
High-Accuracy Prediction of Mechanical Properties of
Ni-Cr-Fe Alloys Using Machine Learning
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ABSTRACT Artificial intelligence-driven prediction models have emerged as powerful tools for estimating material properties with high
accuracy, yet the preparation of training datasets often demands labor-intensive and time-consuming experimental procedures. Leveraging
the Computational Materials Science (CMS) approach, this study utilizes phase transformation calculations and thermodynamic data
to simulate the mechanical properties of Ni-Cr-Fe alloys. Using JMatPro software, mechanical properties (0.2% Proof Stress, Fracture
Stress, and Young’s Modulus) of 50 Ni-Cr-Fe alloy compositions were simulated across a temperature range of 540–920°C, generating
a dataset of 1000 rows. This dataset was used to train an Artificial Neural Network (ANN) model, with 80% allocated for training and
20% for validation and testing. The trained AI model demonstrated robust predictive capabilities, achieving a 96.61% accuracy rate in
forecasting material compositions with the desired thermo-physical properties at specific temperatures. To validate the model’s reliability,
predicted alloy compositions were re-simulated under identical conditions in JMatPro, confirming the high fidelity of the model’s predictions.
The results underscore the efficacy of Computational Materials Science (CMS)-generated datasets as a scalable and reliable source
for training AI models in materials science. This study highlights the potential of integrating Computational Materials Science (CMS)
and Machine Learning approaches to accelerate material design and development processes, delivering significant improvements in
prediction speed and accuracy.
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INTRODUCTION

The development of predictive tools for estimating material prop-
erties has become increasingly important in the design and opti-
mization of advanced alloys. Machine Learning (ML), as a data-
driven approach, has shown remarkable potential in this domain
by enabling the rapid prediction of mechanical, thermal, and ther-
modynamic properties. Recent studies highlight the effectiveness
of Machine Learning models in understanding the complex in-
teractions in multi-component systems such as Ni-Cr-Fe alloys,
which are critical for high-performance applications due to their
exceptional mechanical strength and corrosion resistance at ele-
vated temperatures (Jain et al. 2023; Wang et al. 2021). These alloys
are extensively used in aerospace, power generation, and chemical
industries, where the optimization of their mechanical properties,
such as yield strength, fracture toughness, and elasticity, is crucial
(Mukhamedov et al. 2021).

Traditionally, experimental characterization of material prop-
erties has been labor-intensive, requiring extensive resources and
time. The emergence of Computational Materials Science (CMS)
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has revolutionized this field by providing simulation-based in-
sights into phase stability, stress-strain behavior, and thermody-
namic properties. Tools like JMatPro have been instrumental in
simulating the behavior of alloys under varied conditions, gener-
ating reliable datasets for machine learning applications (Filipoiu
and Nemnes 2020; Liu et al. 2024). Leveraging these simulated
datasets, Machine Learning models such as Artificial Neural Net-
works (ANNs) have demonstrated superior predictive accuracy,
as seen in studies that model phase stability and hardness of high
entropy alloys and other multi-component systems (Jeon et al. 2022;
Chen et al. 2014).

In the context of Ni-Cr-Fe alloys, Machine Learning models
have been utilized to explore the effects of compositional varia-
tions and temperature on mechanical properties. Studies employ-
ing physics-informed ML algorithms have successfully predicted
thermodynamic and kinetic behaviors of chromium atoms in Fe-Ni-
Cr systems, enhancing the understanding of stress-strain responses
(Wang et al. 2021). Additionally, Machine Learning (ML)-driven
methods have enabled the optimization of alloy compositions
to achieve desired ductility, hardness, and elastic modulus (Jeon
et al. 2022). Such approaches not only reduce dependency on ex-
perimental trials but also provide a pathway for exploring large
compositional spaces effectively.
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This study aims to build upon these advancements by inte-
grating Computational Materials Science (CMS) simulations and
Machine Learning to predict the mechanical properties of Ni-Cr-Fe
alloys. Using a dataset of 1000 rows simulated with JMatPro, an
ANN model is trained to predict 0.2% proof stress, fracture stress,
and Young’s modulus across a temperature range of 540–920°C.
The results indicate an accuracy exceeding 96.61%, demonstrating
the robustness of this methodology. This work underscores the
potential of combining simulation and Machine Learning to en-
hance alloy design, providing significant improvements in speed
and precision compared to traditional methods.

