significance and applica-
tion areas of artificial intelligence and optimization algorithms in
reducing CO2 emissions. By examining the effectiveness of the
BBO algorithm in predicting the “share_global_coal_co2” parame-
ter, this study aims to contribute to more informed and data-driven
decision-making processes in environmental analysis and policy
development.

MATERIALS AND METHODOLOGY

This dataset contains various climate variables, greenhouse gas
emissions, and economic indicators. Compiled to examine global
carbon emissions and the environmental impact of various human
activities, this dataset consists of a total of 32 different parameters.
Parameters like “share_global_coal_co2” represent coal-related
carbon dioxide emissions, while others like “cumulative_oil_co2”
and “cumulative_gas_co2” indicate emissions from oil and gas
sources, respectively. Economic indicators such as “gdp” and “con-
sumption_co2_per_gdp” can be used to analyze the relationship
between economic growth and greenhouse gas emissions. This
dataset can be utilized with various machine learning models to
predict the “share_global_coal_co2” parameter and can play a
significant role in issues such as energy policy development and
climate change strategy determination.

Dataset
This dataset contains various climate variables, greenhouse gas
emissions, and economic indicators. Compiled to examine global
carbon emissions and the environmental impact of various human
activities, this dataset consists of a total of 32 different parameters.
Parameters like “share_global_coal_co2” represent coal-related
carbon dioxide emissions, while others like “cumulative_oil_co2”
and “cumulative_gas_co2” indicate emissions from oil and gas
sources, respectively. Economic indicators such as “gdp” and “con-
sumption_co2_per_gdp” can be used to analyze the relationship
between economic growth and greenhouse gas emissions. This
dataset can be utilized with various machine learning models to
predict the “share_global_coal_co2” parameter and can play a
significant role in issues such as energy policy development and
climate change strategy determination.

Biogeography-based Optimization (BBO)
BBO is a natural optimization algorithm based on biogeography
principles, inspired by natural processes modeling the dispersion
and migration of biological species among habitats. This algorithm
utilizes mathematical models representing the quality of habitats
and migration rates between species to optimize the fitness values
of the population. The fundamental working principle of BBO
involves the movement of the best individuals among habitats
to improve the fitness values of a population initially generated
randomly. This process enhances and optimizes the fitness values
of the population over time. BBO can be effective in complex
and multi-dimensional optimization problems, although it may
require appropriate parameter settings and modeling tailored to
the problem context.

Machine Learning
Machine learning is a branch of artificial intelligence where com-
puter systems have the ability to learn from data. These systems
create models using data to perform specific tasks or solve prob-
lems, and they can analyze new data or make predictions using
these models. Machine learning is data-driven as it relies on learn-
ing from experiential data. Fundamentally, it is a combination
of disciplines such as data analysis, statistics, mathematics, and
computer science. Machine learning algorithms are commonly
used in various tasks such as classification, regression, clustering,
dimensionality reduction, and pattern recognition. Examples in-
clude decision trees, support vector machines, gradient boosting
machines, and deep learning networks. Machine learning has a
wide range of applications across various industries and fields,
including healthcare, finance, automotive, retail, and more. How-
ever, training these models requires careful management of factors
such as proper hyperparameter tuning and data quality.

Artificial Neural Networks (ANNs) are a machine learning model
that mimics the workings of the human brain and has been suc-
cessfully used in many fields in recent years. This model enables
information processing and learning by forming a network of neu-
rons, the basic units of a neural network. Artificial neural networks
have structures consisting of multiple layers; each layer receives in-
puts from the previous layer and processes them. These processes
are typically carried out with non-linear activation functions. Ar-
tificial neural networks can handle a wide range of data but may
require large amounts of data and have lengthy training times.
However, using a subfield called deep learning, they can exhibit
superior performance in large and complex datasets. One of the
fundamental advantages of artificial neural networks is their abil-
ity to optimize learning capabilities with various architectures and
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hyperparameters. However, it’s important to deal with issues such
as overfitting and ensure good generalization to data outside the
training set.

z =
n

∑
i=1

wixi + b (1)

In Equation 1, "z" represents the value of the objective function,
while "wi" and "xi" represent the components of the weight and
input data, respectively. "b" is a constant term. The summation
calculates the value of this objective function by taking a combina-
tion of weights and inputs over a specific dataset. Thus, the BBO
algorithm attempts to find the best solution in a particular problem
by optimizing this equation.

