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ABSTRACT
Imbalanced datasets pose significant challenges in various fields including the classification of medical condi-
tions such as diabetes. This study investigates six methodologies for handling imbalanced diabetes datasets
aiming to enhance classification performance through diverse preprocessing techniques. The methodologies
are evaluated using multiple models: Logistic Regression, Decision Tree, Random Forest, Gradient Boosting,
SVM, KNN, Naive Bayes, XGBoost, LightGBM, and CatBoost. The preprocessing techniques include simple
implementation, data standardization, normalization, standardization with K-Fold cross-validation, and two
variations incorporating the SMOTE oversampling technique. The effectiveness of each methodology is
assessed based on accuracy, precision, recall, and F1 scores across different classifiers. Results indicate that
standardization combined with K-Fold cross-validation consistently enhances model performance. Additionally,
the integration of the SMOTE technique significantly improves results, especially for Gradient Boosting and
SVM classifiers. Among the tested models, CatBoost demonstrated exceptional performance in handling
imbalanced datasets, achieving an accuracy of 95.18%, precision of 91.10%, recall of 95.52%, and an F1
score of 93.26%. This study underscores the importance of tailored preprocessing techniques in improving
the classification of imbalanced medical datasets, highlighting their potential to enhance predictive accuracy in
critical applications.
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INTRODUCTION

Diabetes is a long-term metabolic disease characterized by hyper-
glycemia (elevated blood glucose levels) due to deficiencies in the
function of insulin secretion or both that damages the heart, blood
vessels, eyes, kidneys, nerves, and heart over time (Association
2009). The most common kind of diabetes, Type 2, usually ap-
pears in adulthood as a result of either insufficient or resistant
insulin production. Over the past 30 years, its prevalence has
skyrocketed globally across all income categories. The hallmark
of type 1 diabetes, also known as juvenile or insulin-dependent
diabetes, is insufficient insulin production by the pancreas. For
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those with diabetes, having affordable access to treatment—in par-
ticular insulin—is essential. By 2025, the global goal is to stop the
rise in diabetes and obesity. Approximately 422 million people
worldwide suffer from diabetes, most of whom live in low- and
middle-income countries. The disease is directly responsible for
1.5 million fatalities per year. Over the past few decades, there
has been a steady increase in both the number of cases and the
incidence of diabetes. Therefore, a tool that can help physicians
identify this fatal disease earlier and halt its course is desperately
needed (Abdulhadi and Al-Mousa 2021).

Machine learning techniques offer immense potential to en-
hance medical research and clinical care, particularly as providers
increasingly utilize electronic health records. Two areas ready
to benefit from the application of ML in the medical field are
diagnosis and outcome prediction (Shivahare et al. 2024). This
encompasses the potential identification of high-risk scenarios for
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medical emergencies, such as relapse or transitioning into another
disease state (Sidey-Gibbons and Sidey-Gibbons 2019). Recent
successes include predicting the progression from pre-diabetes to
type 2 diabetes using routinely-collected electronic health record
data (Anderson et al. 2016).

Though in machine learning and AI, class imbalance in datasets
is a common issue in real-world dataset analysis, particularly in
industries like healthcare, finance, and telecommunications. It
can lead to negative effects if incorrectly classified minority cases
are identified. Two strategies have been developed in research:
external techniques to rebalance distributions before training and
internal algorithms to manage imbalance directly. The research
aims to provide solid solutions for handling class imbalance in
real-world data analysis situations (Ramyachitra and Manikandan
2014).

Several studies have explored predicting diabetes using various
datasets and criteria resulting in varying accuracies and perfor-
mance levels. Chang et al. (2022) evaluated interpretable machine
learning models within the Internet of Medical Things (IoMT)
using the Pima Indians diabetes dataset with random forest out-
performing Naïve Bayes and J48 decision tree across multiple
metrics (Chang et al. 2023). Naz & Ahuja (2020) focused on pre-
dicting diabetes onset achieving high accuracy rates with Deep
Learning showing the highest accuracy (Naz and Ahuja 2020).
Rajni & Amandeep (2019) introduced the RB-Bayes framework
combining methods to improve prediction accuracy emphasizing
early detection (Rajni and Amandeep 2019). Bhoi et al. (2021)
employed multiple machine learning algorithms with Logistic Re-
gression emerging as the top performer (Bhoi et al. 2021). Patra &
Khuntia (2021) introduced the sdknn classifier showing significant
improvement over conventional techniques (Patra and Khuntia
2021). Miao (2021) developed prediction models highlighting glu-
cose, insulin, and BMI’s correlations with diabetes and the Support
Vector Classifier’s potential (Miao 2021). Mousa et al. (2023) exam-
ined machine-learning models for diabetes diagnosis with LSTM
performing best in capturing temporal dependencies (Mousa et al.
2023).