MATERIALS AND METHODS

This study employs a Computational Materials Science (CMS)-
based approach, leveraging the JMatPro software to simulate the
mechanical properties of Ni-Cr-Fe-based nickel alloys. JMatPro,
recognized for its ability to compute phase diagrams and thermo-
dynamic properties, was utilized to generate a dataset comprising
1000 rows. These entries encompassed the mechanical properties
of 50 distinct compositions, including elements such as Ni, Cr, Fe,
Co, Mo, Nb, Ti, Al, Mn, Si, and Cu. The primary mechanical prop-
erties under investigation were 0.2% Proof Stress, Fracture Stress,
and Young’s Modulus, simulated across a temperature range of
540–920°C. The dataset was split into training (80%) and valida-
tion/testing (20%) subsets for model development and evaluation.

A Machine Learning (ML) model, specifically an Artificial Neu-
ral Network (ANN), was constructed to predict the mechanical
properties of these alloys based on the CMS-generated dataset. As
depicted in Figure 1, the model operates on a normalized dataset,
where all input values were scaled between 0 and 1 using the Min-
Max Normalization method. This preprocessing step ensures that
the data are uniformly represented, facilitating effective learning
by the ANN. To enhance dataset quality, missing values were ad-
dressed through multiple linear regression, ensuring the integrity
and completeness of the input data. Additionally, all physical prop-
erties were converted into international SI units for consistency
and further normalized before feeding into the model.

Figure 1 Flowchart of the proposed model for predicting the me-
chanical properties of Ni-Cr-Fe based nickel alloys

The proposed model (Figure 1) integrates the normalized data
into a tensor structure, enabling efficient processing by the ANN
architecture. The ANN was designed to capture complex relation-
ships between alloy compositions, temperature, and mechanical
properties. The effects of mechanical properties and temperature
on alloy behavior were classified as positive or negative, providing
a systematic framework for performance evaluation. The training

process was carefully monitored to avoid overfitting, with statisti-
cal analyses conducted to validate data consistency. Comparisons
between the ANN-predicted results and JMatPro-simulated values
confirmed the robustness and accuracy of the proposed model.

To ensure the dataset’s reliability and compatibility with the
ML framework, the raw data obtained from JMatPro simulations
underwent rigorous preprocessing. This included unit standardiza-
tion, scaling, and statistical verification against the original dataset.
These steps ensured that the model inputs were precise and consis-
tent, yielding accurate predictions of mechanical properties. The
resulting dataset, derived from CMS simulations, proved to be a
robust source for training and validating the ANN model, demon-
strating the effectiveness of integrating CMS and AI methodologies
in alloy design and property prediction.

Simulation’s Heat Treatment Conditions The simulations for this
study were conducted using the JMatPro software, which is rooted
in computational materials science principles. The software was
utilized to model 50 unique compositions of Ni-Cr-Fe-based nickel
alloys, with controlled proportions of elements such as Cr, Fe, Mo,
and Al, among others. Heat treatment parameters were tailored
to optimize the formation of gamma (γ), gamma prime (γ′), and
gamma double prime (γ′′) phases, which are critical contributors
to the alloys’ mechanical properties. As shown in Figure 2, the
“Bimodal” distribution was selected for precipitate size, with γ′

precipitates set at 10 nm and γ′′ precipitates at 50 nm, ensuring
realistic microstructural features. For each alloy composition, Time-

Figure 2 Input Parameters and Bimodal Distribution Settings for Ni-
Cr-Fe Based Nickel Alloys Simulation in JMatPro

Temperature-Transformation (TTT) diagrams and Phase Fraction
Diagrams were generated to determine the optimal heat treatment
temperatures for forming the desired precipitates while avoiding
deleterious phases such as delta, eta, and laves (Handbook 1991;
Saunders 2010). These phases, known for their detrimental impact
on mechanical properties, were excluded by simulating equilib-
rium conditions, ensuring that only phases relevant to practical
processing conditions were considered. The grain size of the ma-
trix phase was standardized at 100 microns, providing consistency
across simulations.

