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ABSTRACT In this study, the performance of the YOLOv8 model in detecting sugar beets was evaluated using
images obtained from a drone over a sugar beet field. High-resolution drone images were divided into small
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segments, labeled, and the model was trained using data augmentation techniques. The results obtained  tion

during the training and testing phases demonstrated that the model successfully detected sugar beets with
high accuracy, precision, recall, and F1 score values. The analysis of label correlograms and result graphs
confirmed the model’s labeling accuracy and detection capability. These findings indicate that the YOLOv8
model can be an effective tool in agricultural production monitoring and plant health assessment applications.
In the future, the model’s performance will be more comprehensively evaluated using datasets obtained from

different geographical regions and various agricultural products.
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INTRODUCTION

Sugar beet is a significant crop worldwide and plays a crucial
role in global food security and economy (Yalginkaya et al. 2006).
With its high sugar content, sugar beet is a vital component in
sugar production, which is a fundamental food item in many
households worldwide (Semerci 2016). The crop is cultivated in
various parts of the world, including major producers like the
United States, France, and Germany. Sugar beet cultivation is a
complex process that requires careful planning, precise irrigation,
and timely harvesting to ensure optimal yields (Yal¢inkaya et al.
2006).

Sugar beet is also a significant crop in Turkey, especially in the
eastern regions where the climate is more favorable for agriculture
(Tursun 2016). The country has a long history of sugar beet produc-
tion dating back to the early 20th century. Today, Turkey is one of
the largest sugar beet producers globally, with a significant portion
of its production coming from eastern provinces (Semerci 2016).
The country’s sugar beet industry is supported by a network of
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sugar factories, processing plants, and research institutions work-
ing together to increase yields, reduce costs, and improve overall
efficiency.

Drone technologies offer revolutionary innovations in the agri-
cultural sector and are used in areas such as monitoring plant
health, managing irrigation, and increasing crop Drone technolo-
gies offer revolutionary innovations in the agricultural sector and
are used in areas such as monitoring plant health, managing ir-
rigation, and increasing crop productivity. For instance, aerial
photography and multispectral imaging with drones enable farm-
ers to analyze field conditions more quickly and accurately (Zhang
and Kovacs 2012). These technologies offer time and cost savings
in critical agricultural processes such as disease and pest detection,
and unmanned aerial vehicles provide a much more effective solu-
tion for surveying large agricultural areas in a short time compared
to traditional methods (Tsouros et al. 2019). The development of
these technologies paves the way for more sustainable and effi-
cient practices in agricultural activities. With the increasing use of
unmanned aerial vehicles in agricultural production, studies on
the integration and optimization of these technologies are gaining
momentum (Bendig et al. 2013).

Artificial intelligence and image processing methods are fun-
damentally transforming data analysis and decision-making pro-
cesses in the agricultural sector. Specifically, object detection and
classification algorithms provide high accuracy in the analysis of
agricultural images (Kamilaris and Prenafeta-Bold 2018). Deep
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learning models such as YOLO (You Only Look Once) offer ef-
fective solutions for the automatic identification and monitoring
of agricultural products (Redmon et al. 2016). These algorithms
can be trained on large datasets and provide valuable insights
into plant health and productivity (Chlingaryan et al. 2018). Ad-
ditionally, Al-supported image processing techniques are used
in the autonomous management of agricultural machinery and
precision farming applications. The adoption of Al and image pro-
cessing technologies in agriculture enhances the optimization and
sustainability of production processes (Chlingaryan ef al. 2018).

The journey from YOLO-v1 to YOLO-v8 showcases the continu-
ous improvement and adaptability of these models. (Hussain 2023)
discusses the progression and complementary nature of YOLO
models, emphasizing their integration into digital manufactur-
ing and defect detection. (Talaat and ZainEldin 2023) propose an
enhanced fire detection approach for smart cities utilizing YOLO-
v8, highlighting its efficacy in real-time scenarios. (Terven et al.
2023) provide a comprehensive review of YOLO architectures, not-
ing the advancements up to YOLO-v8 and the introduction of
YOLO-NAS, which further enhance performance and accuracy in
computer vision tasks. Additionally, (Kim et al. 2023) demonstrate
the application of YOLO-v8 in high-speed drone detection, un-
derlining its capability in rapid and precise object identification.
These studies collectively illustrate the versatility and robust per-
formance of YOLO-v8 across diverse applications, marking it as a
pivotal development in the field of computer vision.