The prediction of diabetes using various machine learning mod-
els has been a topic of extensive research yielding diverse levels of
accuracy and performance. Numerous algorithms have been used
in studies ranging from interpretable models like Naive Bayes and
random forest to deep learning strategies and ensemble frame-
works that combine several techniques. Even though research
shows notable improvements, the problem of class imbalance in
diabetes datasets continues to be a major barrier to predictive ac-
curacy. This study aims to address the problem of imbalanced
diabetes datasets by investigating six methodologies to enhance
classification performance through diverse preprocessing tech-
niques. We evaluate the effectiveness of these methodologies us-
ing multiple models including Logistic Regression, Decision Tree,
Random Forest, Gradient Boosting, SVM, KNN, Naive Bayes, XG-
Boost, LightGBM, and CatBoost. The preprocessing techniques
explored include simple implementation, data standardization,
normalization, standardization with K-Fold cross-validation, and
two variations incorporating the SMOTE oversampling technique.
The models’ effectiveness is assessed based on accuracy, precision,
recall, and F1 scores. This study underscores the importance of
tailored preprocessing techniques in improving the classification
of imbalanced medical datasets, highlighting their potential to
enhance predictive accuracy in critical applications.

Figure 1 Graphical abstract of the proposed method

METHODOLOGY AND MATERIAL

In our study, we employ a comprehensive methodology to address
the challenge of imbalanced datasets. Through detailed explo-
ration, we delve into various preprocessing techniques, validation
strategies, and data splitting methodologies to confront this is-
sue head-on. Our approach involves precise experimentation to
analyze the methods and differences between these approaches, re-
vealing their strengths and weaknesses. By examining the results,
we pointed out the most effective approach, one that not only
mitigates data imbalance effects but also maximizes predictive
performance. Our dedication to methodical exploration ensures
optimal results and a deeper understanding of the underlying
dynamics within our datasets.

Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) is a crucial first step in the knowl-
edge discovery process, where data scientists use a series of analy-
sis operations (such as filtering, aggregating, and visualizing data)
to interactively explore unknown datasets (Milo and Somech 2020).
Before formal modeling, graphical representations, and visualiza-
tions, EDA seeks to conduct preliminary data investigations to find
patterns, evaluate presumptions, and test hypotheses. Explanatory
and comparative charts are a common feature of data visualiza-
tions, which help to clearly convey both concrete and abstract
concepts. When issues are identified and resolved, the accuracy
of diabetes diagnosis can be increased. Key aspects and hidden
trends in the data can be summarized to help detect difficulties (?).
Through Table 1, Figure 2, and Figure 3, some substantial insights
of the PIMA dataset were illustrated with understandable visuals.

Understanding and Visualizing Data

This dataset includes data from studies on diabetes among women
who identify as Pima Indian and who live in Phoenix, Arizona,
USA. The women in the dataset are 21 years of age and older. It has
eight different numeric variables and 768 entries (?). The selected
target variable classes are labeled as follows: 1 denotes a positive
diabetes test, while 0 denotes a negative test. The name of the
dataset, descriptions of the data types, and corresponding roles
are shown in Table 1. EDA clarified the dataset and showed that it
included 268 individuals with diabetes and 500 values of sample
patients who were not diabetic. This makes the imbalance in the
dataset its primary challenge. For reference, refer to Figure 3.
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■ Table 1 Dataset description