Heat treatment simulations were conducted over a temperature
range of 540°C to 920°C, reflecting operational conditions relevant
to Ni-Cr-Fe alloys used in high-temperature applications (Francis
et al. 1967). This range allowed a comprehensive evaluation of
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mechanical properties, including 0.2% Proof Stress, Fracture Stress,
and Young’s Modulus. The parameters were optimized to promote
complete precipitation of γ′ and γ′′ phases within the matrix, en-
hancing the strength and thermal stability of the alloys (Wu et al.
2022; Nembach and Neite 1985).

The simulation results provided detailed insights into the mi-
crostructural evolution and mechanical behavior of these alloys,
offering a robust foundation for subsequent machine learning pre-
dictions. By focusing on γ′ and γ′′ precipitates, this study aligns
with prior research that underscores their pivotal role in strength-
ening nickel-based superalloys (Smith et al. 2021; Liu et al. 2023).

Dataset Generation The generation of a comprehensive dataset is
pivotal for the accurate modeling and prediction of the mechanical
properties of Ni-Cr-Fe-based nickel alloys. These alloys are exten-
sively utilized in high-temperature applications due to their excep-
tional mechanical performance, which can be enhanced through
solution treatment and aging processes (Du et al. 2021). These heat
treatment processes stabilize the microstructure, enabling the mate-
rial to maintain its strength and integrity over prolonged periods, a
feature that is critical in industries like aerospace and power gener-
ation (Vijayakumar et al. 2024). Precipitation hardening, facilitated
by specific alloying elements, significantly enhances the strength
of these alloys under elevated thermal conditions, making them
ideal for nickel alloys applications (Zielinska et al. 2010).

■ Table 1 Elemental Composition Ranges of Alloys in the
Dataset (values represent wt%)

Ni (%) Cr (%) Fe (%) Co (%) Mo (%) Nb (%) Ti (%) Al (%) Mn (%) Si (%) Cu (%)

50–75 14–21 5–15 0 and 2 0 and 3 1 and 5 1 and 2.5 0.5 1 0.5 0.5

The alloy compositions used in this study were systematically
designed to optimize their mechanical properties. As outlined in
Table 1, the primary elements Ni, Cr, Fe, Co, Mo, Nb, and Ti were
varied within specific weight fractions, while secondary elements
Al, Mn, Si, and Cu were held constant to maintain consistency in
their precipitation hardening effects. Phase Fraction Diagrams and
Time-Temperature-Transformation (TTT) Diagrams were gener-
ated using JMatPro for each composition to simulate their behavior
under various thermal conditions. This approach allowed the mod-
eling of 50 distinct alloy compositions, evaluated at 20 different
temperatures ranging from 540°C to 920°C in 20°C increments,
resulting in a total of 1000 data rows.

Table 2 presents an excerpt from the dataset, illustrating two
alloy compositions. Notably, the second composition, which in-
cludes an additional 1% Co, demonstrates enhanced mechanical
properties, highlighting the critical influence of individual alloying
elements. This dataset captures 0.2% Proof Stress (MPa), Fracture
Stress (MPa), and Young’s Modulus (GPa) across varying tempera-
tures, providing a robust foundation for analyzing the impact of
thermal and compositional variations on the mechanical behavior
of nickel alloys (Goodfellow et al. 2019). This structured dataset
serves as a critical resource for understanding the relationships
between alloy composition, heat treatment conditions, and result-
ing mechanical properties, aligning with recent advancements in
nickel alloys research (Behera et al. 2024; Ju et al. 2024).