XGBoost Recently, XGBoost (eXtreme Gradient Boosting) has be-
come increasingly popular for classification and regression prob-
lems, especially for structured data, yielding effective results. This
machine learning algorithm constructs a strong predictor by com-
bining many weak predictors, often referred to as decision trees.
Using a technique called gradient boosting, at each step of the
model, a new predictor is added to minimize the loss (error). XG-
Boost applies this gradient descent to decision trees and sequen-
tially adds weak predictors. Thus, the model learns increasingly
complex relationships and makes more accurate predictions (Chen
and Guestrin 2016). One significant advantage of XGBoost is its
ability to be optimized for different datasets and problems by ad-
justing its hyperparameters. Additionally, it can work quickly
and handle large datasets well. However, its high performance
and flexibility come at a cost. As the complexity of the model
increases, both training and prediction times may increase. There-
fore, it’s essential to consider factors like computational resources
and hyperparameter optimization when using XGBoost.

F(x) = L(θ) + Ω(θ) (2)

In Equation 2, "F(x)" represents the predicted value of the target
variable, "L(θ)" represents the loss function, and "Ω(θ)" represents
the regularization term. Essentially, the XGBoost algorithm adds
weak predictors sequentially by minimizing the residuals from the
previous model’s predictions. In this equation, "L(θ)" calculates
the error between the predicted and actual values of the features,
and "Ω(θ)" is the regularization term that limits the complexity of
the model. Thus, the XGBoost algorithm aims to optimize predic-
tion performance by creating the most suitable model through the
combination of the loss function and regularization term.

L(θ) =
n

∑
i=1

−(yi log log(ŷi) + (1 − yi) log log(ŷi)) (3)

In Equation 3, the expression "L(θ)" represents a loss function
that measures how far the model’s predictions are from the true
labels. θ represents the model parameters. In the equation, "yi"
symbolizes the true label values, and "ŷi" represents the predictions
made by the model. This loss function, used for binary classifica-
tion problems, calculates the negative log probability sum over the
predicted class probabilities for each data point’s true class labels.
Thus, the algorithm aims to learn the best model parameters by
minimizing this loss function and aims to increase classification
accuracy.

Ω(θ) = γT +
λ

2

T

∑
j=1

w2
j (4)

In Equation 4, the expression "Ω(θ)" represents a regularization
term that limits the complexity of the model. γ and λ are regular-
ization parameters and regularization coefficients, respectively. In
the equation, "T" represents the number of trees, and "wj" repre-
sents the weights of each tree. This regularization term is used to
reduce the tendency of the model to overfit and improve its gen-
eralization ability. The first term controls the number of trees and
their complexity, while the second term regulates the complexity
of the trees by the square of their weights. This regularization term
aims to prevent overfitting by helping the model become simpler
and more generalizable. Thus, the XGBoost algorithm uses this
regularization term to control the complexity of the model while
minimizing the loss function.

LightGBM is a machine learning algorithm that has gained popular-
ity recently, particularly for working effectively with large datasets.
This algorithm constructs decision trees using the gradient boost-
ing method, but unlike other traditional gradient boosting-based
methods, LightGBM builds trees by considering specific features.
This allows it to create more efficient trees by taking into account
different levels of importance of features in the dataset (Zhang
et al. 2020). LightGBM can handle large datasets well because
it utilizes parallel computing capabilities to reduce training and
prediction times. Additionally, it offers advantages such as low
memory usage and high scalability. However, it’s essential to
properly adjust some hyperparameters of LightGBM; otherwise,
you might encounter issues like overfitting or other problems that
could negatively impact the model’s performance.

Fm = Fm−1(x) + η · hm(x) (5)

In Equation 5, "Fm" represents the m-th prediction of the func-
tion, while "Fm−1(x)" represents the sum of predictions made in
the (m-1)th stage. η represents the learning rate, and "hm(x)" rep-
resents the weak predictor added in the m-th stage. LightGBM
constructs a tree-based model using the gradient boosting method.
This equation shows adding a new tree to the current predictions
at each stage of the model and adding the predictions of the tree
with the learning rate to the total predictions. This process allows
the model to learn complex relationships in the dataset without in-
creasing complexity and preventing overfitting. Thus, LightGBM
is successfully used across a wide range of applications, providing
high accuracy and fast training times.