Main Criteria Data Type Input/Target Notes

Outcome Categorical Target 0: No diabetes / 1: Diabetes

Pregnancies Numerical Input -

Glucose Numerical Input -

Blood Pressure Numerical Input -

Skin Thickness Numerical Input -

Insulin Numerical Input -

BMI Numerical Input -

Diabetes Pedigree Function Numerical Input -

Age Numerical Input -

■ Table 2 Statistical summary of the dataset

Count Mean Std Min 25% 50% 75% Max

Pregnancies 768 3.845 3.37 0 1 3 6 17

Glucose 768 120.895 31.973 0 99 117 140.25 199

Blood Pressure 768 69.105 19.356 0 62 72 80 122

Skin Thickness 768 20.536 15.952 0 0 23 32 99

Insulin 768 79.799 115.244 0 0 30.5 127.25 846

BMI 768 31.993 7.884 0 27.3 32 36.6 67.1

Diabetes Pedigree Function 768 0.472 0.331 0.078 0.244 0.372 0.626 2.42

Age 768 33.241 11.76 21 24 29 41 81

Outcome 768 0.349 0.477 0 0 0 1 1

Pre-processing of the Data

Pre-processing is the primary prerequisite for working with
datasets. Firstly, outliers in the dataset are addressed using Z-score
calculation, where data points exceeding a specified threshold are
replaced with NaN values. Subsequently, missing values and zero
values in specific columns are handled. The only columns which
are excluded from the zero values checking are the “Pregnancies”
because it’s a true value that many women haven’t been pregnant
before, and the “Outcome” column because 0 there demonstrates
no diabetes diagnosis. Initially, missing values are identified and
replaced with the mean of their respective columns. Then zero
values in selected columns are replaced with the mean value as
well. Then the data was split into 2 splits: training with 80% of the
data and testing with 20%. Finally, a confirmation of the replace-
ments is provided. Cumulatively, these processes guarantee that
the dataset is free of outliers, NaNs, missing data, and zero values,
making it appropriate for activities involving machine learning.

K-Fold Cross-Validation

To assess the generalization performance of the models, K-Fold
cross-validation is employed with a predefined number of folds
(k=5) (Murugan et al. 2023). This technique divides the dataset
into k subsets, with each subset serving as a testing set and the
remaining data as the training set. The procedure is repeated k
times, and the average performance metrics across all folds are
determined, assuring the models’ durability and dependability
beyond the original train-test split (Sohil et al. 2013).

Imbalanced Dataset and Solution

Classifiers are designed to categorize objects based on their at-
tributes. However, in practical scenarios, datasets often exhibit
class imbalance, where certain classes have significantly fewer
instances compared to others. This class imbalance poses a chal-
lenge for traditional classification algorithms as they tend to be
less accurate in predicting minority classes. This phenomenon
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Figure 2 Distribution of the 6 input columns values [Pregnancies, Glucose, Blood Pressure, Skin Thickness, Insulin, BMI, Diabetes Pedi-
gree Function, Age]

Figure 3 Outcome column values distribution [classification
goal]

is known as the class imbalance problem. To address this issue,
various techniques have been proposed, including over and under-
sampling methods (Pradipta et al. 2021). Examples of that are
SMOTE (Synthetic minority oversampling approach), ADASYN
(Adaptive Synthetic Sampling Method), Borderline-SMOTE, and
Safe-Level SMOTE (Gosain and Sardana 2017). These techniques
aim to rebalance the dataset by adjusting the class distribution,
thereby enhancing the performance of classification algorithms
on imbalanced data (Pradipta et al. 2021). To address the issue of
imbalanced dataset problem, the SMOTE technique was utilized.

SMOTE (Synthetic Minority Over-sampling Technique) intro-
duced by Chawla et al. in 2002 addresses class imbalance by gen-
erating synthetic samples in the minority class rather than simply
replicating existing samples, thus avoiding overfitting. To further
enhance accuracy and mitigate overfitting, the SMOTE algorithm
was refined. This method creates artificial minority instances along
the line segments connecting minority samples and their ’k’ near-

est neighbors within the minority class. The ’k’ nearest neighbors
are randomly selected based on the desired oversampling rate.
However, a limitation of SMOTE is its tendency to oversimplify
the minority class space without considering the majority class,
potentially leading to increased overlap between classes (Gosain
and Sardana 2017).