Development of the Artificial Intelligence Model The development
of the proposed ANN model was designed to accurately predict
the mechanical properties of Ni-Cr-Fe alloys, leveraging a dataset
generated through Computational Materials Science (CMS) simu-
lations. The dataset, consisting of 1,000 rows, was carefully prepro-

cessed to ensure consistency and accuracy, including normalization
of input features and handling missing data. The input features,
such as elemental compositions and temperature, were scaled be-
tween 0 and 1 using Min-Max Normalization, ensuring that the
model could efficiently process the data.

The ANN architecture was tailored to capture the complex
nonlinear relationships between the input features and target prop-
erties (0.2% proof stress, fracture stress, and Young’s modulus). It
consisted of multiple hidden layers, each optimized to enhance
the learning capacity of the model while avoiding overfitting. The
model was trained using 80% of the dataset, with the remain-
ing 20% allocated for validation and testing. To further enhance
the model’s robustness, the training process incorporated regu-
larization techniques and monitored validation loss to prevent
overfitting. The results demonstrated the model’s ability to gen-
eralize effectively, providing accurate predictions across diverse
alloy compositions and thermal conditions.

Artificial Neural Network Architecture The ANN architecture in
this study was designed to predict the mechanical properties (0.2%
proof stress, fracture stress, and Young’s modulus) of Ni-Cr-Fe
alloys with high accuracy. The network employs a multilayer
architecture optimized for capturing the nonlinear and complex
relationships between compositional and thermal input features
and the target mechanical properties. The input layer includes
12 features, representing elemental compositions (e.g., Ni, Cr, Fe)
and temperature, which are preprocessed using a standardization
technique to ensure consistent scaling across all inputs.

The hidden layers of the network were constructed to maximize
learning efficiency while preventing overfitting. The first hidden
layer contains 512 neurons, followed by 256 neurons in the second
hidden layer, and 128 neurons in the third. Each layer uses ReLU
(Rectified Linear Unit) activation functions to introduce nonlinear-
ity, while batch normalization improves convergence speed and
training stability. Additionally, dropout regularization (40% in the
first layer and 30% in subsequent layers) is employed to prevent
overfitting by randomly deactivating a subset of neurons during
training.

The output layer includes three neurons corresponding to the
target properties. A linear activation function is applied in this
layer to ensure continuous outputs. The network uses the Mean
Squared Error (MSE) as the loss function to minimize prediction
errors and the Adam optimizer for efficient weight updates dur-
ing training. To enhance the model’s generalization capability,
early stopping and learning rate reduction techniques were incor-
porated, ensuring training halts when validation loss no longer
improves.

This carefully designed architecture enables the ANN model
to generalize effectively across diverse compositions and tempera-
tures, making it a robust tool for predicting the mechanical proper-
ties of Ni-Cr-Fe alloys with minimal computational overhead.

RESULTS AND DISCUSSION

The experimental tests conducted for the proposed ANN model
demonstrated its robust capability to predict the mechanical prop-
erties of Ni-Cr-Fe alloys with high accuracy. The model was trained
and validated using a dataset generated through Computational
Materials Science (CMS) simulations, which encompassed 0.2%
proof stress, fracture stress, and Young’s modulus as target me-
chanical properties. The training and validation loss curves re-
vealed a smooth and rapid convergence, indicating that the model
effectively learned the underlying relationships in the dataset with-
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■ Table 2 The First Two Compositions (C1, C2) in the Dataset.