Random Forest (RF) is a widely used machine learning algorithm
for classification and regression problems. This algorithm con-
structs a predictor by aggregating many decision trees. Each de-
cision tree is trained on a subset of data, randomly sampled from
the original dataset (bootstrap sampling), and features selected
randomly (subspace sampling). Then, each tree makes its predic-
tion, and in the case of classification, the final prediction is made
by voting, or in regression, by taking the average. Random Forest
can learn more complex decision boundaries than a single tree
and reduces the risk of overfitting. Additionally, it is robust to
noise and missing data in the input dataset. However, it’s crucial
to adjust RF’s hyperparameters (e.g., number of trees, size of fea-
ture subsets, etc.), as otherwise, its performance may degrade or
overfitting may ocur (Liaw and Wiener 2002).

f (x) =
1
N

N

∑
i=1

fi(x) (6)

In Equation 6, " f (x)" represents the predicted value of the func-
tion, "N" is the number of data points, and " fi(x)" represents the
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prediction of each decision tree. The Random Forest algorithm
is an ensemble learning technique where many decision trees are
collectively constructed, and the average prediction of each tree is
taken. In this equation, " fi(x)" shows the prediction made by each
tree individually, while the term " 1

N " provides the final prediction
by averaging the predictions of all trees. This method balances the
variance and errors within each tree while collectively obtaining
a stronger and more generalized prediction. As a result, the Ran-
dom Forest algorithm addresses complexity in the dataset while
reducing the risk of overfitting, thus providing stable and accurate
predictions.

Support Vector Machine (SVM) is a powerful machine learning al-
gorithm used for classification and regression tasks. It determines
a decision boundary in the feature space for classification or pre-
dicts a regression function, aiming to achieve the widest possible
margin between classes, supported by a subset of training data
points called support vectors (Gunn 1998). SVM works effectively
on linearly separable problems and can handle nonlinear prob-
lems by transforming the feature space using kernel functions. Its
advantages include effectiveness with high-dimensional datasets,
reducing the risk of overfitting, and its ability to handle various
data structures through different kernel functions. However, it’s
crucial to adjust SVM’s hyperparameters (e.g., the C parameter,
kernel type, etc.) correctly to avoid performance degradation or
overfitting.

f (x) = wT x + b (7)

In Equation 7, " f (x)" represents the predicted classification for
input data "x", while "w" denotes the weight vector and "b" stands
for the bias term. SVM classifies data by creating a separation
line between two classes. The "w" vector indicates the normal and
slope of the separation plane, while the "b" bias term represents the
distance of the plane from the origin. SVM utilizes this equation
to find an optimal separation plane and is typically effective in
classification problems.

margin =
2

∥w∥ (8)

Equation 8 defines a concept known as the "margin" in the
Support Vector Machine (SVM) algorithm. The "margin" indicates
how far the separation plane is from the data points. The equation
divides the norm (length) of the weight vector "∥w∥" and multiplies
the result by two to calculate the margin. SVM aims to maximize
the margin to find the best separation plane or hyperplane. Thus,
SVM typically provides a wide margin for classifying data points
and can better adapt to new data.

minimize
1
2
∥w∥2 (9)

Equation 9 represents the norm (length) of the weight vector
"∥w∥". The goal of SVM is to classify data points by creating a
separation plane between two classes. This equation is a mathe-
matical expression used to determine the decision boundaries of
SVM. By using this equation, SVM optimizes the weight vector
and bias term (b) to find the equation of the separation plane (or
hyperplane). Thus, it creates a separation plane that best classifies
the data points. In summary, SVM aims to minimize the result of
this equation to classify data points optimally.

K(xi, xj) = ϕ(xi)
Tϕ(xj) (10)

Equation 10 represents the kernel function in the Support Vector
Machine (SVM) algorithm. It denotes the measure of the dot prod-
uct between two input vectors. "ϕ(x)" symbolizes a feature map
that transforms the input data into a higher-dimensional feature
space. This function enables SVM to classify linearly inseparable
data. By using this kernel function, SVM makes the data linearly
separable and then finds a separation plane (or hyperplane). This
kernel function plays a critical role in making the data linearly
separable.