Feature Scaling of the Dataset

MinMaxScaler and StandardScaler are both preprocessing tech-
niques commonly used in machine learning (D.K. et al. 2019). Min-
MaxScaler rescales features to a predetermined range, typically
between 0 and 1 (Powers 2020), whereas StandardScaler trans-
forms features to have a mean of 0 and a standard deviation of 1.
The primary distinction between them lies in their treatment of
outliers and the resulting shape of the distribution.MinMaxScaler
may distort data in the presence of outliers, whereas Standard-
Scaler exhibits less sensitivity to them (de Amorim et al. 2023). In
this study, both feature scalling tools were employed across vari-
ous experiments to assess their impact on model training and the
performance achieved when using normalized data.

Proposed Machine Learning Models

In this study, ten different machine learning models were em-
ployed to analyze the dataset and their outcomes were compared.
While ensemble models have shown promising performance in
prior research, this study explored and compared various ensem-
ble models beside conventional ones in the domain of machine
learning experimentation.

Logistic regression (LR) is a model that predicts the probability
of a binary outcome by assessing the odds of the event occurring
versus not occurring using predictor variables (y = 0 or 1). It em-
ploys the natural logarithm of these odds as a regression function.
Odds ratios quantify the impact of predictors on the outcome, with
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the exponential of the regression coefficients providing these ratios.
While logistic regression doesn’t have a straightforward formula
for estimation like linear regression, it involves iterative processes
to converge on the best estimates (LaValley 2008).

A Decision Tree is generated from a collection of labeled train-
ing examples, each described by a set of attribute values paired
with a class label. Given the expansive search options, decision-
tree learning generally follows a greedy, top-down, and recursive
approach commencing with the full training dataset and an un-
filled tree. It selects an attribute that optimally divides the training
data as the root split, subsequently segregating the data into dis-
tinct subsets based on the attribute’s values. This process repeats
recursively for each subset until all instances within a subset share
the same class label (Su 2024).

Random Forest is created by combining different tree predictors
so that every tree in the forest is dependent on the values of a
random vector that is randomly sampled and has the same distri-
bution for every tree. As the number of trees in a forest increases,
the generalization error converges a.s. to a limit. The strength
of each individual tree in the forest and the correlation between
them determine the generalization error of a forest of tree clas-
sifiers. Each node can be split using a random feature selection
process, which produces error rates that are more resilient to noise
but still compare favorably to Adaboost (Rigatti 2017). Internal
estimates track correlation, inaccuracy, and strength and are used
to illustrate how the number of features employed in the split-
ting changes. The importance of each variable is also determined
by internal estimations. These concepts also apply to regression
(Breiman 2001).

Support Vector Machines (SVM) is a powerful algorithm based
on Vapnik-Chervonenkis theory designed for supervised learning
classification problems. It aims to find the optimal separating
surface or hyperplane between two classes using kernel functions
and slack variables for noisy data. SVM maximizes margins, the
separation between the decision boundary and support vectors
to maximize confidence in predictions and generalization ability,
ensuring robustness and good generalization to new data (Bhavsar
and Panchal 2024).

K-Nearest Neighbor (KNN) is an algorithm that is a straight-
forward yet effective machine learning method utilized for both
classification and regression tasks. It operates by grouping data
into coherent clusters or subsets and classifying new input based
on its similarity to previously trained data. Essentially, the input
is assigned to the class with the most nearest neighbors. While
KNN is widely used due to its simplicity and effectiveness, it
also possesses several weaknesses. To address these shortcomings,
modified versions of the KNN algorithm have been developed
through prior research efforts. These variants aim to enhance effi-
ciency by mitigating the limitations of the original KNN approach
(Taunk et al. 2019).

The basis of the Naive Bayes classifier is a probabilistic ap-
proach. Under the presumption that the existence of one feature in
a class is unrelated to the existence of another feature in the same
class, it applies Bayes’ theorem. To estimate the probabilities of a
particular category, one uses the joint probabilities of terms and
categories. This independence assumption makes it possible to
study each term’s parameters separately, which speeds up calcu-
lation. A set of conditional probabilities and a structural model
make up the Bayesian network (Kumari et al. 2021).