Ni Cr Fe Co Mo Nb Ti Al Mn Si Cu Temperature (ºC) 0.2% Proof Stress (MPa) Fracture Stress (MPa) Young’s Modulus (GPa)

67 22 5 0 0 1 2.5 0.5 1 0.5 0.5 920.0 89.27 332.99 137.5

67 22 5 0 0 1 2.5 0.5 1 0.5 0.5 900.0 165.08 551.78 139.74

67 22 5 0 0 1 2.5 0.5 1 0.5 0.5 880.0 218.35 729.71 141.92
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67 22 5 0 0 1 2.5 0.5 1 0.5 0.5 580.0 768.34 1380.38 168.64

67 22 5 0 0 1 2.5 0.5 1 0.5 0.5 560.0 767.79 1392.7 170.14

67 22 5 0 0 1 2.5 0.5 1 0.5 0.5 540.0 767.28 1404.43 171.62

66 22 5 1 0 1 2.5 0.5 1 0.5 0.5 920.0 110.51 387.26 138.29

66 22 5 1 0 1 2.5 0.5 1 0.5 0.5 900.0 176.07 582.59 140.53

66 22 5 1 0 1 2.5 0.5 1 0.5 0.5 880.0 226.97 756.4 142.73
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66 22 5 1 0 1 2.5 0.5 1 0.5 0.5 580.0 770.05 1382.07 169.35

66 22 5 1 0 1 2.5 0.5 1 0.5 0.5 560.0 769.51 1394.4 170.85

66 22 5 1 0 1 2.5 0.5 1 0.5 0.5 540.0 769.02 1406.14 172.34

out overfitting. The alignment between actual and predicted val-
ues, as visualized in the evaluation graphs, confirmed the ANN
model’s ability to generalize and accurately predict material be-
havior across diverse compositions and temperature ranges.

Furthermore, the model’s prediction errors were predominantly
centered around zero, with narrow distributions for all three me-
chanical properties, especially for Young’s modulus, which exhib-
ited the least variability. This highlights the model’s precision and
reliability in predicting alloy stiffness, alongside its robust perfor-
mance in estimating fracture and proof stress values. Additionally,
the impact of individual input features, such as temperature and
compositional elements, on the model’s predictions provided crit-
ical insights. Temperature was identified as the most influential
parameter, aligning with its dominant role in determining the me-
chanical performance of alloys. These findings demonstrate the
potential of integrating CMS simulations with machine learning
approaches to enhance the speed and accuracy of material design
processes.

Performance of AI Model As shown in Table 3, the predicted me-
chanical properties (0.2% proof stress, fracture stress, and Young’s
modulus) for specific alloy compositions at 760°C are compared
with the values obtained from JMatPro simulations. The accuracy
percentages for each property demonstrate the effectiveness of the
proposed ANN model in predicting mechanical behavior.

The fracture stress exhibits the highest accuracy, nearing 99.99%,
followed by Young’s modulus and 0.2% proof stress, both exceed-
ing 94%. This high level of accuracy confirms the model’s ability to
generalize well, even for compositions outside the training dataset.
Additionally, the minimal deviations between the predicted and
simulated values indicate that the model is robust in handling
diverse alloy compositions and conditions.

These findings emphasize the practical applicability of the
model, particularly in predicting mechanical properties at 760°C,
a temperature critical for high-performance applications. The re-
sults validate the ANN model as a reliable computational tool

for optimizing alloy design and reducing the need for extensive
experimental efforts.

As shown in Table 4, the performance of the proposed artifi-
cial neural network (ANN) model in predicting the mechanical
properties of Ni-Cr-Fe alloys was assessed using three primary
metrics: Mean Squared Error (MSE), Mean Absolute Error (MAE),
and R-squared (R²) Score. The MSE value of 296.7164 indicates the
model’s capability to minimize the squared differences between the
predicted and actual values, reflecting its ability to provide consis-
tent predictions. The MAE value of 11.6829 highlights the model’s
precision, showing that the average magnitude of prediction errors
remains low across the test dataset. Furthermore, the R² score of
0.8899 demonstrates that the model accounts for 88.99% of the
variance in the mechanical properties, confirming its robustness in
modeling the complex relationships between compositional and
thermal features. These results, as summarized in Table 4, validate
the ANN model as an effective computational tool for accurately
predicting mechanical properties, offering significant potential for
alloy design and optimization applications.