Modern approaches in sugar beet production involve the inte-
gration of new technologies to increase efficiency and ensure envi-
ronmental sustainability. Advanced agricultural machinery and
sensor systems enable more efficient management of sugar beet
fields (Hoffmann and Kenter 2018). These systems continuously
monitor soil moisture, plant health, and growth rates, providing
farmers with real-time data. This allows for the optimization of
precision farming practices, fertilization, and irrigation processes,
thereby minimizing environmental impacts (Weiss et al. 2020).Mod-
ern biotechnology methods also play a significant role in the devel-
opment of disease-resistant and high-yielding sugar beet varieties.
These innovative approaches contribute to increased sustainability
and economic gains in sugar beet production (Kumar et al. 2016).

The use of drone and artificial intelligence technologies in
agriculture has the potential to further improve agricultural pro-
duction processes in the future (Kaya and Goraj 2020). Al algo-
rithms, integrated with big data analytics, can provide decision
support systems at every stage of agricultural production processes
(Wolfert et al. 2017). These technologies will enhance the agricul-
tural sector’s ability to adapt to global challenges such as climate
change and population growth (Rose et al. 2016). Additionally,
data-sharing platforms and smart farming networks will facilitate
farmers’ access to information, contributing to the creation of a
collective knowledge base. The widespread adoption of drone
and Al technologies in agriculture will enable the development of
more sustainable, efficient, and resilient agricultural systems in the
future (Eastwood et al. 2019).

MATERIALS AND METHODS

Dataset and Resources

The dataset used in this study consists of high-resolution drone
images of sugar beet fields obtained from the internet. The images
contain sugar beet plants in the green leafy growth stage. To ensure
the accuracy and diversity of the images, the dataset, comprising
271 images, was divided into small segments and augmented using
various data augmentation techniques. Each image segment was
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cropped to include sugar beet plants prominently. Subsequently,
the images were manually labeled. The labeling process was car-
ried out carefully and meticulously to provide accurate data and
enhance the training performance of the model.

The artificial intelligence model was developed following the
“Machine Learning Lifecycle” depicted below and in Figure 1.

1. Data
| Collection |
— " v ‘.\ J—
ya —~— IS ~
7. Presentation| 2. Daﬁll

\ / | Preparation |

{ & Model | [ 3Daa
Testing | | Cleaning |

y .
[ 5 Modsl ..I S Il 4. Data

\ Training | L Analysis

Figure 1 Machine Learning Lifecycle

Artifical Intelligence

With the advancement of technology today, artificial intelligence, a
subject that continues to evolve, made its debut during a meeting
in 1956, introduced by John McCarthy (Yilmaz et al. 2020). Artifi-
cial learning entails the ability of a computer or a machine under
computer control to make decisions using mechanisms resembling
those of living beings that can learn (Ozel, M. A. and Baysal, S.
S. and Sahin, M. 2021). In short, Artificial learning (AI) aims to
replace human intelligence with machine intelligence (Munakata
1998). Artificial learning systems are those that interpret complex
data through various methods to make it more understandable and
improve themselves based on the experiences they gain (Aksoy
et al. 2021).
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Figure 2 (a) A neuron model preserving the natural neuron image.
(b) Another representation of the model (Munakata 1998)

A biological neuron is the fundamental building block of the
nervous system. Its main function is to facilitate the transmission
of information. It receives, transmits, and responds to stimuli. The
artificial neuron shares similarities with it, consisting of structures
such as axon, synapse, dendrite, myelin sheath, and nucleus. After
defining the neural network architecture, the network enters the
training phase. In this stage, the network learns by iteratively ad-
justing the weights of its connections based on provided examples
(Munakata 1998).
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Artifical Neural Networks

Artificial neural networks gained recognition through a study con-
ducted by Warren McCulloch and Walter Pitts in 1943. They belong
to the subset of artificial intelligence. The mathematical modeling
of the neural structure of the human brain, for learning from expe-
riences and remembering methods, is referred to as artificial neural
networks. The aim is to model the neuron network of the brain to
transfer the learning and decision-making process of the human
brain to the computer environment. A neural network (NN) is an
abstract computer example of the human brain (Munakata 1998).

Activation
Function

Perceptron

b Wi Wy W3 W, - Weights of Connections

X, X, X, X, - Input | b - Bias

Figure 3 Mathematical model of a neuron (Tan et al. 2021)

Artificial neural networks are composed of artificial neurons.
They have five basic components: inputs, weights, summation
function, activation function, and outputs. Single-layer neural
networks consist of input and output layers. These layers are
generally used to solve linear problems. There can be one or more
neurons in the layers (Yilmaz et al. 2020).

Machine Learning

In 1950, Alan Turing anticipated the development of the concept
of machine learning and its future impact. Machine learning, a
method used in artificial intelligence studies, is considered a subset
of artificial intelligence. Deep learning is also a subset of machine
learning. The relationship between artificial intelligence, machine
learning, and deep learning is shown in Figure 4 (Tan et al. 2021).