Gradient Boosting is a fundamental ensemble learning tech-
nique developed by Jerome H. Friedman in the late 1990s. It in-
volves iteratively improving predictive models by training weak
learners like decision trees to rectify errors from previous models.
By focusing on the residuals or gradients of the loss function from
the previous model, it reduces prediction errors and assembles an
ensemble of models each refining the previous model’s predictive
accuracy.

XGBoost, an evolution of Gradient Boosting, was developed
by Tianqi Chen in 2014 and quickly gained prominence for its
efficiency and scalability. Building upon the principles of Gradient
Boosting, XGBoost introduces advanced regularization techniques,
parallel and distributed computing capabilities, and a compre-
hensive set of hyperparameters. By optimizing the model’s ar-
chitecture and training process, XGBoost significantly enhances
performance while mitigating overfitting. Its versatility and ro-
bustness have made it a staple in data science competitions and
real-world applications alike (Chen and Guestrin 2016).

LightGBM, a cutting-edge gradient boosting framework,
emerged from the labs of Microsoft in 2016, engineered by Guolin
Ke et al. Unlike traditional approaches, LightGBM employs novel
tree-growing algorithms like Gradient-Based One-Side Sampling
(GOSS) and Exclusive Feature Bundling (EFB) to enhance speed
and efficiency. By prioritizing the most informative data points
during tree construction and leveraging histogram-based algo-
rithms, LightGBM achieves unparalleled performance on large-
scale datasets. With native support for categorical features and a
rich set of hyperparameters, LightGBM empowers users to build
high-quality models with minimal computational resources (Ke
et al. 2016).

CatBoost developed by Yandex researchers in 2017, CatBoost
revolutionizes gradient boosting with its intrinsic handling of cate-
gorical features. Created by Daniil Osokin and others, CatBoost
automates categorical data encoding, sparing users from tedious
preprocessing tasks. Employing advanced regularization tech-
niques like ordered boosting and dynamic tree level regularization,
CatBoost effectively combats overfitting while preserving predic-
tive accuracy. Furthermore, its GPU-accelerated training and built-
in visualization tools make it a formidable choice for practitioners
seeking both performance and interpretability in their models
(Prokhorenkova et al. 2019).

Evaluation Metrics To assess the models, we employed various
metrics commonly used in machine learning evaluations such as
the confusion matrix and its derived metrics: Accuracy, Precision,
Recall, and F1 Score (Arias-Duart et al. 2023). Additionally, the
ROC graph was displayed alongside the confusion matrix (Salih
and Abdulazeez 2021).

RESULTS AND DISCUSSION

In the study, the methodology tackles the challenge of dealing with
imbalanced datasets head-on. Various preprocessing techniques,
validation strategies, and data splitting methodologies have been
implemented to address this issue comprehensively. Through rig-
orous experimentation, we’ve meticulously examined the nuances
and disparities between these methods, meticulously dissecting
both their strengths and weaknesses.

By scrutinizing the results meticulously, we’ve identified the
most effective approach, one that not only mitigates the effects of
data imbalance but also maximizes predictive performance. Our
dedication to methodical exploration ensures that we not only
achieve optimal results but also gain a deeper understanding of
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■ Table 3 Evaluation Metrics Definition, Formulas, and Ideal Values

Metric Formula Definition Ideal Situation

Confusion Matrix Table of [TP, TN, FP, FN] An error matrix is another
name for a confusion matrix. It
facilitates our analysis of each
categorization model’s perfor-
mance. It provides a clear pic-
ture of the efficiency of your
classification method (Duvva
2024).

The ideal confusion matrix has
values only along the diagonal
(Duvva 2024).

Accuracy TP+TN
TP+TN+FP+FN Proportion of correct predic-

tions out of total predictions
(Luque et al. 2019).

1.0

Precision TP
TP+FP Proportion of true positive pre-

dictions out of all positive pre-
dictions made by the model
(Luque et al. 2019).

1.0

Recall TP
TP+FN Proportion of true positive pre-

dictions out of all actual (Luque
et al. 2019).