K-Nearest Neighbors (KNN) is a widely used machine learning al-
gorithm for classification and regression problems. This algorithm
relies on the nearest neighbors of a data point to determine its
class or value. The distance between each data point and all other
points in the feature space is calculated, and then the K nearest
neighbors of the input data point are selected. In classification, a
prediction is made based on the classes of these neighbors, while
in regression, the average of the neighbors’ values is used. KNN
is a non-parametric algorithm, meaning it makes no assumptions
about the underlying data distribution. It’s also a versatile algo-
rithm that can effectively handle both numerical and categorical
data. However, it may suffer from computational inefficiency with
large datasets, and selecting the correct value for K is crucial as
it can affect the performance of the model (Kramer and Kramer
2013).

d(xi, xj) =

√√√√ n

∑
p=1

(xi,p − xj,p)2 (11)

In Equation 11, "d(xi, xj)" represents the Euclidean distance
between two data points, "xi" and "xj". "n" denotes the dimen-
sionality of the data points, while "xi,p" and "xj,p" respectively
represent the "p"-dimensional features of data points "i" and "j".
The KNN algorithm uses the labels of neighboring data points to
classify a new data point. This distance measurement determines
the similarity or distance between one data point and another. The
KNN algorithm classifies a new data point by considering the
closest neighbors up to a specified "k" number. This distance mea-
surement plays a fundamental role in the classification process of
KNN, evaluating the relationship between data points to provide
the most appropriate classification.

y = mode(y1, y2, . . . , yk) (12)

In Equation 12, "y" represents the predicted value of the target
variable, while "y1, y2, . . . , yk" denote the class labels of neighbor-
ing data points. The "mode" function determines the most fre-
quently occurring class label among the neighboring data points,
i.e., it takes the mode value. The KNN algorithm considers the
labels of the nearest neighbors to classify a data point. In this
method, the predicted class for a new data point is often the mode
value obtained from the class labels of its neighbors. Thus, the
KNN algorithm classifies a data point based on its neighboring
points, and this equation explains this classification process.

y =
1
k

k

∑
i=1

yi (13)
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In Equation 13, it represents the classification process of the
K-Nearest Neighbors (KNN) algorithm. While "y" denotes the
predicted class of a new data point, "yi" indicates the class labels
of neighboring data points. "k" specifies the number of neighbors
used. This equation is a fundamental step in the classification
process of the KNN algorithm. The predicted class for a new data
point is determined by taking the average of the class labels of its k
nearest neighbors. Thus, the data point adopts the predicted class
based on the class labels of its neighbors. This equation expresses
a simple yet effective classification method of the KNN algorithm.

Gradient Boosting is a powerful machine learning technique for
both classification and regression problems. This method con-
structs a strong predictor by combining many weak predictors.
Each weak predictor focuses on correcting the errors of previous
predictions. Using an optimization algorithm called gradient de-
scent, Gradient Boosting attempts to minimize these errors. This
process continues with the addition of a new weak predictor at
each step, gradually reducing the model’s errors and making more
accurate predictions. One advantage of Gradient Boosting is its
ability to combine predictors of different types, usually decision
trees, which enhances its capability to learn different data struc-
tures and relationships. However, it’s crucial to properly adjust
the hyperparameters of Gradient Boosting, such as learning rate,
tree depth, and number of trees, or else issues like overfitting or
longer training times may arise (Bentéjac et al. 2021).

F0(x) = 0 (14)

In Equation 14, it represents the initial prediction in the Gradient
Boosting algorithm. "F0(x)" represents the initial prediction of a
new data point, and this initial value is zero. The Gradient Boosting
algorithm constructs a prediction model by sequentially adding
weak predictors. Initially, the prediction model starts at zero. This
equation specifies the beginning of the process for building the
prediction model in the Gradient Boosting algorithm.

Fm(x) = Fm−1(x) + ρ ∗ hm(x) (15)

In Equation 15, "Fm(x)" represents the prediction of the new
model, while "Fm−1(x)" denotes the prediction of the previous
model, and "hm(x)" represents the m-th weak predictor. "ρ" in-
dicates the learning rate. The Gradient Boosting algorithm uses
this equation when adding the next weak predictor to the current
prediction model. In other words, in each iteration, the predictions
of the current model are updated by adding the predictions of
the new predictor multiplied by the learning rate. This way, the
algorithm controls the effect of the predictor added in the next
step. This equation explains the process of iteratively improving
the prediction model in the Gradient Boosting algorithm.

Explainable Artificial Intelligence (XAI) is a branch developed to
understand and explain the decisions and predictions of machine
learning and artificial intelligence models. XAI emerges from the
effort to interpret the inner workings of complex models in a way
that is more suitable for human understanding. These techniques
contribute to addressing significant issues such as increasing the
model’s reliability by explaining why and how decisions are made,
identifying errors, and addressing fairness and ethical concerns
(Ali et al. 2023). XAI encompasses various techniques that can help
understand the features, variables, and relationships underlying a
model’s predictions.