Figure 3 illustrates the performance of the proposed artificial
neural network (ANN)-based model in predicting the mechanical
properties (0.2% proof stress, fracture stress, and Young’s modulus)
of Ni-Cr-Fe alloys. The horizontal axis represents the actual values,
while the vertical axis shows the values predicted by the model.
The close alignment of data points along the y = x diagonal line
demonstrates that the model predicts the actual values with high
accuracy and without systematic errors. The three different me-
chanical properties are represented by distinct colors (blue: 0.2%
proof stress, orange: fracture stress, green: Young’s modulus). The
strong linear relationship observed across all properties indicates
that the ANN model effectively learned the relationships within
the training data. Particularly, the fracture stress predictions, rep-
resented by the orange points, show remarkable accuracy across
a wide range of values, highlighting the model’s robust perfor-
mance for this parameter. Similarly, high prediction accuracy was
achieved for 0.2% proof stress and Young’s modulus. The model
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■ Table 3 Accuracy Rates of Predicting the Mechanical Properties of the Alloy Composition Determined Outside the Dataset at
760°C Using the AI Model.

Composition (wt%) Mechanical Properties JMatPro AI Model Accuracy (%)

Ni: 61%, Ti: 2.5%, Cr: 20%, Al: 0.5%, Fe: 6%, Mn: 1%, Co: 0%, Si: 0.5%, Mo: 3%, Cu: 0.5%, Nb: 5% 0.2% Proof Stress (MPa) 809.53 881.23 91.143

Fracture Stress (MPa) 1517.01 1516.98 99.998

Young’s Modulus (GPa) 152.49 159.21 95.593

Overall Accuracy (%) 95.578

Ni: 65%, Ti: 2.5%, Cr: 18%, Al: 0.5%, Fe: 8%, Mn: 1%, Co: 1%, Si: 0.5%, Mo: 2%, Cu: 0.5%, Nb: 1% 0.2% Proof Stress (MPa) 561.3 590.21 94.849

Fracture Stress (MPa) 1216.77 1181.13 97.070

Young’s Modulus (GPa) 156.64 152.90 97.612

Overall Accuracy (%) 96.510

Ni: 63.5%, Ti: 1%, Cr: 16%, Al: 0.5%, Fe: 10%, Mn: 1%, Co: 2%, Si: 0.5%, Mo: 0%, Cu: 0.5%, Nb: 5% 0.2% Proof Stress (MPa) 649.83 654.59 99.267

Fracture Stress (MPa) 1405.87 1322.45 94.066

Young’s Modulus (GPa) 155.74 155.78 99.974

Overall Accuracy (%) 97.769

Average Accuracy Rate 96.619

■ Table 4 Evaluation of the Artificial Neural Network (ANN)
Model Performance Metrics: Mean Squared Error (MSE), Mean
Absolute Error (MAE), and R-squared (R²) Score.

Metric Value

Mean Squared Error (MSE) 296.7164

Mean Absolute Error (MAE) 11.6829

R-squared (R²) Score 0.8899

was trained on a dataset of 1000 rows generated using CMS (Com-
putational Materials Science) simulations and achieved high accu-
racy rates (over 95%) on test and validation datasets. This result
demonstrates the ANN model’s capability to effectively capture
the complex compositional and temperature-dependent relation-
ships of Ni-Cr-Fe alloys, supporting the reliability of the proposed
methodology. These findings align with the overall results of the
study and underscore the efficacy of integrating CMS-generated
datasets with AI models, offering significant time and cost advan-
tages compared to experimental approaches. Consequently, the
graph highlights the practical potential of the proposed model in
advancing alloy design and optimization.

As shown in Figure 4, this chart illustrates the relative impor-
tance of input features in predicting mechanical properties using
the proposed ANN model. The x-axis represents the importance
scores, while the y-axis lists the input features, including temper-
ature and elemental compositions. Among the features, temper-
ature (°C) stands out as the most influential factor, indicating its
dominant role in determining the mechanical properties of Ni-
Cr-Fe alloys. Elements such as Ti, Nb, and Ni exhibit moderate
importance, while elements like Cu, Si, and Mn have minimal
impact. These results emphasize the critical role of temperature
and specific elements in alloy design and optimization processes
and demonstrate the ANN model’s ability to accurately capture

Figure 3 Comparison of Actual and Predicted Mechanical Proper-
ties: 0.2% Proof Stress, Fracture Stress, and Young’s Modulus

these complex interactions.