1.0

F1 Score 2 × Precision×Recall
Precision+Recall Harmonic mean of precision

and recall balances both metrics
(Luque et al. 2019).

1.0

ROC Graph of True Positive and
False Positive rates (Raschka
2014).

Helpful resources for choosing
categorization models accord-
ing to how well they perform
in terms of True Positive and
False Positive rates. Random
guessing is represented by the
diagonal of a ROC graph and
classification models that lie be-
low the diagonal are thought to
be less accurate than random
guessing (Raschka 2014).

A perfect classifier would have
a True Positive Rate of 1 and a
False Positive Rate of 0 placing
it in the upper left corner of the
graph.

the underlying dynamics within our datasets.

The findings of the study present six distinct methodologies for
handling our preserved dataset. In this section, the performance
of various machine learning classifiers under different preprocess-
ing techniques is presented and analyzed: Simple Implementa-
tion, Data Standardization, Data Normalization, Standardization
With K-Fold, and Standardization With K-Fold and SMOTE. The
study presents six distinct methodologies for handling a preserved
dataset focusing on the performance of various machine learning
classifiers under different preprocessing techniques. Simple imple-
mentation without standardization showed varied performance
across classifiers with Support Vector Machine (SVM) exhibiting
the highest accuracy.

Applying standardization to the data resulted in consistent im-
provements across classifiers, particularly benefiting Logistic Re-
gression, Random Forest, and LightGBM. Normalization yielded
mixed results with Logistic Regression showing the highest ac-
curacy. Standardization with K-Fold validation provided robust
estimates of model performance. Logistic Regression consistently

emerged as the top performer across all preprocessing methods.
Further exploration included Standardization with K-Fold and
SMOTE, which notably improved model performance, particularly
for Random Forest and SVM.

An alternative approach involving standardization, SMOTE
oversampling, and K-Fold cross-validation showcased significant
improvements in various classifiers, with CatBoost exhibiting im-
pressive results. Comparing all methodologies revealed varying
degrees of success, with the combined use of standardization, K-
Fold cross-validation, and SMOTE proving effective. Random For-
est and SVM consistently performed well across different method-
ologies. The findings offer valuable insights in addressing data
preprocessing and class imbalance challenges in machine learn-
ing tasks, emphasizing the importance of careful experimentation
and customization based on dataset characteristics and problem
requirements.
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■ Table 4 Evaluation metric results for each trained model across the six applied methodologies

Normalization of Data

Classifier Acc Prec Rec F1

Logistic Regression 77.27% 70.83% 57.62% 66.02%

Decision Tree 72.43% 61.21% 67.19% 64.05%

Random Forest 75.99% 66.57% 65.43% 66.00%

Gradient Boosting 75.32% 63.93% 70.91% 67.24%

SVM 72.76% 61.20% 67.45% 64.18%

KNN 71.68% 59.96% 71.24% 64.95%

Naive Bayes 74.68% 62.50% 72.73% 67.23%

XGBoost 71.43% 58.79% 77.27% 66.21%

LightGBM 72.08% 59.09% 70.91% 64.46%

CatBoost 74.03% 63.16% 65.45% 64.29%

Standardization With K Fold

Classifier Acc Prec Rec F1

Logistic Regression 72.44% 72.77% 57.62% 64.13%

Decision Tree 76.89% 69.35% 60.74% 64.80%

Random Forest 76.09% 68.91% 60.74% 64.13%

Gradient Boosting 76.30% 69.05% 61.16% 64.86%

SVM 72.21% 61.96% 68.60% 65.05%

KNN 72.16% 63.64% 71.24% 67.22%

Naive Bayes 75.13% 64.95% 63.64% 63.81%

XGBoost 73.18% 61.14% 68.75% 63.95%

LightGBM 74.38% 65.34% 65.91% 63.59%

CatBoost 76.43% 69.08% 59.87% 63.80%

Standardization, K Fold and SMOTE Implementation

Classifier Acc Prec Rec F1

Logistic Regression 75.66% 61.57% 70.91% 67.03%

Decision Tree 62.82% 54.29% 61.22% 57.03%

Random Forest 77.60% 66.44% 66.45% 65.69%

Gradient Boosting 74.87% 62.28% 72.16% 66.76%

SVM 76.69% 68.94% 71.43% 69.77%

KNN 71.95% 63.76% 71.24% 67.27%

Naive Bayes 74.38% 61.60% 75.00% 67.39%

XGBoost 74.50% 61.89% 68.45% 64.69%

LightGBM 75.49% 61.43% 68.30% 65.70%

CatBoost 76.43% 64.53% 73.30% 68.45%

Standardization, K FOLD and SMOTE Implementation (Variation)