These include assessing feature importance, visualizing pre-
diction boundaries, providing instance-based explanations, and

analyzing interactions between features. However, XAI methods
can themselves be complex, often depending on the complexity of
the model, and it’s crucial to strike a balance between explainability
and model performance.

SHAP (Shapley Additive Explanations), an explainable artificial
intelligence (XAI) technique that uses Shapley values to explain
the contribution of each feature to model predictions. Shapley
values originate from cooperative game theory and estimate the
contribution of a feature to a model prediction by considering its
value when combined with other features. SHAP is commonly
used to make complex machine learning models (such as deep
learning or gradient boosting) interpretable. This technique mea-
sures the impact of each feature on predictions while also showing
how this impact varies for a specific example or observation. Thus,
it provides a detailed understanding of why and how a partic-
ular prediction was made. SHAP can be used for tasks such as
evaluating feature importance, examining interactions between
features, and explaining how each feature contributes to model
predictions. However, SHAP values can be challenging to inter-
pret, and they can be computationally expensive when working
with large datasets or complex models (Das and Rad 2020).

ϕi( f ) =
1

N! ∑
π

[
f (xπ(i))− f (xπ)

]
(16)

Equation 16 represents an explanation method used in the
SHAP (SHapley Additive exPlanations) algorithm to measure the
contributions of features to the model prediction. "ϕi( f )" repre-
sents the contributions of different features, while " f " denotes the
model prediction, "N" is the number of data points, "π" is a permu-
tation of data points, "(xπ(i))" represents the i-th data point in a
specific permutation, and "xπ" denotes the permutation itself. This
equation considers all permutations of data points to calculate the
contribution of each feature to the model prediction. The SHAP
algorithm is used to understand complex model predictions and
explain the impact of each feature on the prediction.

LIME is a technique used in the field of explainable artificial intel-
ligence (XAI) to explain how model predictions are made for a
specific example or observation. Regardless of the complexity of
the model, LIME makes any machine learning model interpretable.
This technique creates a surrogate model to understand which
features or variables are influential in making a prediction at a
particular point. The surrogate model selects features to mimic the
predictions of the original model locally. LIME generates data sam-
ples by making random changes around the data point to create the
local model, and uses the predictions of each sample in the original
model. Finally, by examining the behavior of the local model on
these generated samples, LIME explains how the original model
made a specific prediction. LIME is particularly useful when work-
ing with complex models and in situations where understanding
why certain predictions are made is difficult. However, interpret-
ing LIME results can be challenging, and careful parameter tuning
may be required to obtain accurate results (Das and Rad 2020).

e(x) = arg min
g∈G

( f , g, πx) + Ω(g) (17)

In Equation 17, an explanation method in the LIME (Local In-
terpretable Model-agnostic Explanations) algorithm is described.
"e(x)" represents the explanation of a particular example, while the
"arg min" operator denotes the one with the smallest value within
a given set. "g" represents the model prediction, " f " is the true func-
tion, and "πx" indicates the weights of other examples around the
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sample "x". "Ω(g)" is a term limiting the complexity of the model.
This equation is formulated as an optimization problem to find the
explanation model that best explains the prediction of a particular
example. LIME provides local explanations to understand the
decisions of complex machine learning models.

RESULTS

In this study, the Biogeography-Based Optimization (BBO) algo-
rithm was used to predict the “share_global_coal_co2” parame-
ter. BBO is an optimization algorithm inspired by natural biogeo-
graphic processes, used to determine complex relationships in the
dataset and identify the most important features. In this study, the
BBO algorithm was used to predict the “share_global_coal_co2”
parameter, and the 20 most effective parameters among other pa-
rameters in the dataset were identified. BBO assists in predicting
the “share_global_coal_co2” parameter by selecting from various
parameters in the dataset, thereby helping to predict it more ac-
curately. Therefore, the BBO algorithm was used to predict the
“share_global_coal_co2” parameter and understand the impact of
specific features. The 20 most important features identified by the
BBO algorithm were fed into machine learning models. They were
evaluated using metrics such as Mean Squared Error (MSE) and
R-squared Score.

Mean Squared Error (MSE) is a metric used to evaluate predic-
tions made by machine learning algorithms. This measurement
calculates the average of the squared differences between the ac-
tual values and the predicted values. Lower MSE values indicate
that the predictions are closer to the actual values, while higher
MSE values indicate that the predictions are farther from the actual
values. Therefore, MSE is an important measure used to assess a
model’s predictive ability.