As shown in Figure 5, this correlation matrix illustrates the
relationships among the input features (elemental compositions
and temperature) and the mechanical properties (0.2% proof stress,
fracture stress, and Young’s modulus) in the proposed model. The
color scale represents the strength and direction of the correlation,
with dark red indicating strong positive correlation (+1.00) and
dark blue indicating strong negative correlation (-1.00). The ma-
trix reveals strong negative correlations between temperature and
Young’s modulus (-0.98), 0.2% proof stress, and fracture stress
(-0.76), highlighting the decline in mechanical properties with
increasing temperature. Among the elemental compositions, a
notable negative correlation is observed between Ni and Cr (-0.57),
while Cr and Ti exhibit a positive correlation (+0.30). Addition-
ally, strong positive correlations are observed between mechanical
properties, such as 0.2% proof stress and fracture stress (+0.95).
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Figure 4 Impact of Input Features on Prediction: Relative Impor-
tance of Temperature and Elemental Compositions

This matrix underscores the complex interdependencies between
input features and mechanical properties effectively captured by
the model.

Figure 5 Analysis of Correlations Between Input Features and Me-
chanical Properties: Effects of Temperature and Compositions

As shown in Figure 6, the predicted mechanical properties (0.2%
proof stress, fracture stress, and Young’s modulus) of three new
alloys (Alloy 1, Alloy 2, and Alloy 3) are presented for comparison.
The x-axis represents the different alloys, while the y-axis indicates
the predicted values for each mechanical property. Among the
properties, fracture stress (orange bars) shows the highest values
across all three alloys, highlighting their strong resistance to frac-
ture. Alloy 1 exhibits the highest fracture stress, outperforming
Alloy 2 and Alloy 3 in terms of overall durability. Similarly, 0.2%
proof stress (blue bars) is slightly lower but consistent among the
three alloys, with Alloy 1 again showing a marginally higher value,
indicating its superior resistance to elastic deformation. Young’s
modulus (green bars), representing stiffness, is the lowest among
the three properties and displays minimal variation between the
alloys. This suggests that the stiffness of these alloys remains rel-
atively constant despite differences in fracture and proof stress.

Overall, Alloy 1 demonstrates the best mechanical performance,
particularly in fracture stress and proof stress, making it the most
durable of the three new alloys.

Figure 6 Predicted Mechanical Properties for New Alloys

As shown in Figure 7, this graph illustrates the error distribu-
tions of the predicted values for 0.2% proof stress (blue), fracture
stress (orange), and Young’s modulus (green). The x-axis repre-
sents the error values, while the y-axis shows the frequency of
predictions within those error ranges. The error distributions for
all three properties are centered around zero, indicating that the
model is unbiased and provides accurate predictions. Among
the distributions, Young’s modulus (green) exhibits the narrow-
est range, suggesting higher precision for this property compared
to the others. In contrast, fracture stress (orange) has a slightly
wider distribution, indicating greater variability in its predictions.
Despite this, the errors remain concentrated around zero for all
properties, highlighting the robustness of the model. The near-
symmetry of the distributions confirms that the model neither
systematically overestimates nor underestimates the values. A
few outliers exist at the extreme ends, but their frequency is mini-
mal, demonstrating that large errors are rare. Overall, the model
achieves reliable and consistent predictions for all mechanical prop-
erties, with particularly strong performance in predicting Young’s
modulus.