Classifier Acc Prec Rec F1

Logistic Regression 77.34% 63.46% 74.63% 69.69%

Decision Tree 78.39% 63.95% 74.30% 74.30%

Random Forest 80.10% 100.00% 100.00% 100.00%

Gradient Boosting 89.19% 70.73% 90.67% 85.41%

SVM 82.53% 70.94% 74.70% 77.21%

KNN 100.00% 100.00% 100.00% 100.00%

Naive Bayes 74.74% 69.09% 70.91% 66.00%

XGBoost 100.00% 100.00% 100.00% 100.00%

LightGBM 100.00% 100.00% 100.00% 100.00%

CatBoost 95.18% 91.10% 95.52% 93.26%
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Figure 4 The confusion matrix and ROC curve illustrate the performance of the top-performing model (CatBoost) following the imple-
mentation of Standardization with K-Fold and SMOTE techniques.

■ Table 5 Classification performance of other classifiers in the literature

Reference Models Best Performance

(Chang et al., 2022) (Chang et al. 2023) NB, RF, and J48 DT F1-score: 85.17%

(Naz & Ahuja, 2020) (Naz and Ahuja 2020) ANN, NB, DT, and DL Accuracy: 98.07%

(Rajni & Amandeep, 2019) (Rajni and
Amandeep 2019)

SVM, NB, KNN, and RB-Bayes framework Accuracy: 72.9%

Bhoi et al. (2021) (Bhoi et al. 2021) CT, SVM, k-NN, NB, RF, NN, AdaBoost
(AB), LR

F1-score: 76%

Patra & Khuntia (2021) (Patra and Khuntia
2021)

Standard Deviation K Nearest Neighbor
(SDKNN) classifier

Accuracy: 83.2%

(Miao, 2021) (Miao 2021) SVM Accuracy: 87.01%

(Mousa et al., 2023) (Mousa et al. 2023) LSTM, RF, CNN Accuracy: 85%

This study LR, DT, RF, GB, SVM, KNN, NB, XGBoost,
LightGBM, CatBoost

Accuracy: 94.27%, Precision: 89.16%, Re-
call: 95.15%, and F1 score: 92.06%

CONCLUSION

In conclusion, this article addressed the common challenge of im-
balanced datasets, particularly in the context of classifying medical
conditions such as diabetes. It investigated six distinct method-
ologies aimed at addressing the challenges posed by imbalanced
datasets with a specific focus on classifying imbalanced diabetes
datasets. The primary objective is to mitigate these challenges
through customized preprocessing techniques. Through compre-
hensive evaluation using various classifiers and performance met-
rics such as accuracy, precision, recall, and F1 scores, it is evident
that standardization, particularly when integrated with K-Fold
cross-validation, consistently enhances model performance across
classifiers. Moreover, the integration of the SMOTE oversampling
technique significantly boosts model performance, particularly
noted in Gradient Boosting and SVM classifiers.

Notably, CatBoost emerges as a proficient tool in handling im-
balanced datasets, demonstrating impressive accuracy, precision,
recall, and F1 scores adapted to the applied preprocessing tech-
niques. These findings underscore the importance of customized
preprocessing techniques in effectively addressing the challenges
posed by imbalanced datasets, particularly in the context of di-
abetes classification, delving into the complexities of handling
such datasets and highlighting the significance of employing ap-
propriate preprocessing strategies to improve the classification
of imbalanced medical datasets, thereby augmenting predictive
accuracy in critical healthcare applications. Finally, among the
models tested, CatBoost demonstrated exceptional performance
in handling imbalanced datasets, achieving an accuracy of 95.18%,
precision of 91.10%, recall of 95.52%, and an F1 score of 93.26%.
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