The R-squared (Rˆ2) score is a metric used to evaluate predic-
tions made by machine learning algorithms. This score determines
how well a model fits and explains the data. R-squared measures
the proportion of the variance in the dependent variable that is
predictable from the independent variables. The values typically
range from 0 to 1; the closer it is to 1, the better the model explains
the data. However, it can also take negative values, indicating that
the model performs worse than a horizontal line. In summary, the
R-squared score is a measure of how well a model fits the data.

The evaluation results based on the top 20 features identified by
the BBO algorithm are presented in Table 1. The Gradient Boosting
algorithm, which gave the lowest Mean Squared Error (MSE) value,
has been explained using interpretable artificial intelligence mod-
els SHAP and LIME. The explanations are presented in Figures 1
and 2.

In Figure 1, the average impact of various greenhouse gas
(GHG) emissions and carbon dioxide (CO2) sources on the model
output is assessed using SHAP values. In the figure, total green-
house gas emissions (total_ghg) and the share of global cumulative
cement CO2 (share_global_cumulative_cement_co2) stand out as
the factors with the highest average impact on the model out-
put. Nitrous oxide (nitrous_oxide) and the share of global CO2
(share_global_co2) also have significant impacts, while factors such
as other industry CO2 (other_industry_co2) and the share of global
cumulative coal CO2 (share_global_cumulative_coal_co2) have
less pronounced effects.

Lower impacts are observed among factors such as cumula-
tive land use change CO2 (cumulative_luc_co2) and temperature
change from GHG (temperature_change_from_ghg). Overall, the
figure demonstrates that greenhouse gases and various CO2 emis-
sion sources contribute to model outcomes to varying degrees.

Figure 1 Output of SHAP, an explainable artificial intelligence model

Figure 2 The output of LIME, an explainable artificial intelligence
model

In Figure 2, the “GradientBoostingRegressor” algorithm and
the interpretable artificial intelligence model “LIME” were used
to create predictions for the share of global coal emissions. The
predicted value is determined as “-0.20”. According to the anal-
ysis, the features that the model gives the most importance to
are “coal_co2” and “share_global_luc_co”, and it is observed that
changes in these features have significant effects on the prediction.
Additionally, as indicated in the visual, there is a negative correla-
tion with the “share_global” feature’s prediction, meaning that as
this value increases, the predicted share of global coal emissions
decreases

CONCLUSION

Our results demonstrate that the Biogeography-Based Optimiza-
tion (BBO) algorithm is an effective method for predicting the
“share_global_coal_co2” parameter. The BBO algorithm has
achieved successful outcomes by utilizing various parameters in
the dataset to identify complex relationships and determine sig-
nificant features. In this study, the 20 most important features
identified by the BBO algorithm were integrated into machine
learning models to evaluate prediction performance.

Evaluations conducted using metrics such as Mean Squared
Error (MSE) and R-squared score have indicated that the Gradient
Boosting algorithm provides the lowest MSE value , suggesting
that the predictions are closer to the actual values. These results
support the use of interpretable artificial intelligence models such
as SHAP and LIME to enhance the accuracy of the model.
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■ Table 1 Results of evaluation metrics of machine learning algorithms.

Machine learning Mean Square Error (MSE) R-squared Score

ANN 4.017079 -9.101274

XGBoost 0.572459 0.987030

LightGBM 0.372869 0.991552

RF 0.410437 0.990700

SVM 17.084162 0.612933

KNN 26.406132 0.401730

Gradient Boosting 0.347408 0.972128

SHAP and LIME analyses have rendered the model’s predic-
tions more understandable. Specifically, the GradientBoostingRe-
gressor algorithm and LIME model utilized to predict the share
of global coal emissions have emphasized the effects of specific
features such as “coal_co2” and “share_global_luc_co” on the pre-
diction. These findings offer valuable insights that can be utilized
in making critical decisions in areas such as energy policies and
environmental management strategies.

In conclusion, this study demonstrates that the Biogeography-
Based Optimization algorithm is an effective method for predict-
ing the “share_global_coal_co2” parameter. Furthermore, it un-
derscores the importance of utilizing interpretable artificial intelli-
gence models to elucidate and render predictions more comprehen-
sible. These findings serve as a valuable guide for environmental
policymakers and energy experts.
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