Figure 7 Training and Validation Loss Progression Across 500
Epochs for the Proposed ANN Model
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As shown in Figure 8, this graph illustrates the progression of
training loss (blue line) and validation loss (orange line) for the
proposed ANN model over 500 epochs. The x-axis represents the
number of epochs, while the y-axis shows the loss values, which
indicate the error in the model’s predictions. Both training and val-
idation losses start at high values and decrease significantly during
the initial phase, particularly in the first 100 epochs, demonstrating
the model’s ability to learn and reduce prediction errors effectively.
After approximately 200 epochs, the losses converge to similar
values, with both training and validation loss stabilizing near zero,
indicating that the model has achieved a high level of accuracy
and generalization. The lack of divergence between the two curves
suggests that the model does not overfit the training data, as the
validation loss closely follows the training loss throughout the
process. This smooth and consistent convergence highlights the
robustness of the model and the effectiveness of the training proce-
dure in minimizing errors while maintaining good performance
on unseen data. Overall, the graph confirms the reliability and
efficiency of the ANN model in learning the complex relationships
within the dataset.

Figure 8 Training and Validation Loss Progression Across 500
Epochs for the Proposed ANN Model

The results of this study demonstrate the effectiveness of inte-
grating Computational Materials Science (CMS) simulations and
artificial intelligence, specifically artificial neural networks (ANNs),
in predicting the mechanical properties of Ni-Cr-Fe alloys. The
high accuracy of the ANN model, validated by its strong alignment
with simulation data and minimal prediction errors, highlights its
potential as a reliable computational tool for alloy design. By ac-
curately predicting 0.2% proof stress, fracture stress, and Young’s
modulus across various compositions and temperatures, the model
addresses the challenges of experimental limitations, such as time-
consuming procedures and high costs.

The model’s ability to generalize well to unseen compositions
was confirmed by its performance on test datasets, where predic-
tion errors were centered around zero with limited outliers. Fur-
thermore, the correlation matrix analysis revealed the dominant
role of temperature in determining mechanical properties, along-
side significant contributions from specific elemental compositions
like Ti, Nb, and Ni. This aligns with prior studies that empha-
size the importance of temperature and compositional effects on
material behavior.

This approach provides a scalable alternative to traditional
experimental methods, allowing rapid exploration of composi-
tional spaces and optimization of material properties for high-

performance applications. The study underscores the potential
of combining CMS-generated datasets with machine learning to
accelerate material development, reduce dependency on costly
experiments, and improve the precision of alloy design processes.
Future work may focus on expanding the dataset to include ad-
ditional compositions and thermal conditions, further enhancing
the model’s predictive capabilities and applicability in diverse
industrial contexts.

CONCLUSION

The findings of this study demonstrate the effectiveness of inte-
grating Computational Materials Science (CMS) simulations with
artificial neural networks (ANNs) for predicting the mechanical
properties of Ni-Cr-Fe alloys. The proposed ANN model achieved
high accuracy in estimating 0.2% proof stress, fracture stress, and
Young’s modulus across diverse alloy compositions and tempera-
tures, as validated by metrics such as a low Mean Squared Error
(MSE) of 296.7164 and a high R-squared (R²) score of 0.8899. These
results confirm the model’s capability to capture complex nonlinear
relationships between input features and target properties, making
it a valuable computational tool for alloy design and optimization.

One of the key advantages of this approach is its ability to
minimize the dependency on time-consuming and expensive ex-
perimental procedures. By leveraging CMS-generated datasets, the
model provides rapid and reliable predictions, enabling efficient
exploration of large compositional spaces. The high generaliza-
tion capability of the ANN model further supports its application
in real-world scenarios, particularly in industries requiring high-
performance materials, such as aerospace, energy, and automotive
sectors.

Future work could focus on expanding the dataset to include
additional alloy compositions, broader temperature ranges, and
other critical properties to enhance the model’s applicability. Addi-
tionally, exploring advanced machine learning techniques, such as
ensemble learning or transfer learning, may further improve pre-
dictive accuracy. The integration of experimental validation with
machine learning predictions could also provide a comprehensive
framework for advancing material science research. Overall, the
study highlights the potential of AI-driven approaches in acceler-
ating material design, reducing costs, and achieving more precise
predictions in alloy development.
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