The manual processing and analysis of very large datasets are
not feasible. To address these problems, Machine Learning (ML)
methods have been developed. Machine learning is the general
term for computer algorithms that model a problem based on the
data specific to that problem. The model created with the available
dataset and the algorithm used are designed to perform optimally
(Atalay and Celik 2017).

Deep Learning

Following AlexNet'’s victory in the ImageNet competition in 2012,
deep learning models began to be used in subsequent competitions.
Deep learning is a subclass of machine learning with one or more
hidden layers to gradually extract high-level features from raw
data (Kazang et al. 2021).

Deep learning can successfully analyze large datasets and can
be applied to any field where data is available (Tan et al. 2021). The
widespread success of deep learning is attributed to its method
of computing outputs. A significant advantage of deep learning
compared to traditional techniques is that it does not require an
explicit feature extraction stage (Bozkurt 2021).
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Figure 4 Artificial Intelligence Architecture (Arslan 2021)

Due to advancements in hardware, there has been an increased
focus on deep learning studies, which has in turn improved object
detection success rates. R-CNN, Faster R-CNN, Single Shot Detec-
tor (SSD), and YOLO are some of the deep learning-based object
detection methods.

Among these methods, the YOLO algorithm and the DarkNet
model offer high processing speed and accuracy. Experiments
were conducted for four different versions of the algorithm, and
the results were compared. The best results in terms of detection
accuracy and speed were achieved with Version-4 algorithm. The
success of deep learning methods has been proven in ImageNet
classification competitions (Segkin 2021).

Training and Optimization of YOLOv8 Model

YOLOVS is a model developed for real-time object detection and
offers significant improvements over its previous versions. One
of the biggest advantages of YOLOVS is its ability to provide high
accuracy at high speed (Redmon ef al. 2016). The model has been
optimized for sugar beet detection and trained on the dataset
prepared for this study. YOLOVS has the ability to detect objects in
a single network without incorporating complex components like
region proposal networks (Bochkovskiy et al. 2020).

Various data augmentation techniques were used during the
model training process. Images were processed with techniques
such as rotation, scaling, brightness, and contrast adjustments.
These techniques were used to improve the model’s generalization
ability. The hyperparameters of YOLOv8 were optimized during
the training process; these hyperparameters include factors such
as learning rate, batch size, and number of epochs. During train-
ing, the performance of the model on training and validation sets
was monitored, and necessary adjustments were made. The loss
function was carefully selected to improve the model’s accuracy.
The loss function of YOLOvVS focuses on minimizing classification
and localization errors.

Additionally, the architecture of the model has been optimized
for both speed and accuracy. YOLOvVS can provide fast results even
on large datasets with efficient memory usage and computational
requirements (Sokolova and Lapalme 2009). The output layers of
the model provide class predictions and bounding box coordinates
for each object. In this study, the performance of YOLOv8 was
evaluated using metrics such as accuracy, error rate, precision,
recall, and F1 score. The results showed that the model achieved
high accuracy and efficiency in sugar beet detection.



Evaluation Metrics

The performance of the model was evaluated using metrics such
as accuracy, loss, precision, recall, F1 score, and mean Average
Precision (mAP).

Accuracy Accuracy represents the ratio of correct predictions made
by the model to the total predictions. In a classification problem,
accuracy is calculated as the ratio of correctly classified examples
to the total examples.

TP (True Positives): Correctly predicted positive instances. TN
(True Negatives): Correctly predicted negative instances. FP (False
Positives): Incorrectly predicted positive instances. FN (False
Negatives): Incorrectly predicted negative instances.

TP+TN
TP+TN+FP+FN

Accuracy = (1)
Precision Precision is a metric that represents the ratio of correct
detections made by the model to the total detections. This metric
is particularly important to assess the impact of false positives.
A high precision value indicates that the majority of detections
made by the model are correct. It measures the accuracy of the
positive predictions made by the model and is calculated using the
following formula:

. TP

Precision = TP+ D (2)
Recall Recall, also known as sensitivity or true positive rate, mea-
sures the ratio of correct detections made by the model to the total
number of actual objects. This metric is particularly important to
assess the impact of missed positives (false negatives). A high re-
call value indicates that the model successfully detects all available
sugar beets. Recall measures how well the model detects all sugar
beets and is calculated using the following formula:

TP

Recall = m

3)
F1 Score F1 score represents the harmonic mean of precision and
recall, summarizing the overall performance of the model. This
metric balances precision and recall, providing a single value to
evaluate the model’s performance. It is calculated using the fol-
lowing formula:

Precision x Recall
Precision + Recall
The F1 score is an important metric, especially in imbalanced
datasets, because it considers both correct detections and missed
detections.

Mean Average Precision (mAP) mAP measures the average accu-
racy performance of the model across all classes. This metric is ob-
tained by averaging the Average Precision (AP) values calculated
for each class. mAP represents the overall detection performance
of the model and is calculated using the following formula:

1 N
mAP = N Y AP, 5)
i=1

Here, N represents the total number of classes, and AP repre-
sents the Average Precision value calculated for each class. mAP is
an important metric when evaluating the overall performance of
the model because it considers the performance across all classes.
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RESULTS

This study evaluated the performance of the YOLOv8 model for
sugar beet detection, and the results were promising. Various data
augmentation techniques were employed during the model train-
ing to increase the diversity of the dataset and enhance the model’s
generalization ability. After applying these augmentation tech-
niques, the dataset expanded to 1355 images. The F1 score graph
obtained after the training process demonstrates that the model
exhibits high performance in terms of accuracy and precision. In
the F1 score graph, it is evident that the accuracy improves and
errors decrease as the training progresses.
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Figure 5 F1 Score Graph

IN-TEXT CITATIONS

A labels correlogram image was used to analyze the correlation
between labels and the model’s labeling accuracy. This analysis
confirms that the model consistently produces accurate labeling.
The correlogram shows the relationship between each label and
other labels, as well as how accurately the model detects each label.
This demonstrates how well the model distinguishes between
similar-looking objects and how precise it is.

Additionally, as is seen from in the result graph the sugar beet
plants detected by the model are accurately identified, and the
bounding boxes are correctly placed.

The images used in the testing process were selected to evaluate
how the model would perform in real-world applications. The
analysis of the test images shows that the model can successfully
detect sugar beet plants. The number and locations of sugar beet
plants detected by the model were verified by comparing them
with ground truth values. These test images demonstrate the
practical application potential of the model in the field.

As a result, it has been observed that the YOLOv8 model pro-
vides 96.3% accuracy and efficiency in sugar beet detection. The
model has yielded successful results in both the training and test-
ing phases. The findings of this study may contribute to productiv-
ity and plant health monitoring efforts in sugar beet fields. In the
future, it is planned to test the model on larger and more diverse
datasets and adapt it to different agricultural products.

Computer Science
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Figure 6 Training and Validation Result Graphs
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DISCUSSION

This study aimed to evaluate the effectiveness of the YOLOvVS
model in detecting sugar beets using drone imagery. The results
obtained demonstrate that the model can accurately and precisely
detect sugar beets. The data augmentation techniques employed
during the model’s training process have increased the diversity
of the dataset and enhanced the model’s generalization capability.
This has enabled the model to perform successfully not only in spe-
cific environments but also in different environmental conditions.

Computer Science

Figure 8 Test Image

PERFORMANCE METRICS AND EVALUATION OF RESULTS

The evaluation metrics of the model include various criteria such
as accuracy, precision, recall, F1 score, and mAP. The result of the
performance metrics can be seen in Table 1. Precision measures
the ratio of correct detections made by the model, while recall
evaluates how well the model can detect all true sugar beet plants
[30]. The obtained high precision and recall values indicate that
the model minimizes both false positives and false negatives. The
F1 score summarizes the overall performance of the model by
providing a balanced combination of these two metrics.



Table 1 Performance Metrics

Accuracy F1

Recall mAP

96.3% 96%

94.9% 97.4%

The obtained F1 score graph illustrates how the accuracy and
error rates of the model improved over time during the training
process. It's observed that the model’s accuracy increased and
errors decreased as the training progressed. This indicates the
model’s learning capacity and its ability to adapt to the dataset.
Additionally, the labels correlogram image allows us to analyze
the labeling accuracy and correlation between labels. This analysis
confirms that the model produces consistent and accurate labeling.

REAL-WORLD APPLICATIONS OF THE MODEL

The images used during the testing phase were selected to simulate
real-world conditions. The analysis of these test images demon-
strates that the model can successfully detect sugar beets. This
finding indicates that the model can be practically used in agri-
cultural applications. Particularly, such a model is believed to
have significant potential for monitoring field productivity and
assessing plant health.

LIMITATIONS AND FUTURE WORK

This study has several limitations. Firstly, the dataset used consists
of images obtained from a single field. Evaluating the model’s
performance with datasets obtained from different geographical
regions and varying climate conditions is essential for generaliz-
ability. Additionally, exploring the applicability of the model to
other agricultural products could be an important research topic
for future studies.

In the future, the model is planned to be tested on larger and
more diverse datasets. Additionally, the aim is to further enhance
the model’s performance by exploring different deep learning
models and data augmentation techniques. Such studies could
provide more effective and efficient solutions for monitoring and
managing agricultural production.

CONCLUSION

This study has demonstrated that the YOLOv8 model provides
high accuracy and efficiency in sugar beet detection. The model has
shown successful results in both the training and testing phases.
The findings obtained can contribute significantly to productivity
and plant health monitoring in agricultural production. Such deep
learning models offer significant potential for digital transforma-
tion and smart farming applications in the agricultural sector.
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